
Drag and Drop Programming Topics for
Cocoa

2005-08-11

Apple Computer, Inc.
© 2005 Apple Computer, Inc.
All rights reserved.

No part of this publication may be
reproduced, stored in a retrieval system, or
transmitted, in any form or by any means,
mechanical, electronic, photocopying,
recording, or otherwise, without prior
written permission of Apple Computer, Inc.,
with the following exceptions: Any person
is hereby authorized to store documentation
on a single computer for personal use only
and to print copies of documentation for
personal use provided that the
documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple
Computer, Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple
may constitute trademark infringement and
unfair competition in violation of federal
and state laws.

No licenses, express or implied, are granted
with respect to any of the technology
described in this document. Apple retains
all intellectual property rights associated
with the technology described in this
document. This document is intended to
assist application developers to develop
applications only for Apple-labeled or
Apple-licensed computers.

Every effort has been made to ensure that
the information in this document is
accurate. Apple is not responsible for
typographical errors.

Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, Mac, Mac
OS, and QuickTime are trademarks of Apple
Computer, Inc., registered in the United
States and other countries.

Finder is a trademark of Apple Computer,
Inc.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

Simultaneously published in the United
States and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR
REPRESENTATION, EITHER EXPRESS OR
IMPLIED, WITH RESPECT TO THIS
DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT, THIS
DOCUMENT IS PROVIDED “AS IS,” AND
YOU, THE READER, ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALITY AND
ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR
DIRECT, INDIRECT, SPECIAL, INCIDENTAL,
OR CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS DOCUMENT, even if
advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND IN
LIEU OF ALL OTHERS, ORAL OR WRITTEN,
EXPRESS OR IMPLIED. No Apple dealer, agent,
or employee is authorized to make any
modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or
limitation of implied warranties or liability for
incidental or consequential damages, so the
above limitation or exclusion may not apply to
you. This warranty gives you specific legal
rights, and you may also have other rights which
vary from state to state.

Contents

Introduction to Drag and Drop 7

Organization of This Document 7

Dragging Sources 9

Drag Operations 9
Drag Messages 10
The Dragged Image 11

Dragging Destinations 13

The Sender of Destination Messages 13
The Dragging Pasteboard 13
The Order of Destination Messages 14

Receiving Drag Operations 15

Dragging Files 17

Dragging File Paths 17
Dragging File URLs 18
Dragging File Contents 19
Dragging File Promises 20

Frequently Asked Questions 23

HFS Promise Drag 23
How Do I Set a Custom Drag Image When Doing an HFS Promise Drag in Cocoa? 23
How Do I Add Other Pasteboard Types to an HFS Promise Drag in Cocoa? 24

Cross-Application Drag and Drop 24
When I Rebuild My application on Mac OS X version 10.2, My NSTableView Loses the
Ability to Drag-And-Drop to Other Applications. How Do I Fix This? 24

Document Revision History 25

3
2005-08-11 | © 2005 Apple Computer, Inc. All Rights Reserved.

4
2005-08-11 | © 2005 Apple Computer, Inc. All Rights Reserved.

Tables

Dragging Sources 9

Table 1 Available drag operations 9
Table 2 Drag operations selected with modifier keys 10

5
2005-08-11 | © 2005 Apple Computer, Inc. All Rights Reserved.

6
2005-08-11 | © 2005 Apple Computer, Inc. All Rights Reserved.

Cocoa gives you the ability to implement sophisticated drag-and-drop capabilities both within your
application and between applications. This programming topic describes how you can implement
drag-and-drop with just a few methods.

Organization of This Document

In the text here and in the dragging protocol descriptions, the term dragging session is the entire
process during which an image is selected, dragged, released, and absorbed or rejected by the
destination. A dragging operation is the action that the destination takes in absorbing the image when
it is released. The dragging source is the object that “owns” the image that is being dragged; it is
specified as an argument to the method that instigates the dragging session.

Dragging is a visual phenomenon. To be the source or destination of a dragging operation, an object
must represent a portion of screen real estate; thus, only window and view objects can be the sources
and destinations of drags. (Note that the source view is not necessarily the same objects as the dragging
source defined above.) NSWindow and NSView provide methods that handle the user interface for
dragging an object. You only need to implement a few methods from either the NSDraggingSource
or NSDraggingDestination protocol, depending on whether your window or view subclass is the
source or destination.

The dragging protocols are described in these articles:

 ■ “Dragging Sources” (page 9)

 ■ “Dragging Destinations” (page 13)

How to receive a drag is described in these articles:

 ■ “Receiving Drag Operations” (page 15)

 ■ “Dragging Files” (page 17)

Commonly-asked questions about drag-and-drop are addressed in this article:

 ■ “Frequently Asked Questions” (page 23)

Organization of This Document 7
2005-08-11 | © 2005 Apple Computer, Inc. All Rights Reserved.

Introduction to Drag and Drop

8 Organization of This Document
2005-08-11 | © 2005 Apple Computer, Inc. All Rights Reserved.

Introduction to Drag and Drop

A dragging session is initiated by the user clicking the mouse inside a window or view and moving
the mouse. NSView and NSWindow implement the method
dragImage:at:offset:event:pasteboard:source:slideBack: to handle the dragging session.
You invoke this method in the mouseDown: or mouseDragged: method of your subclass of NSView
or NSWindow. You provide an image to display during the drag, a pasteboard holding the data, and
an object that acts as the “owner”, or dragging source, of the data. During the dragging session, the
dragging source is sent messages defined by the NSDraggingSource protocol to perform any necessary
actions, described below.

Note: NSView also implements the convenience method dragFile:fromRect:slideBack:event:
for when the dragged object represents a file. NSView then handles the image, pasteboard, and source
messages itself.

Drag Operations

Only one of the NSDraggingSource methods needs to be implemented:
draggingSourceOperationMaskForLocal:. This method declares what types of operations the source
allows to be performed. Table 1 (page 9) lists the available drag operations. (In Java, the constants
are defined in the NSDraggingInfo namespace and lack the NS prefix.) The method should return a
bitwise-OR combination of the allowed types or NSDragOperationNone if no operations are allowed.

Table 1 Available drag operations

MeaningDragging Operation

The data represented by the image can be copied.NSDragOperationCopy

The data can be shared.NSDragOperationLink

The operation can be defined by the destination.NSDragOperationGeneric

The operation is negotiated privately between the source and the
destination.

NSDragOperationPrivate

The data can be moved.NSDragOperationMove

Drag Operations 9
2005-08-11 | © 2005 Apple Computer, Inc. All Rights Reserved.

Dragging Sources

MeaningDragging Operation

The data can be deleted.NSDragOperationDelete

All of the aboveNSDragOperationEvery

Deprecated. Use NSDragOperationEvery instead.NSDragOperationAll

No drag operations are allowed.NSDragOperationNone

The allowed operations may differ if the drag is occurring entirely within your application or between
your application and another. The flag passed to draggingSourceOperationMaskForLocal: indicates
whether it is a local, or internal, drag.

The user can press modifier keys to further select which operation to perform. If the control, option,
or command key is pressed, the source’s operation mask is filtered to only contain the operations
given in Table 2 (page 10). To prevent modifiers from altering the mask, your dragging source should
implement ignoreModifierKeysWhileDragging and return YES.

Table 2 Drag operations selected with modifier keys

Dragging OperationModifier Key

NSDragOperationLinkControl

NSDragOperationCopyOption

NSDragOperationGenericCommand

Drag Messages

During the course of the drag, the source object is sent a series of messages to notify it of the status
of the drag operation. At the very beginning of the drag, the source is sent the message
draggedImage:beganAt:. Each time the dragged image moves, the source is sent a
draggedImage:movedTo: message. Finally, when the user has released the mouse button and the
destination has either performed the drop operation or rejected it, the source is sent a
draggedImage:endedAt:operation: message. The operation argument is the drag operation the
destination performed or NSDragOperationNone if the drag failed. (In Java, these method names are
startedDraggingImage, movedDraggingImage, and finishedDraggingImage.)

The dragging source generally does not need to implement any of these methods. If you are going to
support the NSDragOperationMove or NSDragOperationDelete operations, however, you do need
to implement draggedImage:endedAt:operation: to remove the dragged data from the source.
(Note that an NSDragOperationDelete operation is requested when dragging any object to the Trash
icon in the dock.)

10 Drag Messages
2005-08-11 | © 2005 Apple Computer, Inc. All Rights Reserved.

Dragging Sources

The Dragged Image

The image that is dragged in a dragging session is simply an image that represents the data on the
pasteboard. Although a dragging destination can access the image, its primary concern is with the
pasteboard data that the image represents—the dragging operation that a destination ultimately
performs is on the pasteboard data, not on the image itself.

When the dragging session is started by using the NSView method
dragFile:fromRect:slideBack:event:, NSView uses the file’s Finder icon for the image. For your
own custom drags, you need to construct a suitable image. Possibilities include a semi-transparent
snapshot of the displayed data, such as the selected section of text, or a symbolic representation of
the data, such as a table icon when dragging spreadsheet data.

The Dragged Image 11
2005-08-11 | © 2005 Apple Computer, Inc. All Rights Reserved.

Dragging Sources

12 The Dragged Image
2005-08-11 | © 2005 Apple Computer, Inc. All Rights Reserved.

Dragging Sources

To receive drag operations, you must register the pasteboard types that your window or view will
accept by sending the object a registerForDraggedTypes: message, defined in both NSWindow
and NSView, and implement several methods from the NSDraggingDestination protocol. During a
dragging session, a candidate destination receives NSDraggingDestination messages only if the
destination is registered for a pasteboard type that matches the type of the pasteboard data being
dragged. The destination receives these messages as an image enters, moves around inside, and then
exits or is released within the destination’s boundaries.

Although NSDraggingDestination is declared as an informal protocol, the NSWindow and NSView
subclasses you create to adopt the protocol need only implement those methods that are pertinent.
(The NSWindow and NSView classes provide private implementations for all of the methods.) Either
a window object or its delegate may implement these methods; however, the delegate’s implementation
takes precedence if there are implementations in both places.

The Sender of Destination Messages

Each of the NSDraggingDestination methods sports a single argument: sender, the object that invoked
the method. Within its implementations of the NSDraggingDestination methods, the destination can
send NSDraggingInfo protocol messages to sender to get more information on the current dragging
session, such as querying for the dragging pasteboard or the source’s operations mask. In Java, sender
is an NSDragDestination object, which implements the NSDraggingInfo interface.

The Dragging Pasteboard

Although a standard dragging pasteboard (obtained using [NSPasteboard
pasteboardWithName:NSDragPboard]) is provided as a convenience in getting the pasteboard for
dragging data, there is NO guarantee that this will be the pasteboard used in a cross-process drag.
Thus, to guarantee getting the correct pasteboard, your code should use [sender
draggingPasteboard].

The Sender of Destination Messages 13
2005-08-11 | © 2005 Apple Computer, Inc. All Rights Reserved.

Dragging Destinations

The Order of Destination Messages

The six NSDraggingDestination methods are invoked in a distinct order:

 ■ As the image is dragged into the destination’s boundaries, the destination is sent a
draggingEntered: message. The method should return a value that indicates which dragging
operation the destination will perform.

 ■ While the image remains within the destination, a series of draggingUpdated:messages are sent.
The method should return a value that indicates which dragging operation the destination will
perform.

 ■ If the image is dragged out of the destination, draggingExited: is sent and the sequence of
NSDraggingDestination messages stops. If it re-enters, the sequence begins again (with a new
draggingEntered: message).

 ■ When the image is released, it either slides back to its source (and breaks the sequence) or a
prepareForDragOperation:message is sent to the destination, depending on the value returned
by the most recent invocation of draggingEntered: or draggingUpdated:.

 ■ If the prepareForDragOperation: message returned YES, a performDragOperation: message
is sent.

 ■ Finally, if performDragOperation: returned YES, concludeDragOperation: is sent.

14 The Order of Destination Messages
2005-08-11 | © 2005 Apple Computer, Inc. All Rights Reserved.

Dragging Destinations

This document shows sample code which allows a view (or window) to accept dragging sessions for
several data types, performing different drag operations based on the dragged type. The sample
implementation can accept either a color or a file. A dragged color will be copied while the file will
be either linked or copied.

Before a view can receive a drag operation, you need to register the data types that it can accept by
invoking its registerForDraggedTypes:, like this:

[self registerForDraggedTypes:[NSArray arrayWithObjects:
 NSColorPboardType, NSFilenamesPboardType, nil]];

Now, any time a dragging session that consists of either of these data types enters the views bounds,
the view is sent a series of NSDraggingDestination messages. The code below is a simple example of
the initial method that gets sent: draggingEntered:. The method obtains the dragging pasteboard
and available drag operations from the sender object. If the pasteboard contains color data and the
source object permits dragging, the method returns NSDragOperationGeneric, indicating that the
destination permits dragging of the color data on the pasteboard. If the pasteboard contains a file
name and the source object permits linking, the method returns NSDragOperationLink, indicating
that the destination permits the link. If the source does not allow linking, the destination also checks
if a copy operation is allowed instead, returning NSDragOperationCopy if so. Failing all these tests,
the method returns NSDragOperationNone.

- (NSDragOperation)draggingEntered:(id <NSDraggingInfo>)sender {
 NSPasteboard *pboard;
 NSDragOperation sourceDragMask;

 sourceDragMask = [sender draggingSourceOperationMask];
 pboard = [sender draggingPasteboard];

 if ([[pboard types] containsObject:NSColorPboardType]) {
 if (sourceDragMask & NSDragOperationGeneric) {
 return NSDragOperationGeneric;
 }
 }
 if ([[pboard types] containsObject:NSFilenamesPboardType]) {
 if (sourceDragMask & NSDragOperationLink) {
 return NSDragOperationLink;
 } else if (sourceDragMask & NSDragOperationCopy) {
 return NSDragOperationCopy;
 }
 }
 return NSDragOperationNone;

15
2005-08-11 | © 2005 Apple Computer, Inc. All Rights Reserved.

Receiving Drag Operations

}

As the dragging session continues, the destination is sent draggingUpdated: messages. You only
need to implement this if the destination needs to know the current position of the dragged image,
either to change the dragging operation or to update any visual feedback, such as an insertion point,
you are providing. If not implemented, NSView assumes the dragging operation is unchanged from
the draggingEntered: invocation. If the dragging session leaves the views bounds, the
draggingExited:method is invoked. Implement this if you need to clean up after one of the preceding
messages, such as removing the visual feedback.

When the image is dropped with a drag operation other than NSDragOperationNone, the destination
is sent a prepareForDragOperation: message followed by performDragOperation: and
concludeDragOperation:. You can cancel the drag by returning NO from either of the first two
methods.

You do the bulk of the data handling in the performDragOperation:method; the other two methods
are implemented only if necessary. The following code sample shows a possible implementation of
this method. The method again checks the pasteboard for the available data and, if necessary, it also
checks the dragging source’s operation mask for the available operations.

- (BOOL)performDragOperation:(id <NSDraggingInfo>)sender {
 NSPasteboard *pboard;
 NSDragOperation sourceDragMask;

 sourceDragMask = [sender draggingSourceOperationMask];
 pboard = [sender draggingPasteboard];

 if ([[pboard types] containsObject:NSColorPboardType]) {
 // Only a copy operation allowed so just copy the data
 NSColor *newColor = [NSColor colorFromPasteboard:pboard];
 [self setColor:newColor];
 } else if ([[pboard types] containsObject:NSFilenamesPboardType]) {
 NSArray *files = [pboard propertyListForType:NSFilenamesPboardType];

 // Depending on the dragging source and modifier keys,
 // the file data may be copied or linked
 if (sourceDragMask & NSDragOperationLink) {
 [self addLinkToFiles:files];
 } else {
 [self addDataFromFiles:files];
 }
 }
 return YES;
}

16
2005-08-11 | © 2005 Apple Computer, Inc. All Rights Reserved.

Receiving Drag Operations

When dragging files, the dragging pasteboard can transfer the files in four different ways. The
pasteboard can hold a list of file paths, a single URL, a file’s complete contents, or a promise to create
files at a location to be determined by the destination. Each style corresponds to a separate
NSPasteboard data type and has a different method for reading and writing the dragged data. The
following sections describe each style and how to handle them, whether you are the dragging source
or destination.

Dragging File Paths

The most common and simplest method for dragging files is to transmit a list of the files’ paths. The
dragging source creates an NSArray containing NSString objects of all the paths of the files to be
dragged and places the array onto the pasteboard with the data type NSFilenamesPboardType. The
dragging destination then reads the array from the pasteboard and performs the requested operation
using the paths that it holds.

To initiate a drag operation for a single file, you can use the NSView method
dragFile:fromRect:slideBack:event: when the user clicks in the view representing the file. The
first argument is the path of the file to drag. This method places the file’s path onto the dragging
pasteboard with the NSFilenamesPboardType pasteboard type and starts the drag operation.

To initiate a drag operation on multiple files, you need to use the NSView or NSWindow method
dragImage:at:offset:event:pasteboard:source:slideBack:. You must place the array of file
paths onto the pasteboard yourself, using the NSPasteboard method setPropertyList:forType:.
The following sample code shows a possible implementation.

NSString *filePath1, *filePath2; // Assume these exist

- (void)mouseDown:(NSEvent *)theEvent
{
 NSImage *dragImage;
 NSPoint dragPosition;

 // Write data to the pasteboard
 NSArray *fileList = [NSArray arrayWithObjects:filePath1, filePath2, nil];
 NSPasteboard *pboard = [NSPasteboard pasteboardWithName:NSDragPboard];
 [pboard declareTypes:[NSArray arrayWithObject:NSFilenamesPboardType]
 owner:nil];
 [pboard setPropertyList:fileList forType:NSFilenamesPboardType];

Dragging File Paths 17
2005-08-11 | © 2005 Apple Computer, Inc. All Rights Reserved.

Dragging Files

 // Start the drag operation
 dragImage = [[NSWorkspace sharedWorkspace] iconForFile:filePath1];
 dragPosition = [self convertPoint:[theEvent locationInWindow]
 fromView:nil];
 dragPosition.x -= 16;
 dragPosition.y -= 16;
 [self dragImage:dragImage
 at:dragPosition
 offset:NSZeroSize
 event:theEvent
 pasteboard:pboard
 source:self
 slideBack:YES];
}

After a drag operation is dropped, the dragging destination receives a performDragOperation:
message. To extract the NSFilenamesPboardType data from the pasteboard, use the
propertyListForType: method. Even if only one file is being dragged, the file’s path is stored in an
NSArray.

- (BOOL)performDragOperation:(id <NSDraggingInfo>)sender
{
 NSPasteboard *pboard = [sender draggingPasteboard];

 if ([[pboard types] containsObject:NSFilenamesPboardType]) {
 NSArray *files = [pboard propertyListForType:NSFilenamesPboardType];
 int numberOfFiles = [files count];
 // Perform operation using the list of files
 }
 return YES;
}

Dragging File URLs

Files can also be specified by their URLs. A file’s URL is stored in a pasteboard with the type
NSURLPboardType. Unlike the NSFilenamesPboardType, which holds an array of file paths, the
NSURLPboardType type holds a single NSURL object. It is not possible to store more than one URL
on the pasteboard using this pasteboard type, so you cannot drag more than one file with a URL.

To initiate a drag operation on a file using its URL, you need to use the NSView or NSWindow method
dragImage:at:offset:event:pasteboard:source:slideBack:. You must place the file’s URL
onto the pasteboard yourself, using the NSURL method writeToPasteboard:. You must declare the
NSURLPboardType before calling this method, though. This allows you to place both a file path and
a file URL onto the pasteboard. The drag operation can then be dropped on destinations that registered
for either drag type, or both. The following sample code shows a possible implementation for writing
the data to the pasteboard.

// Write data to the pasteboard
NSURL *fileURL; // Assume this exists
NSPasteboard *pboard = [NSPasteboard pasteboardWithName:NSDragPboard];
[pboard declareTypes:[NSArray arrayWithObject:NSURLPboardType] owner:nil];
[fileURL writeToPasteboard:pboard];

18 Dragging File URLs
2005-08-11 | © 2005 Apple Computer, Inc. All Rights Reserved.

Dragging Files

See “Dragging File Paths” (page 17) for more complete sample code on starting the drag operation.

After a drag operation is dropped, the dragging destination receives a performDragOperation:
message. To extract the NSURLPboardType data from the pasteboard, use the NSURL class method
URLFromPasteboard:.

- (BOOL)performDragOperation:(id <NSDraggingInfo>)sender
{
 NSPasteboard *pboard = [sender draggingPasteboard];

 if ([[pboard types] containsObject:NSURLPboardType]) {
 NSURL *fileURL = [NSURL URLFromPasteboard:pboard];
 // Perform operation using the file’s URL
 }
 return YES;
}

Dragging File Contents

Files do not need to be dragged using references to the file only; a file’s contents can be placed directly
onto the pasteboard and dragged using the NSFileContentsPboardType. Use this pasteboard type
when you want to supply the contents of a file instead of its location in the file system. The destination
can choose to extract the data directly to a location in the file system that it specifies or into a file
wrapper in memory.

To initiate a drag operation on a file’s contents, you need to use the NSView or NSWindow method
dragImage:at:offset:event:pasteboard:source:slideBack:. You must place the file’s contents
onto the pasteboard yourself. You can write the data to the pasteboard using either the
writeFileContents: method, which reads the data directly from the file system, or the
writeFileWrapper: method, which reads the data from an NSFileWrapper object that you have
already created. The following sample code shows a possible implementation for writing the data to
the pasteboard.

// Write data to the pasteboard
NSString *filename; // Assume this exists
NSPasteboard *pboard = [NSPasteboard pasteboardWithName:NSDragPboard];
[pboard writeFileContents:filename];

See “Dragging File Paths” (page 17) for more complete sample code on starting the drag operation.

In addition to writing the file’s contents to the pasteboard with the general type
NSFileContentsPboardType, the writeFileContents: and writeFileWrapper:methods write the
data with a more specific type based on the file’s filename extension, if it exists. The drag destination
can register for this more specific type instead of the generic type to restrict drags to files of a particular
type, such as mp3 or mov files. You can obtain the name of this specific pasteboard type by passing
the filename extension to the NSCreateFileContentsPboardType function, which returns an NSString.
The following code sample shows how a view could register to receive only QuickTime movie files.

NSString *pboardType = NSCreateFileContentsPboardType(@"mov");
NSArray *dragTypes = [NSArray arrayWithObject:pboardType];
[self registerForDraggedTypes:dragTypes];

Dragging File Contents 19
2005-08-11 | © 2005 Apple Computer, Inc. All Rights Reserved.

Dragging Files

After a drag operation is dropped, the dragging destination receives a performDragOperation:
message. To extract the file contents from the pasteboard, use either the
readFileContentsType:toFile: method, which copies the data from the pasteboard and writes it
to the file path you specify, or the readFileWrapper method, which creates an NSFileWrapper object
from the pasteboard data.

- (BOOL)performDragOperation:(id <NSDraggingInfo>)sender
{
 NSPasteboard *pboard = [sender draggingPasteboard];

 if ([[pboard types] containsObject:NSFileContentsPboardType]) {
 NSFileWrapper *fileContents = [pboard readFileWrapper];
 // Perform operation using the file’s contents
 }
 return YES;
}

Dragging File Promises

In some cases, you may want to drag a file before it actually exists within the file system. You may
have a new document that hasn’t been saved, yet, or perhaps the file exists on a remote system, such
as a web server, to which the dragging destination may not have access. (Typically, the destination
is the Finder.) In these cases, the drag operation serves as a technique for specifying a location at
which to save the new file. When the drag operation is dropped, the dragging destination tells the
source where it wants the files saved and the dragging source creates the files. This type of file drag
is called an HFS promise, because, in essence, the drag operation contains a promise from the source
to the destination that the source will create the specified files if the drag operation is accepted. The
data on the pasteboard has the type NSFilesPromisePboardType.

To initiate an HFS promise drag operation on one or more files, you need to use the NSView method
dragPromisedFilesOfTypes:fromRect:source:slideBack:event:. The first argument is an array
listing the file types of all the files the source promises to create. The types can be specified as filename
extensions or as HFS file types encoded using the NSFileTypeForHFSTypeCode function. If a directory
hierarchy is being dragged, only the top-level files and directories need to be listed in the type array.
The dragPromisedFiles... method places the file type array onto the dragging pasteboard with
the NSFilesPromisePboardType pasteboard type and starts the drag operation.

- (void)mouseDown:(NSEvent *)theEvent
{
 NSPoint dragPosition;
 NSRect imageLocation;

 dragPosition = [self convertPoint:[theEvent locationInWindow]
 fromView:nil];
 dragPosition.x -= 16;
 dragPosition.y -= 16;
 imageLocation.origin = dragPosition;
 imageLocation.size = NSMakeSize(32,32);
 [self dragPromisedFilesOfTypes:[NSArray arrayWithObject:@"pdf"]
 fromRect:imageLocation
 source:self
 slideBack:YES
 event:theEvent];

20 Dragging File Promises
2005-08-11 | © 2005 Apple Computer, Inc. All Rights Reserved.

Dragging Files

}

When dragging HFS promises, the dragging source must also implement the
namesOfPromisedFilesDroppedAtDestination: method. This method is invoked when the
destination accepts the drag operation. The single argument is an NSURL object that identifies the
location within the file system that the source should create the files. The method returns a list of the
filenames (not full paths) of all the files the source promised to create. If a directory hierarchy is being
dragged, only the top-level objects need to be listed in the returned array.

For short operations, you can create the promised files within the
namesOfPromisedFilesDroppedAtDestination:method. For long operations, however, you should
defer the creation of the files until later to avoid blocking the destination application. One technique
is to cache the destination URL and create the files in your source’s
draggedImage:endedAt:operation: method. Alternatively, you could spawn a background thread
to create the files or delay the action on the current thread using an NSTimer, an NSNotificationQueue,
or the NSObject method performSelector:withObject:afterDelay:.

Before the drag is actually dropped, a potential dragging destination does not have access to the
filenames of the files being promised. Only the file types are available from the pasteboard. The
destination can obtain the file types by requesting the pasteboard’s NSFilesPromisePboardTypedata
using the propertyListForType: method. The returned array contains the file types that the source
passed to the dragPromisedFiles... method. The destination can then accept or reject a drag
operation based on the contents of the types array.

After a drag operation is dropped, the dragging destination receives a performDragOperation:
message. To specify the drop location and to obtain the filenames of the promised files, use the
dragging information object’s namesOfPromisedFilesDroppedAtDestination:method, passing the
NSURL for the drop location as the one argument. The return value is an array of the filenames (not
full paths) of the files that the source will create. The dragging destination must invoke this method
only within performDragOperation: or else the source may create the files in the incorrect location.

NSURL *dropLocation; // Assume this exists

- (BOOL)performDragOperation:(id <NSDraggingInfo>)sender
{
 NSPasteboard *pboard = [sender draggingPasteboard];

 if ([[pboard types] containsObject:NSFilesPromisePboardType]) {
 NSArray *filenames = [sender
 namesOfPromisedFilesDroppedAtDestination:dropLocation];
 // Perform operation using the files’ names, but without the
 // files actually existing yet
 }
 return YES;
}

Dragging File Promises 21
2005-08-11 | © 2005 Apple Computer, Inc. All Rights Reserved.

Dragging Files

22 Dragging File Promises
2005-08-11 | © 2005 Apple Computer, Inc. All Rights Reserved.

Dragging Files

This document answers commonly asked questions about the drag and drop capabilities of the
Application Kit. This includes information on HFS promise drags and special information regarding
cross-application dragging from NSTableView objects.

Note: This document obsoletes Developer Technical Q&A’s 1200, 1220, and 1300. Future updates to
these questions will be posted to this programming topic.

This document covers the following subjects:

 ■ “HFS Promise Drag” (page 23)

 ■ “Cross-Application Drag and Drop” (page 24)

HFS Promise Drag

The questions addressed in this section include:

“How Do I Set a Custom Drag Image When Doing an HFS Promise Drag in Cocoa?” (page 23)
“How Do I Add Other Pasteboard Types to an HFS Promise Drag in Cocoa?” (page 24)

How Do I Set a Custom Drag Image When Doing an HFS
Promise Drag in Cocoa?

NSView’s dragPromisedFilesOfTypes:fromRect:source:slideBack:event: method doesn't
provide a way to set the drag image to be used when dragging an HFS promise file. However, this
method calls another NSView method,dragImage:at:offset:event:pastboard:source:slideback:
in its implementation, which does provide a parameter for an NSImage to be used as the drag image.
So, to set a custom drag image, simply override
dragImage:at:offset:event:pastboard:source:slideback:, setup your custom image, invoke
super's dragImage:at:offset:event:pastboard:source:slideback: and pass in your custom
drag image.

For more information, see documentation on NSView.

HFS Promise Drag 23
2005-08-11 | © 2005 Apple Computer, Inc. All Rights Reserved.

Frequently Asked Questions

How Do I Add Other Pasteboard Types to an HFS Promise Drag
in Cocoa?

NSView's dragPromisedFilesOfTypes:fromRect:source:slideBack:event: method doesn't
provide a means to add other pasteboard types to the HFS Promise data, because it doesn't expose
the pasteboard that it uses. However, there is a workaround to add other pasteboard type data.
dragPromisedFilesOfTypes:fromRect:source:slideBack:event: calls NSView's
dragImage:at:offset:event:pasteboard:source:slideBack:method in its implementation. So,
you can overridedragImage:at:offset:event:pasteboard:source:slideBack:, add any additional
pasteboard types you need, and then invoke super's
dragImage:at:offset:event:pasteboard:source:slideBack: to allow everything to continue as
before.

For more information, see documentation on NSView.

Cross-Application Drag and Drop

The questions addressed in this section include:

“When I Rebuild My application on Mac OS X version 10.2, My NSTableView Loses the Ability
to Drag-And-Drop to Other Applications. How Do I Fix This?” (page 24)

When I Rebuild My application on Mac OS X version 10.2, My
NSTableView Loses the Ability to Drag-And-Drop to Other
Applications. How Do I Fix This?

A bug in NSTableView in Mac OS X version 10.2 and later causes cross-application drags to not work
without additional code from the application developer. Drag-and-Drop within an application still
works correctly.

You can work around the bug by subclassing NSTableView and overriding
draggingSourceOperationMaskForLocal: to return the appropriate NSDragOperation (typically
NSDragOperationCopy, depending upon what drag operation you want the drag-and-drop to perform).
Only applications built on Mac OS X version 10.2 and later are affected; applications built on Mac OS
X version 10.1.x are not affected.

In Mac OS X v10.4 you can work around this bug without subclassing. By default the NSTableView
implementation of draggingSourceOperationMaskForLocal: disallows dragging to destinations
outside of the application while allowing any type of drag within the same application. You can
change this behavior by sending the table view a setDraggingSourceOperationMask:forLocal:
message. Passing a value of YES as the second parameter indicates that specified mask applies when
the destination object is in the same application. Passing a value of NO indicates that the specified
mask applies when the destination object in an application outside the receiver's application. The
masks are archived with the table view.

24 Cross-Application Drag and Drop
2005-08-11 | © 2005 Apple Computer, Inc. All Rights Reserved.

Frequently Asked Questions

This table describes the changes to Drag and Drop Programming Topics for Cocoa.

NotesDate

Added information about setDraggingSourceOperationMask:forLocal: to
the Frequently Asked Questions article.

2005-08-11

Added a “Frequently Asked Questions” (page 23) article to obsolete
Technical Q&As 1200, 1220, and 1300.

2003-10-13

Dragging of color uses NSDragOperationGeneric, not
NSDragOperationCopy. Updated sample code and descriptive text in
“Receiving Drag Operations” (page 15) to use the correct drag operation.

2003-04-03

Revision history was added to existing topic. It will be used to record
changes to the content of the topic.

2002-11-12

25
2005-08-11 | © 2005 Apple Computer, Inc. All Rights Reserved.

Document Revision History

26
2005-08-11 | © 2005 Apple Computer, Inc. All Rights Reserved.

Document Revision History

	Drag and Drop Programming Topics for Cocoa
	Contents
	Tables
	Introduction
	Dragging Sources
	Drag Operations
	Drag Messages
	The Dragged Image

	Dragging Destinations
	The Sender of Destination Messages
	The Dragging Pasteboard
	The Order of Destination Messages

	Receiving Drag Operations
	Dragging Files
	Dragging File Paths
	Dragging File URLs
	Dragging File Contents
	Dragging File Promises

	Frequently Asked Questions
	HFS Promise Drag
	How Do I Set a Custom Drag Image When Doing an HFS Promise Drag in Cocoa?
	How Do I Add Other Pasteboard Types to an HFS Promise Drag in Cocoa?

	Cross-Application Drag and Drop
	When I Rebuild My application on Mac OS X version 10.2, My NSTableView Loses the Ability to Drag-And-Drop to Other Applications. How Do I Fix This?

	Revision History

