Mendel Cooper

. Terminal -

File

18
19
20

Edit View Terminal Help

#!/bin/bash

var-match.sh:

Demo of pattern replacement at prefix / suffix of string.

vi=abcl234zipl23dabc # Original variable.
echo "v@ = $vD" # abcl234zipl234abc
echo

Match at prefix (beginning) of string.
v1=${v0/#abc/ABCDEF} # abcl234zipl234abc

|-

echo "wl = %v1" # ABCDEF1234zipl234abc
#|----

Match at suffix (end) of string.

vZ2=%{v0/%abc/ABCDEF} # abcl234zipl23abc

B
echo "v2 = gv2" # abcl234zipl234ABCDEF
===
echo
B e e e

20,0-1 Top ~

Authorized Edition

Advanced Bash-Scripting Guide

Advanced Bash-Scripting Guide

Table of Contents

Advanced Bash-Scripting Guide 1
An in-depth exploration of the art of Shell SCIIPHNE.coverierierieiierierie et 1
MENAEL COOPETE ..ttt ettt ettt ettt ettt ettt et e sttt esbbeesabeesabeesabeesabeeenbaeebaeenbaeenabeesareeas 1

Dedication 3
Part 1. Introduction 15
Chapter 1. Shell Programming! 17
N OLES. ettt ettt ettt e e e e e ettt ettt eeeeee ettt aa—————eeeettettata——————aeetttttta——————aatetttta————————_. 18

hapter 2. Starting Off With a Sha-Ban 21
2.1. Invoking the script 25
NS, o eeeeeeeeee ettt ettt ettt ettt a et e et e e e et e aaaaaaaaaaaaaaaaaaaerarerararaaaaraaaaaaannnanas 25

2.2. Preliminary Exercises 27
Part 2. Basics 29
Chapter 3. Special Characters 31
NS, o eeeeeeeeee ettt ettt ettt e et et e ettt e e et et e aaaaaaaaaaaaaaaaaaaerareraraaaaaaaaaaaaaaanannas 51
Chapter 4. Introduction to Variables and Parameters 53
4.1. Variable Substitution 55
NS, o eeeeeeeeee ettt ettt ettt e et et e ettt e e et et e aaaaaaaaaaaaaaaaaaaerareraraaaaaaaaaaaaaaanannas 57

4.2. Variable Assignment 59
4.3. Bash Variables Are Untyped 61
4.4. Special Variable Types. 63
INOBES, 1 eeeeeeeeee ettt ettt ettt et e ettt e et et et e aaaaaaaaaaaaaaaaaararerararaararaaaaaaannnnnnas 67
Chapter 5. Quoting 69
5.1. Quoting Variables. 71
N OB ettt ettt ettt e ettt e e e e e et ettt eee e ettt at—————eeeeettttata— . aeetttttta— i aetetttta————————_. 73

5.2. Escaping 75
Chapter 6. Exit and Exit Status, 83
NS, o eeeeeeeeee ettt ettt a ettt e e e et e e e e et et e e eaaaaaa et et et aaaaaaraaararaaaaaaraaaaaaannaanas 85
Chapter 7. Tests 87

Advanced Bash-Scripting Guide

Table of Contents

7.1. Test Constructs 89
N OB ettt ettt oottt e e e e e et ettt eeee e ettt aa—————eeeeeetttat . —aeetttttta i aatetttta—————————_. 96

7.2. File test operators 97
N OB, ettt e ettt e ettt e e e e e e et ettt eeeee et ettt —aeeeetttta——————aatetttta——————aaertttrt————— 100

7.3. Other Comparison Operators 101
INOBES. ettt ettt ettt et et et et e et e e e e e et e eaaaataaaaaaaaaaaaaararareraraaaaraaaaaaaaaaas 106

7.4. Nested if/then Condition Tests 107
7.5. Testing Your Knowledge of Tests 109
Chapter 8. Operations and Related Topics 111
8.1. Operators. 113
N OB, ettt e ettt e ettt e e e e e et ettt eeee e ettt aa—————eeeetetttta————————tettttta————————aertttata————_ 119

8.2. Numerical Constants 121
8.3. The Double-Parentheses Construct 123
8.4. erator Precedence 125
N OB, ettt et ettt e ettt e e e e et ettt eeeee et ettt a—————eeeeeetttta———————aeettttta——————aaertttata———_ 127

Part 3. Bevond the Basics. 129
Chapter 9. Another Look at Variables 131
9.1. Internal Variables. 133
INOBES. . eeeeeeeeeee ettt ettt et e et e e et e et e e et e eaaaaaaaaaaaaaaaaaaararareraaaaaaraaaaaaaannas 151

9.2. Typing variables: declare or typeset 153
0.2.1. ANORET USE 0T AECIATEovvvviiiiiiieeieeeeeee ettt aaeaeaaaees 155

INOEES ettt ettt ettt et e e e e e e e e e ee e e e e s e e e aaaaanan_aaaaaa———aaaaaaaatattaa ettt et ettt taaaaaaaaaaaaaaaaas 155

9.3. SRANDOM: generate random integer. 157
INOBES. . eeeeeeeeeee ettt ettt ettt et et et e e et et e e et e eaaeaeaaaaaaaaaaaaaararararaaaaaaraaaaaaaaanas 168
Chapter 10. Manipulating Variables 169
10.1. Manipulating Strings, 171
10.1.1. Manipulating Strings USING AWKccueerieiieiieiietieniere ettt sttt st 178

10.1.2, FUIMNET RETEIEIICE. . uuvveeeeeeieieeeeeeeeeeeeeeeeee ettt et aeaaaaaaaeaees 179

N O S ettt ettt ettt et ettt e e e e e e ettt eeeee e ettt a—————aeeeetttata———————aateetttta——————aaetettra———— 179

Advanced Bash-Scripting Guide

Table of Contents

10.2. Parameter Substitution 181
N OB, ettt ettt et e ettt e e e e e et ettt eeeeeeeettaa——————aeeeetttta———————aaettttta——————aaertttaa———— 190
Chapter 11. Loops and Branches 191
11.1. Loops. 193
N OB, ettt ettt e e e ettt e e e e e et ettt eeeee et ettt a—————eeeeeetttt . attttttta———————aaertttaaa————— 207
11.2. Nested L.oops 209
11.3. Loop Control 211
N OB, ettt e e ettt et ettt e e e e e et ettt eeeee e ettt a——————eaeeeetttta——————eetttttta——————aaertttat————_ 214
11.4. Testing and Branching 215
N OB, ettt e ettt e ettt e e e e e e et ettt eeee e et ettt eaeeeetttta————————atetttta— . aertttata————— 222
Chapter 12. Command Substitution 223
N OB, ettt et ettt e ettt e e e e e e e ettt ta—eeee ettt ettt eeeetetttta———————attttttta————————aertttaa————— 228
Chapter 13. Arithmetic Expansion 229
Chapter 14. Recess Time, 231
Part 4. Commands 233
Chapter 15. Internal Commands and Builtins 241
15.1. Job Control Commands 271
N OB, ettt e ettt e ettt e e e e e et ettt eeee et ettt a . eeeeetttt . aeeetttta——————aaertttaaa————— 274
Chapter 16. External Filters, Programs and Commands 277
16.1. Basic Commands 279
N OB, ettt e ettt e e ettt e e e e e et ettt eeeeee et ettt eaeetetttt e aetttttta——————aaertttata———_ 284
16.2. Complex Commands 285
N OB, ettt e ettt e ettt e e e e e et ettt eeee e ettt aa—————eeeetetttta——————aeettttta——————aaertttaa————— 295
16.3. Time / Date Commands. 297
16.4. Text Processing Commands. 301
N OB, ettt e ettt e ettt e e e e e et ettt eeee e ettt aa—————eeeetetttta——————aeettttta——————aaertttaa————— 322
16.5. File and Archiving Commands 323
N OB, ettt e ettt e ettt e e e e e e et ettt eeeee et ettt ——————eeeetetttt i aeeetttta———————aaertttaaa————_ 340

Advanced Bash-Scripting Guide

Table of Contents

16.6. Communications Commands 343
INOBES. . eeeeeeeeee ettt ettt et et e e et e e e e e et e eaaeaaaaaaaaaaaaaaaarararararaaaaraaaaaaaannas 356
16.7. Terminal Control Commands 357
16.8. Math Commands 359
16.9. Miscellaneous Commands. 371
INOBES. e eeeeeeeee ettt ettt ettt e et et et et et e et e e e e e e e e e aaaaeaaaaaaaaaaaaaarararararaaaaaaaaaaaaan—_, 385
Chapter 17. System and Administrative Commands 387
17.1. Analyzing a Svstem Script 419
N OB, ettt e e ettt e e ettt e e e e e et ettt eeeeee et ettt eeeetetttta———————aetttttta———————aettttaaa————_ 420
Part 5. Advanced Topics 421
Chapter 18. Regular Expressions. 423
18.1. A Brief Introduction to Regular Expressions 425
N OB, ettt e e ettt e ettt e e e e e et ettt eeee ettt ittt eeetetttt . —atttttta— . aaettttat————— 428
18.2. Globbin: 431
N OB, ettt e ettt e e ettt e e e e e et ettt eeeeee et ettt eeeetetttta———————aettttttaa—————aaettttra————_ 432
Chapter 19. Here Documents 433
19.1. Here Strings 445
N OB, ettt e ettt e ettt e e e e e et ettt eeee et ettt a . eeeeetttt . aeeetttta——————aaertttaaa————— 447
Chapter 20. I/0 Redirection 449
20.1. Using exec 453
INOBES. . eeeeeeeeee ettt ettt ettt ettt et e et e e e et e e e e aeaaaaaaaaaaaaaaaaararararaaaaaaaaaaaaaaaaaas 456
20.2. Redirecting Code Blocks 457
20.3. Applications. 463
Chapter 21. Subshells 465
N OB, ettt e ettt e ettt e e e e e et ettt eeeeee et ettt eeeetetttta———————aeettttta——————————ertttaa————— 469
Chapter 22. Restricted Shells 471
Chapter 23. Process Substitution 473
N OB, ettt e ettt e ettt e e e e e et ettt eeeeee et ettt eeeetetttta———————aeettttta——————————ertttaa————— 477

Advanced Bash-Scripting Guide

Table of Contents

Chapter 24. Functions 479
24.1. Complex Functions and Function Complexities 485
N OB, ettt e ettt e e ettt e e e e e et ettt eeeeeeett et a—————eaeetetttta————————aettttta——————aaertttata————_ 495

24.2. L.ocal Variables 497
24.2.1. Local variables and TECUTISION........cuvvitiiiieeeeeeeeeeeee ettt e e aaaaaaaaaaeaeaeeeaees 498

INOTES ettt ettt ettt ettt et et e e e e e eese e e e e e e s e e e aaaanann_aaat—a———aaaaaaaataatta ettt et et et aaaaaaaaaaaaaaaaaas 500

24.3. Recursion Without Local Variables 503
Chapter 25. Aliases 507
N OB, ettt e ettt e ettt e e e e e e e et ettt eeee et ettt a—————eeeetetttta————————tettttta——————aaettttaa————— 509
Chapter 26. List Constructs. 511
Chapter 27. Arrays 515
Chapter 28. Indirect References 543
Chapter 29. /dev and /proc 547
29.1. /dev 549
INOBES. . eeeeeeeeeee ettt ettt ettt aa ettt et et e e et e e e e e e e eaaeaeaaaaaaaaaaaaaararareraraaaaaaaaaaaaannas 551

29.2. /proc 553
INOBES. . eeeeeeeeee ettt ettt et et ettt e et e et e e e e e eaaaaeaaaaaaaaaaaaaarararararaaaaaaaaaaaaann_s 558
Chapter 30. Network Programming 559
hapter 31. Of Zeros and Nulls 563
Chapter 32. Debugging 567
NS, o eeeeeeeeeee ettt ettt ettt et et e et e et e e e e e eaaaaaaaataaaaaaaaaararareraraaaaaaaaaaaaaanas 577
Chapter 33. Options 579
Chapter 34. Gotchas 583
N OB, ettt ettt ettt e e ettt e e e e e et ettt eeee ettt ettt ———eeeeeetttt e —tettttta——————aaertttat————— 591
Chapter 35. Scripting With Style 593
35.1. Unofficial Shell Scripting Stylesheet 595
N OB, ettt e ettt e ettt e e e e e e et ettt eeee et ettt a—————aeetettat . aeettttta— . aaertttaaa———_ 597
Chapter 36. Miscellany. 599

Advanced Bash-Scripting Guide

Table of Contents

36.1. Interactive and non-interactive shells and scripts

36.2. Shell Wrappers

601

603

36.3. Tests and Comparisons: Alternatives

36.4. Recursion: a script calling itself

36.5. ""Colorizing'' Scripts.

36.6. timizations

36.7. Assorted Tips

36.7.1. Ideas for more powerful scripts

36.8. Security Issues.

36.8.1. Infected Shell Scripts................
36.8.2. Hiding Shell Script Source.......
36.8.3. Writing Secure Shell Scripts....

36.10. Shell Scripting Under Windows

Chapter 37. Bash, versions 2, 3, and 4

37.1. Bash, version 2

37.2. Bash, version 3

37.2.1. Bash, version 3. L....cccouvvveeennenns

37.2.2. BaASH, VEISIOMN 3.2 . ueiiueiieieiiieieeeeeeeeeee ettt et e e e e eeee e e e e e e e e e e e e e e e e et eeeeeeeesesesssseess s asasesanesssssasssssssasssaeanes

37.3. Bash, version 4

37.3. 1. BaASH, VEISIOMN 4. L.ttt e e e e e e et e e e e e e e e e e e e e e e e sasassaaaaassasasanaeseanes
37.3.2. BaASN, VEISION 4.2ttt et e e e e e e e e e e e e e e e e e e sanssssasasssssasanaseeanes

Chapter 38. Endnotes

vi

608

609

611

615
627

629
632

633
633
643

647
647
647
647
647

649
649
650
651
653
655
661
663
664
665
671
673
675

677

Advanced Bash-Scripting Guide

Table of Contents

38.1. Author's Note

38.4. Tools Used to Produce This Book

38.4. 1. HATAWATE.......coieiiiiieeeee ettt e e e e e e e e s
38.4.2. Software and PrINEWATE.uvveeiieieiiiieeeeeeeeeeeeeeeeeeeeeeeee e

38.5. Credits

38.6. Disclaimer.

Bibliography.

Appendix A. Contributed Scripts
Appendix B. Reference Cards

679
679

681
681

683
683

685
685
685
687
689

691
697

699

899

Appendix C. A Sed and Awk Micro-Primer

Appendix D. Parsing and Managing Pathnames

Appendix E. Exit Codes With Special Meanings.

Appendix F. A Detailed Introduction to and Redirection

Appendix G. Command-Line Options.

1. Standard Command-Line tions

G.2. Bash Command-Line Options

Appendix H. Important Files.

905

907
909

911
913

915

919
919

921

923

925

927

929

Vii

Advanced Bash-Scripting Guide

Table of Contents

Appendix I. Important System Directories

Appendix K. Localization

Appendix L. History Commands

Appendix M. Sample .bashrc and .bash profile Files.

Appendix N. Converting D Batch Files to Shell Scripts

Appendix O. Exercises
O.1. Analyzing Scripts.

0.2. Writing Scripts

Appendix P. Revision History.

Appendix Q. Download and Mirror Sites

Appendix R. To Do List

Appendix S. Copyright.

Appendix T. ASCII Table

Index

viii

931
932

933
935

937

941

943

959
962

963

965

967
975

977

981

983

985

987

991

Advanced Bash-Scripting Guide

An in-depth exploration of the art of shell scripting

Version 10

10 Mar 2014

Mendel Cooper

thegrendel.abs @gmail.com

This tutorial assumes no previous knowledge of scripting or programming, yet progresses rapidly toward an
intermediate/advanced level of instruction . . . all the while sneaking in little nuggets of UNIX® wisdom and
lore. It serves as a textbook, a manual for self-study, and as a reference and source of knowledge on shell
scripting techniques. The exercises and heavily-commented examples invite active reader participation, under
the premise that the only way to really learn scripting is to write scripts.

This book is suitable for classroom use as a general introduction to programming concepts.

This document is herewith granted to the Public Domain. No copyright!

Dedication

For Anita, the source of all the magic

Table of Contents
Part 1. Introduction

1. Shell Programming!

2. Starting Off With a Sha-Bang
2.1. Invoking the script
2.2. Preliminary Exercises

Part 2. Basics

3. Special Characters

4. Introduction to Variables and Parameters
4.1. Variable Substitution

4.2. Variable Assignment
4.3. Bash Variables Are Untyped
4.4. Special Variable Types
5. Quoting
5.1. Quoting Variables
5.2. Escaping
6. Exit and Exit Status
7. Tests

— I

7.1. Test Constructs

7.2. File test operators

7.3. Other Comparison Operators

7.4. Nested 1 £/t hen Condition Tests

7.5. Testing Your Knowledge of Tests
8. Operations and Related Topics

8.1. Operators

8.2. Numerical Constants

8.3. The Double-Parentheses Construct

8.4. Operator Precedence

Part 3. Beyond the Basics
9. Another ook at Variables

9.1. Internal Variables

9.2. Typing variables: declare or typeset
9.3. SRANDOM: generate random integer
10. Manipulating Variables
10.1. Manipulating Strings
10.2. Parameter Substitution
11. Loops and Branches
11.1. Loops
11.2. Nested Loops
11.3. Loop Control
11.4. Testing and Branching
12. Command Substitution
13. Arithmetic Expansion
14. Recess Time
Part 4. Commands
15. Internal Commands and Builtins
15.1. Job Control Commands

16. External Filters. Programs and Commands
16.1. Basic Commands

16.2. Complex Commands

16.3. Time / Date Commands

16.4. Text Processing Commands
16.5. File and Archiving Commands
16.6. Communications Commands
16.7. Terminal Control Commands
16.8. Math Commands

16.9. Miscellaneous Commands

17. System and Administrative Commands
17.1. Analyzing a System Script
Part 5. Advanced Topics
18. Regular Expressions
18.1. A Brief Introduction to Regular Expressions
18.2. Globbing
19. Here Documents

19.1. Here Strings
20. I/O Redirection
20.1. Using exec
20.2. Redirecting Code Blocks

20.3. Applications
21. Subshells

22. Restricted Shells
23. Process Substitution
24. Functions
24.1. Complex Functions and Function Complexities
24.2. Local Variables
24.3. Recursion Without ILocal Variables
25. Aliases
26. List Constructs
27. Arrays
28. Indirect References
29. /dev and /proc
29.1. /dev
29.2. /proc
30. Network Programming
31. Of Zeros and Nulls
32. Debugging
33. Options
34. Gotchas
35. Scripting With Style
35.1. Unofficial Shell Scripting Stylesheet
36. Miscellany
36.1. Interactive and non-interactive shells and scripts
36.2. Shell Wrappers
36.3. Tests and Comparisons: Alternatives
36.4. Recursion: a script calling itself
36.5. "Colorizing" Scripts
36.6. Optimizations
36.7. Assorted Tips
36.8. Security Issues
36.9. Portability Issues

36.10. Shell Scripting Under Windows
37. Bash. versions 2. 3. and 4

37.1. Bash. version 2

37.2. Bash. version 3
37.3. Bash. version 4

38. Endnotes
38.1. Author's Note
38.2. About the Author
38.3. Where to Go For Help
38.4. Tools Used to Produce This Book
38.4.1. Hardware
38.4.2. Software and Printware
38.5. Credits
38.6. Disclaimer
Bibliography
A. Contributed Scripts
B. Reference Cards
C. A Sed and Awk Micro-Primer
C.1. Sed
C.2. Awk

D. Parsing and Managing Pathnames
E. Exit Codes With Special Meanings
F. A Detailed Introduction to I/O and I/O Redirection
G. Command-Line Options
G.1. Standard Command-Line Options
G.2. Bash Command-Line Options
H. Important Files
I. Important System Directories
J. An Introduction to Programmable Completion
K. Localization
L. History Commands
M. Sample .bashrc and .bash profile Files
N. Converting DOS Batch Files to Shell Scripts
O. Exercises
O.1. Analyzing Scripts
0.2. Writing Scripts

P. Revision History
Q. Download and Mirror Sites

R. To Do List
S. Copyright
T. ASCII Table

Index

List of Tables

8-1. Operator Precedence

15-1. Job identifiers

33-1. Bash options

36-1. Numbers representing colors in Escape Sequences
B-1. Special Shell Variables

B-2. TEST Operators: Binary Comparison
B-3. TEST Operators: Files

B-4. Parameter Substitution and Expansion
B-5. String Operations

B-6. Miscellaneous Constructs

C-1. Basic sed operators

C-2. Examples of sed operators

E-1. Reserved Exit Codes

N-1. Batch file keywords / variables / operators. and their shell equivalents
N-2. DOS commands and their UNIX equivalents
P-1. Revision History

List of Examples

2-1. cleanup: A script to clean up log files in /var/log
2-2. cleanup: An improved clean-up script

2-3. cleanup: An enhanced and generalized version of above scripts.
3-1. Code blocks and I/O redirection

3-2. Saving the output of a code block to a file

3-3. Running a loop in the background

3-4. Backup of all files changed in last day

4-1. Variable assignment and substitution

4-2. Plain Variable Assignment

4-3. Variable Assignment. plain and fancy

4-4. Integer or string?

4-5. Positional Parameters

4-6. wh. whois domain name lookup

4-7. Using shift

5-1. Echoing Weird Variables

5-2. Escaped Characters

5-3. Detecting key-presses

6-1. exit / exit status

6-2. Negating a condition using !
7-1. What is truth?

7-2. Equivalence of test, /usr/bin/test.[].and /usr/bin/I

7-3. Arithmetic Tests using (())
7-4. Testing for broken links
7-5. Arithmetic and string comparisons

7-6. Testing whether a string is null
7-7. zmore

8-1. Greatest common divisor

8-2. Using Arithmetic Operations

8-3. Compound Condition Tests Using && and
8-4. Representation of numerical constants

8-5. C-style manipulation of variables

9-1. $IFS and whitespace

9-2. Timed Input

9-3. Once more. timed input
9-4. Timed read

9-5. Am I root?

9-6. arglist: Listing arguments with $* and $@
9-7. Inconsistent S* and $@ behavior

9-8. $* and $@ when STFS is empty

9-9. Underscore variable

9-10. Using declare to type variables

9-11. Generating random numbers

9-12. Picking a random card from a deck

9-13. Brownian Motion Simulation

9-14. Random between values

9-15. Rolling a single die with RANDOM
9-16. Reseeding RANDOM

9-17. Pseudorandom numbers. using awk

10-1. Inserting a blank line between paragraphs in a text file

10-2. Generating an 8-character "random" strin

10-3. Converting graphic file formats. with filename change
10-4. Converting streaming audio files to ogg

10-5. Emulating getopt

10-6. Alternate ways of extracting and locating substrings
10-7. Using parameter substitution and error messages
10-8. Parameter substitution and "usage" messages

10-9. Length of a variable

10-10. Pattern matching in parameter substitution

10-11. Renaming file extensions:

10-12. Using pattern matching to parse arbitrary strings
10-13. Matching patterns at prefix or suffix of string
11-1. Simple for loops

11-2. for loop with two parameters in each [list] element
11-3. FEileinfo: operating on a file list contained in a variable
11-4. Operating on a parameterized file list

11-5. Operating on files with a for loop

11-6. Missing in [1list] ina forloo

11-7. Generating the [1ist] in a for loop with command substitution
11-8. A _grep replacement for binary files

11-9. Listing all users on the system

11-10. Checking all the binaries in a directory for authorship
11-11. Listing the symbolic links in a directory

11-12. Symbolic links in a directory. saved to a file
11-13. A C-style for loop

11-14. Using efax in batch mode

11-15. Simple while loop

11-16. Another while loop

11-17. while loop with multiple conditions

11-18. C-style syntax in a while loop

11-19. until loop

11-20. Nested L.oop

11-21. Effects of break and continue in a loop

11-22. Breaking out of multiple loop levels

11-23. Continuing at a higher loop level

11-24. Using continue N in an actual task

11-25. Using case

11-26. Creating menus using case

11-27. Using command substitution to generate the case variable
11-28. Simple string matching

11-29. Checking for alphabetic input

11-30. Creating menus using select

11-31. Creating menus using select in a function

12-1. Stupid script tricks

12-2. Generating a variable from a loop

12-3. Finding anagrams

15-1. A_script that spawns multiple instances of itself
15-2. printfin action

15-3. Variable assignment. using read

15-4. What happens when read has no variable

15-5. Multi-line input to read

15-6. Detecting the arrow keys

15-7. Using read with file redirection

15-8. Problems reading from a pipe

15-9. Changing the current working directory

15-10. Letting let do arithmetic.

15-11. Showing the effect of eval

15-12. Using eval to select among variables

15-13. Echoing the command-line parameters

15-14. Forcing a log-off

15-15. A _version of rotl3

15-16. Using set with positional parameters

15-17. Reversing the positional parameters

15-18. Reassigning the positional parameters

15-19. "Unsetting" a variable

15-20. Using export to pass a variable to an embedded awk script
15-21. Using getopts to read the options/arguments passed to a script
15-22. "Including" a data file

15-23. A _(useless) script that sources itself

15-24. Effects of exec

15-25. A script that exec'’s itself

15-26. Waiting for a process to finish before proceeding

15-27. A script that kills itself

16-1. Using s to create a table of contents for burning a CDR disk
16-2. Hello or Good-bye

16-3. Badname, eliminate file names in current directory containing bad characters and whitespace.
16-4. Deleting a file by its inode number

16-5. Logfile: Using xargs to monitor system log

16-6. Copying files in current directory to another

16-7. Killing processes by name

16-8. Word frequency analysis using xargs

16-9. Using expr

16-10. Using date

16-11. Date calculations

16-12. Word Frequency Analysis

16-13. Which files are scripts?

16-14. Generating 10-digit random numbers

16-15. Using tail to monitor the system log

16-16. Printing out the From lines in stored e-mail messages
16-17. Emulating grep in a script

16-18. Crossword puzzle solver

16-19. Looking up definitions in Webster's 1913 Dictionary
16-20. Checking words in a list for validity

16-21. toupper: Transforms a file to all uppercase.

16-22. lowercase: Changes all filenames in working directory to lowercase.
16-23. du: DOS to UNIX text file conversion.

16-24. rotl3: ultra-weak encryption.

16-25. Generating "Crypto-Quote" Puzzles
16-26. Formatted file listing.

16-27. Using column to format a directory listing
16-28. nl: A self-numbering script.

16-29. manview: Viewing formatted manpages
16-30. Using cpio to move a directory tree

16-31. Unpacking an rpm archive

16-32. Stripping comments from C program files
16-33. Exploring /usr/X11R6/bin

16-34. An "improved" strings command

16-35. Using cmp to compare two files within a script.

16-36. basename _and dirname

16-37. A script that copies itself in sections

16-38. Checking file integrity

16-39. Uudecoding encoded files

16-40. Finding out where to report a spammer
16-41. Analyzing a spam domain

16-42. Getting a stock quote

16-43. Updating FC4

16-44. Using ssh

16-45. A script that mails itself

16-46. Generating prime numbers

16-47. Monthly Payment on a Mortgage

16-48. Base Conversion

16-49. Invoking bc using a here document

16-50. Calculating PI

16-51. Converting a decimal number to hexadecimal
16-52. Factoring

16-53. Calculating the hypotenuse of a triangle
16-54. Using seg to generate loop arguments
16-55. Letter Count”

16-56. Using getopt to parse command-line options
16-57. A_script that copies itself

16-58. Exercising dd

16-59. Capturing Keystrokes

16-60. Preparing a bootable SD card for the Raspberry Pi
16-61. Securely deleting a file

16-62. Filename generator

16-63. Converting meters to miles

16-64. Using m4

17-1. Setting a new password

17-2. Setting an erase character

17-3. secret password: Turning off terminal echoing
17-4. Keypress detection

17-5. Checking a remote server for identd

17-6. pidof helps kill a process

17-7. Checking a CD image

17-8. Creating a filesystem in a file

17-9. Adding a new hard drive

17-10. Using umask to hide an output file from prying eves
17-11. Backlight: changes the brightness of the (laptop) screen backlight

17-12. killall. from /etc/rc.d/init .d

19-1. broadcast: Sends message to everyone logged in
19-2. dummyfile: Creates a 2-line dummy file

19-3. Multi-line message using cat

19-4. Multi-line message. with tabs suppressed

19-5. Here document with replaceable parameters
19-6. Upload a file pair to Sunsite incoming directory

19-7. Parameter substitution turned off

19-8. A script that generates another script
19-9. Here documents and functions

n

19-10. "Anonymous" Here Document
19-11. Commenting out a block of code
19-12. A self-documenting script
19-13. Prepending a line to a file

19-14. Parsing a mailbox

20-1. Redirecting st din using exec

20-2. Redirecting stdout using exec

20-3. Redirecting both stdin and stdout in the same script with exec
20-4. Avoiding a subshell

20-5. Redirected while 1oop

20-6. Alternate form of redirected while loop

20-7. Redirected until loop

20-8. Redirected for loop

20-9. Redirected for loop (both stdin and stdout redirected)
20-10. Redirected if/then test

20-11. Data file names.data for above examples

20-12. Logging events

21-1. Variable scope in a subshell

21-2. List User Profiles

21-3. Running parallel processes in subshells

22-1. Running a script in restricted mode

23-1. Code block redirection without forking

23-2. Redirecting the output of process substitution into a loop.
24-1. Simple functions

24-2. Function Taking Parameters

24-3. Functions and command-line args passed to the script
24-4. Passing an indirect reference to a function

24-5. Dereferencing a parameter passed to a function

24-6. Again. dereferencing a parameter passed to a function
24-7. Maximum of two numbers

24-8. Converting numbers to Roman numerals

24-9. Testing large return values in a function
24-10. Comparing two large integers

24-11. Real name from username

24-12. Local variable visibility

24-13. Demonstration of a simple recursive function
24-14. Another simple demonstration

24-15. Recursion. using a local variable

24-16. The Fibonacci Sequence

24-17. The Towers of Hanoi

25-1. Aliases within a script

25-2. unalias: Setting and unsetting an alias

26-1. Using an and list to test for command-line arguments
26-2. Another command-line arg test using an and list
26-3. Using or lists in combination with an and list
27-1. Simple array usage

27-2. Formatting a poem

27-3. Various array operations

27-4. String operations on arrays

27-5. Loading the contents of a script into an array
27-6. Some special properties of arrays

27-7. Of empty arrays and empty elements

27-8. Initializing arrays

27-9. Copying and concatenating arrays

27-10. More on concatenating arrays

27-11. The Bubble Sort

27-12. Embedded arrays and indirect references
27-13. The Sieve of Eratosthenes

27-14. The Sieve of Eratosthenes. Optimized

27-15. Emulating a push-down stack

27-16. Complex array application: Exploring a weird mathematical series
27-17. Simulating a two-dimensional array. then tilting it

28-1. Indirect Variable References

28-2. Passing an indirect reference to awk

29-1. Using /dev/t cp for troubleshooting

29-2. Playing music

29-3. Finding the process associated with a PID

29-4. On-line connect status

30-1. Print the server environment
30-2. IP_addresses

31-1. Hiding the cookie jar

31-2. Setting up a swapfile using v/zer

31-3. Creating a ramdisk

32-1. A buggy script

32-2. Missing keyword

32-3. test24: another buggy script

32-4. Testing a condition with an assert

32-5. Trapping at exit

32-6. Cleaning up after Control-C

32-7. A Simple Implementation of a Progress Bar
32-8. Tracing a variable

32-9. Running multiple processes (on an SMP box)
34-1. Numerical and string comparison are not equivalent
34-2. Subshell Pitfalls

34-3. Piping the output of echo to a read

36-1. shell wrapper

36-2. A slightly more complex shell wrapper

36-3. A _generic shell wrapper that writes to a logfile
36-4. A _shell wrapper around an awk script

36-5. A_shell wrapper around another awk script
36-6. Perl embedded in a Bash script

36-7. Bash and Perl scripts combined

36-8. Python embedded in a Bash script

36-9. A script that speaks

36-10. A_(useless) script that recursively calls itself
36-11. A _(useful) script that recursively calls itself
36-12. Another (useful) script that recursively calls itself
36-13. A "colorized" address database

36-14. Drawing a box

36-15. Echoing colored text

36-16. A "horserace” game

36-17. A Progress Bar

36-18. Return value trickery

36-19. Even more return value trickery

36-20. Passing and returning arrays

36-21. Fun with anagrams

36-22. Widgets invoked from a shell script

36-23. Test Suite

37-1. String expansion

37-2. Indirect variable references - the new way
37-3. Simple database application. using indirect variable referencing
37-4. Using arrays and other miscellaneous trickery to deal four random hands from a deck of cards

37-5. A simple address database

37-6. A_somewhat more elaborate address database

37-7. Testing characters

37-8. Reading N characters

37-9. Using a here document to set a variable

37-10. Piping input to a read

37-11. Negative array indices

37-12. Negative parameter in string-extraction construct
A-1. mailformat: Formatting an e-mail message

A-2. rn: A simple-minded file renaming utility

A-3. blank-rename: Renames filenames containing blanks
A-4. encryptedpw: Uploading to an ftp site. using a locally encrypted password
A-5. copy-cd: Copying a data CD

A-6. Collatz series

A-7. days-between: Days between two dates

A-8. Making a dictionary

A-9. Soundex conversion

A-10. Game of Life

A-11. Data file for Game of Life

A-12. behead: Removing mail and news message headers
A-13. password: Generating random 8-character passwords
A-14. fifo: Making daily backups. using named pipes
A-15. Generating prime numbers using the modulo operator
A-16. tree: Displaying a directory tree

A-17. tree2: Alternate directory tree script

A-18. string functions: C-style string functions

A-19. Directory information

A-20. Library of hash functions

A-21. Colorizing text using hash functions

A-22. More on hash functions

A-23. Mounting USB keychain storage devices

A-24. Converting to HTML

A-25. Preserving weblogs

A-26. Protecting literal strings

A-27. Unprotecting literal strings

A-28. Spammer Identification

A-29. Spammer Hunt

A-30. Making wget easier to use

A-31. A podcasting script

A-32. Nightly backup to a firewire HD

A-33. An expanded cd command

A-34. A soundcard setup script

A-35. Locating split paragraphs in a text file
A-36. Insertion sort

A-37. Standard Deviation

A-38. A pad file generator for shareware authors

A-39. A man page editor
A-40. Petals Around the Rose

A-41. Quacky: a Perquackey-type word game

A-42. Nim

A-43. A command-line stopwatch

A-44. An all-purpose shell scripting homework assignment solution
A-45. The Knight's Tour

A-46. Magic Squares

A-47. Fifteen Puzzle

A-48. The Towers of Hanoi, graphic version

A-49. The Towers of Hanoi, alternate graphic version

A-50. An alternate version of the getopt-simple.sh script

A-51. The version of the UseGetOpt.sh example used in the Tab Expansion appendix
A-52. Cycling through all the possible color backgrounds

A-53. Morse Code Practice

A-54. Base64 encoding/decoding

A-55. Inserting text in a file using sed

A-56. The Gronsfeld Cipher

A-57. Bingo Number Generator

A-58. Basics Reviewed

A-59. Testing execution times of various commands

A-60. Associative arrays vs. conventional arrays (execution times)
C-1. Counting [etter Occurrences

ompletion script for UseGet
M-1. Sample .bashzrc file
M-2. .bash profile file
N-1. VIEWDATA.BAT: DOS Batch File
N-2. viewdata.sh: Shell Script Conversion of VIEWDATA.BAT
T-1. A_script that generates an ASCII table
T-2. Another ASCII table script
T-3. A_third ASCII table script. using awk

Z

ex
Introduction
Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting

=

€X

|"U
&
©
<
Z

Part 1. Introduction

Script: A writing; a written document. [Obs.]
--Webster's Dictionary, 1913 ed.

The shell is a command interpreter. More than just the insulating layer between the operating system kernel
and the user, it's also a fairly powerful programming language. A shell program, called a script, is an
easy-to-use tool for building applications by "gluing together" system calls, tools, utilities, and compiled
binaries. Virtually the entire repertoire of UNIX commands, utilities, and tools is available for invocation by a
shell script. If that were not enough, internal shell commands, such as testing and loop constructs, lend
additional power and flexibility to scripts. Shell scripts are especially well suited for administrative system
tasks and other routine repetitive tasks not requiring the bells and whistles of a full-blown tightly structured
programming language.

Table of Contents

1. Shell Programming!
2. Starting Off With a Sha-Bang

Prev Home Next
Advanced Bash-Scripting Guide Shell Programming!
Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Next

Chapter 1. Shell Programming!

No programming language is perfect. There is
not even a single best language; there are only
languages well suited or perhaps poorly suited
for particular purposes.

--Herbert Mayer
A working knowledge of shell scripting is essential to anyone wishing to become reasonably proficient at
system administration, even if they do not anticipate ever having to actually write a script. Consider that as a
Linux machine boots up, it executes the shell scripts in /etc/rc.d to restore the system configuration and
set up services. A detailed understanding of these startup scripts is important for analyzing the behavior of a
system, and possibly modifying it.

The craft of scripting is not hard to master, since scripts can be built in bite-sized sections and there is only a
fairly small set of shell-specific operators and options [1] to learn. The syntax is simple -- even austere --
similar to that of invoking and chaining together utilities at the command line, and there are only a few "rules"
governing their use. Most short scripts work right the first time, and debugging even the longer ones is
straightforward.

In the early days of personal computing, the BASIC language enabled
anyone reasonably computer proficient to write programs on an early
generation of microcomputers. Decades later, the Bash scripting
language enables anyone with a rudimentary knowledge of Linux or
UNIX to do the same on modern machines.

We now have miniaturized single-board computers with amazing
capabilities, such as the Raspberry Pi.

Bash scripting provides a way to explore the capabilities of these
fascinating devices.

A shell script is a quick-and-dirty method of prototyping a complex application. Getting even a limited subset
of the functionality to work in a script is often a useful first stage in project development. In this way, the
structure of the application can be tested and tinkered with, and the major pitfalls found before proceeding to
the final coding in C, C++, Java, Perl, or Python.

Shell scripting hearkens back to the classic UNIX philosophy of breaking complex projects into simpler
subtasks, of chaining together components and utilities. Many consider this a better, or at least more
esthetically pleasing approach to problem solving than using one of the new generation of high-powered
all-in-one languages, such as Perl, which attempt to be all things to all people, but at the cost of forcing you to
alter your thinking processes to fit the tool.

According to Herbert Mayer, "a useful language needs arrays, pointers, and a generic mechanism for building
data structures.” By these criteria, shell scripting falls somewhat short of being "useful.” Or, perhaps not. . . .

When not to use shell scripts

® Resource-intensive tasks, especially where speed is a factor (sorting, hashing, recursion [2] ...)
® Procedures involving heavy-duty math operations, especially floating point arithmetic, arbitrary
precision calculations, or complex numbers (use C++ or FORTRAN instead)

http://www.raspberrypi.org/

¢ Cross-platform portability required (use C or Java instead)

e Complex applications, where structured programming is a necessity (type-checking of variables,
function prototypes, etc.)

¢ Mission-critical applications upon which you are betting the future of the company

e Situations where security is important, where you need to guarantee the integrity of your system and
protect against intrusion, cracking, and vandalism

® Project consists of subcomponents with interlocking dependencies

¢ Extensive file operations required (Bash is limited to serial file access, and that only in a
particularly clumsy and inefficient line-by-line fashion.)

¢ Need native support for multi-dimensional arrays

e Need data structures, such as linked lists or trees

¢ Need to generate / manipulate graphics or GUIs

e Need direct access to system hardware or external peripherals

¢ Need port or socket I/O

¢ Need to use libraries or interface with legacy code

® Proprietary, closed-source applications (Shell scripts put the source code right out in the open for all
the world to see.)

If any of the above applies, consider a more powerful scripting language -- perhaps Perl, Tcl, Python, Ruby
-- or possibly a compiled language such as C, C++, or Java. Even then, prototyping the application as a
shell script might still be a useful development step.

We will be using Bash, an acronym [3] for "Bourne-Again shell" and a pun on Stephen Bourne's now classic
Bourne shell. Bash has become a de facto standard for shell scripting on most flavors of UNIX. Most of the
principles this book covers apply equally well to scripting with other shells, such as the Korn Shell, from
which Bash derives some of its features, [4] and the C Shell and its variants. (Note that C Shell programming
is not recommended due to certain inherent problems, as pointed out in an October, 1993 Usenet post by Tom
Christiansen.)

What follows is a tutorial on shell scripting. It relies heavily on examples to illustrate various features of the
shell. The example scripts work -- they've been tested, insofar as possible -- and some of them are even useful
in real life. The reader can play with the actual working code of the examples in the source archive
(scriptname.sh or scriptname.bash), [5] give them execute permission (chmod u+rx
scriptname), then run them to see what happens. Should the source archive not be available, then
cut-and-paste from the HTML or pdf rendered versions. Be aware that some of the scripts presented here
introduce features before they are explained, and this may require the reader to temporarily skip ahead for
enlightenment.

Unless otherwise noted, the author of this book wrote the example scripts that follow.
His countenance was bold and bashed not.

--Edmund Spenser
Notes

11 These are referred to as builtins, features internal to the shell.

[2] Although recursion is possible in a shell script, it tends to be slow and its implementation is often an
ugly kludge.

[31 Anacronym is an ersatz word formed by pasting together the initial letters of the words into a
tongue-tripping phrase. This morally corrupt and pernicious practice deserves appropriately severe
punishment. Public flogging suggests itself.

[4] Many of the features of ksh88, and even a few from the updated ksh93 have been merged into Bash.

http://www.faqs.org/faqs/unix-faq/shell/csh-whynot/
http://bash.deta.in/abs-guide-latest.tar.bz2
http://www.tldp.org/LDP/abs/abs-guide.html.tar.gz
http://bash.deta.in/abs-guide.pdf
mailto:thegrendel.abs@gmail.com

[5] By convention, user-written shell scripts that are Bourne shell compliant generally take a name with a
. sh extension. System scripts, such as those found in /etc/rc.d, do not necessarily conform to this

nomenclature.

Prev Home Next
Introduction Up Starting Off With a Sha-Bang

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Next

Prev

Chapter 2. Starting Off With a Sha-Bang

Shell programming is a 1950s juke box . . .

--Larry Wall
In the simplest case, a script is nothing more than a list of system commands stored in a file. At the very least,
this saves the effort of retyping that particular sequence of commands each time it is invoked.

Example 2-1. cleanup: A script to clean up log files in /var/log

Cleanup
Run as root, of course.

cat /dev/null > messages
cat /dev/null > wtmp

1
2
3
4 cd /var/log
5
6
7 echo "Log files cleaned up."

There is nothing unusual here, only a set of commands that could just as easily have been invoked one by one
from the command-line on the console or in a terminal window. The advantages of placing the commands in a
script go far beyond not having to retype them time and again. The script becomes a program -- a tool -- and it
can easily be modified or customized for a particular application.

Example 2-2. cleanup: An improved clean-up script

#!/bin/bash
Proper header for a Bash script.

Cleanup, version 2

Run as root, of course.
Insert code here to print error message and exit if not root.

O J o U W

]

LOG_DIR=/var/log

10 # Variables are better than hard-coded values.
11 cd SLOG_DIR

12

13 cat /dev/null > messages

14 cat /dev/null > wtmp

15

16

17 echo "Logs cleaned up."

18

19 exit # The right and proper method of "exiting" from a script.
20 # A bare "exit" (no parameter) returns the exit status

21 #+ of the preceding command.

Now that's beginning to look like a real script. But we can go even farther . . .

Example 2-3. cleanup: An enhanced and generalized version of above scripts.

1 #!/bin/bash
2 # Cleanup, version 3
3

4 # Warning:

0 J o U

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

This script uses quite a number of features that will be explained
#+ later on.

By the time you've finished the first half of the book,

#+ there should be nothing mysterious about it.

LOG_DIR=/var/log

ROOT_UID=0 # Only users with SUID 0 have root privileges.
LINES=50 # Default number of lines saved.
E_XCD=86 # Can't change directory?

E_NOTROOT=87 # Non-root exit error.

Run as root, of course.

if ["SUID" -ne "SROOT_UID"]

then
echo "Must be root to run this script."
exit $E_NOTROOT

fi

if [-n "S1"]
Test whether command-line argument is present (non-empty).
then

lines=$1
else

lines=$SLINES # Default, if not specified on command-line.
fi

Stephane Chazelas suggests the following,
#+ as a better way of checking command-line arguments,
#+ but this is still a bit advanced for this stage of the tutorial.

E_WRONGARGS=85 # Non-numerical argument (bad argument format) .
#

case "$1" in

") lines=50;;

[10-9]) echo "Usage: "basename $0° lines-to-cleanup";

exit S$E_WRONGARGS; ;

E) lines=$1;;

esac

#

#* Skip ahead to "Loops" chapter to decipher all this.

cd SLOG_DIR

if ["pwd® != "SLOG_DIR"] # or if ["SPWD" != "SLOG_DIR"]
Not in /var/log?
then
echo "Can't change to $LOG_DIR."
exit S$E_XCD
fi # Doublecheck if in right directory before messing with log file.

Far more efficient is:
cd /var/log || {

echo "Cannot change to necessary directory." >&2
exit $E_XCD;

71 tail -n $lines messages > mesg.temp # Save last section of message log file.
72 mv mesg.temp messages # Rename it as system log file.

73

74

75 # cat /dev/null > messages

76 #* No longer needed, as the above method is safer.

77

78 cat /dev/null > wtmp # ': > wtmp' and '> wtmp' have the same effect.
79 echo "Log files cleaned up."

80 # Note that there are other log files in /var/log not affected

81 #+ by this script.

82

83 exit O

84 # A zero return value from the script upon exit indicates success

85 #+ to the shell.

Since you may not wish to wipe out the entire system log, this version of the script keeps the last section of
the message log intact. You will constantly discover ways of fine-tuning previously written scripts for
increased effectiveness.

% ock sk

The sha-bang (#!) [1] at the head of a script tells your system that this file is a set of commands to be fed to
the command interpreter indicated. The #! is actually a two-byte [2] magic number, a special marker that
designates a file type, or in this case an executable shell script (type man magic for more details on this
fascinating topic). Immediately following the sha-bang is a path name. This is the path to the program that
interprets the commands in the script, whether it be a shell, a programming language, or a utility. This
command interpreter then executes the commands in the script, starting at the top (the line following the
sha-bang line), and ignoring comments. [3]

#!/bin/sh
#!/bin/bash
#!/usr/bin/perl
#!/usr/bin/tcl
#!/bin/sed -f

6 #!/bin/awk —-f
Each of the above script header lines calls a different command interpreter, be it /bin/sh, the default shell
(bash in a Linux system) or otherwise. [4] Using #! /bin/sh, the default Bourne shell in most commercial
variants of UNIX, makes the script portable to non-Linux machines, though you sacrifice Bash-specific
features. The script will, however, conform to the POSIX [5] sh standard.

a b w N -

Note that the path given at the "sha-bang" must be correct, otherwise an error message -- usually "Command
not found." -- will be the only result of running the script. [6]

#! can be omitted if the script consists only of a set of generic system commands, using no internal shell
directives. The second example, above, requires the initial #!, since the variable assignment line, 1ines=50,
uses a shell-specific construct. [7] Note again that #! /bin/sh invokes the default shell interpreter, which
defaults to /bin/bash on a Linux machine.

i) This tutorial encourages a modular approach to constructing a script. Make note of and collect
"boilerplate" code snippets that might be useful in future scripts. Eventually you will build quite an
extensive library of nifty routines. As an example, the following script prolog tests whether the script has
been invoked with the correct number of parameters.

E_WRONG_ARGS=85
script_parameters="-a -h -m -z"
-a = all, -h = help, etc.

Sw N

5 if [$# —-ne $Number_ of_ expected_args]

6 then

7 echo "Usage: “basename $0° S$script_parameters"

8 # “basename $0° 1s the script's filename.

9 exit $E_WRONG_ARGS

10 fi

Many times, you will write a script that carries out one particular task. The first script in this chapter is
an example. Later, it might occur to you to generalize the script to do other, similar tasks. Replacing the
literal ("hard-wired") constants by variables is a step in that direction, as is replacing repetitive code
blocks by functions.

2.1. Invoking the script

Having written the script, you can invoke it by sh scriptname, [8] or alternatively bash scriptname.
(Not recommended is using sh <scriptname, since this effectively disables reading from stdin within
the script.) Much more convenient is to make the script itself directly executable with a chmod.

Either:

chmod 555 scriptname (gives everyone read/execute permission) [9]
or

chmod +rx scriptname (gives everyone read/execute permission)

chmod u+rx scriptname (gives only the script owner read/execute permission)

Having made the script executable, you may now test it by . /scriptname. [10] If it begins with a
"sha-bang" line, invoking the script calls the correct command interpreter to run it.

As a final step, after testing and debugging, you would likely want to move it to /usr/local/bin (as root,

of course), to make the script available to yourself and all other users as a systemwide executable. The script
could then be invoked by simply typing scriptname [ENTER] from the command-line.

Notes

[1] More commonly seen in the literature as she-bang or sh-bang. This derives from the concatenation of the
tokens sharp (#) and bang ().

[2] Some flavors of UNIX (those based on 4.2 BSD) allegedly take a four-byte magic number, requiring a blank

afterthe | -- #! /bin/sh. According to Sven Mascheck this is probably a myth.
[3] The #! line in a shell script will be the first thing the command interpreter (sh or bash) sees. Since this line

begins with a #, it will be correctly interpreted as a comment when the command interpreter finally executes

the script. The line has already served its purpose - calling the command interpreter.
If, in fact, the script includes an extra #! line, then bash will interpret it as a comment.

#!/bin/bash

echo "Part 1 of script.”
a=1

#!/bin/bash
This does *not* launch a new script.

echo "Part 2 of script."
echo $a # Value of $a stays at 1.

O W 0 Jo Ul WN

=

[4] This allows some cute tricks.

1 #!/bin/rm

2 # Self-deleting script.

3

4 # Nothing much seems to happen when you run this... except that the file disappears.
5

6 WHATEVER=85

5

8 echo "This line will never print (betcha!)."

9

10 exit SWHATEVER # Doesn't matter. The script will not exit here.
11 # Try an echo $? after script termination.
12 # You'll get a 0, not a 85.

http://www.in-ulm.de/~mascheck/various/shebang/#details

Also, try starting a README file with a #! /bin/more, and making it executable. The result is a self-listing
documentation file. (A here document using cat is possibly a better alternative -- see Example 19-3).

=

Portable Operating System Interface, an attempt to standardize UNIX-like OSes. The POSIX specifications
are listed on the Open Group site.

B

To avoid this possibility, a script may begin with a #!/bin/env bash sha-bang line. This may be useful on
UNIX machines where bash is not located in /bin

=

If Bash is your default shell, then the #! isn't necessary at the beginning of a script. However, if launching a
script from a different shell, such as tcsh, then you will need the #!.

s

Caution: invoking a Bash script by sh scriptname turns off Bash-specific extensions, and the script may
therefore fail to execute.

E

A script needs read, as well as execute permission for it to run, since the shell needs to be able to read it.

10] Why not simply invoke the script with scriptname? If the directory you are in ($PWD) is where
scriptname is located, why doesn't this work? This fails because, for security reasons, the current
directory (. /) is not by default included in a user's $PATH. It is therefore necessary to explicitly invoke the
script in the current directory with a . /scriptname.

Prev Home Next
Shell Programming! Up Preliminary Exercises
Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Chapter 2. Starting Off With a Sha-Bang Next

http://www.opengroup.org/onlinepubs/007904975/toc.htm

2.2. Preliminary Exercises

1. System administrators often write scripts to automate common tasks. Give several instances where
such scripts would be useful.

2. Write a script that upon invocation shows the time and date, lists all logged-in users, and gives the
system uptime. The script then saves this information to a logfile.

Prev Home Next
Starting Off With a Sha-Bang Up Basics
Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Next

Part 2. Basics

Table of Contents

3. Special Characters
4. Introduction to Variables and Parameters

5. Quoting
6. Exit and Exit Status
7. Tests

8. Operations and Related Topics

Prev Home Next
Preliminary Exercises Special Characters
Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Next

Chapter 3. Special Characters

What makes a character special? If it has a meaning beyond its literal meaning, a meta-meaning, then we refer
to it as a special character. Along with commands and keywords, special characters are building blocks of
Bash scripts.

Special Characters Found In Scripts and Elsewhere

#
Comments. Lines beginning with a # (with the exception of #!) are comments and will not be
executed.

1 # This line is a comment.

Comments may also occur following the end of a command.

1 echo "A comment will follow." # Comment here.
2 # ~ Note whitespace before #

Comments may also follow whitespace at the beginning of a line.

1 # A tab precedes this comment.

Comments may even be embedded within a pipe.

initial=(‘cat "S$Sstartfile" | sed -e '/#/d' | tr -d '"\n' |\
Delete lines containing '#' comment character.

sed —e 's/\./\. /g' -e 's/_/_ /g')
Excerpted from life.sh script

Sw N

<1 A command may not follow a comment on the same line. There is no method of
terminating the comment, in order for "live code" to begin on the same line. Use
a new line for the next command.

=) Of course, a quoted or an gscaped # in an echo statement does not begin a comment.
Likewise, a # appears in certain parameter-substitution constructs and in _numerical

constant CX[)I‘CSSiOHS.

echo "The # here does not begin a comment."
echo 'The # here does not begin a comment.'
echo The \# here does not begin a comment.
echo The # here begins a comment.

echo S{PATH#*:} # Parameter substitution, not a comment.
echo $((2#101011)) # Base conversion, not a comment.

0 J o Ul W

O

Thanks, S.C.
The standard quoting and escape characters (" '\) escape the #.
Certain pattern matching operations also use the #.

Command separator [semicolon]. Permits putting two or more commands on the same line.

1 echo hello; echo there

2

3

4 if [-x "Sfilename"]; then # Note the space after the semicolon.
5 #+ an

6 echo "File $filename exists."; cp S$filename S$filename.bak

7 else # N

8 echo "File $filename not found."; touch $filename

9

fi; echo "File test complete."

5&, &

Note that the ";" sometimes needs to be escaped.

Terminator in a case option [double semicolon].

1 case "S$variable" in

2 abc) echo "\S$variable = abc" ;;
3 xyz) echo "\S$variable = xyz" ;;
4 esac

Terminators in a case option (version 4+ of Bash).

""dot'"' command [period]. Equivalent to source (see Example 15-22). This is a bash builtin.

""dot'"', as a component of a filename. When working with filenames, a leading dot is the prefix of a
"hidden" file, a file that an s will not normally show.

bash$ touch .hidden-file
bash$ 1ls -1

total 10

—rw—r——r—— 1 bozo 4034 Jul 18 22:04 datal.addressbook
—rw—r——r—— 1 bozo 4602 May 25 13:58 datal.addressbook.bak
—rw—r——r—— 1 bozo 877 Dec 17 2000 employment.addressbook

bash$ 1ls -al

total 14

drwXrwxr—x 2 bozo Dbozo 1024 Aug 29 20:54 ./

drwx—————-— 52 bozo Dbozo 3072 Aug 29 20:51 ../

—rwW—r——r—— 1 bozo bozo 4034 Jul 18 22:04 datal.addressbook
—rwW—r——r—— 1 bozo bozo 4602 May 25 13:58 datal.addressbook.bak
—rwW—r——r—— 1 bozo bozo 877 Dec 17 2000 employment.addressbook
—rW—YrW-—Ir—— 1 bozo bozo 0 Aug 29 20:54 .hidden-file

When considering directory names, a single dot represents the current working directory, and two dots
denote the parent directory.

bash$ pwd
/home/bozo/projects

bash$ ed
bash$ pwd
/home/bozo/projects
bash$ ed

bash$ pwd
/home /bozo/

The dot often appears as the destination (directory) of a file movement command, in this context
meaning current directory.

bash$ cp /home/bozo/current_work/junk/*

Copy all the "junk" files to SPWD.

"dot' character match. When matching characters, as part of a regular expression, a "dot" matches a
single character.

partial quoting [double quote]. "STRING" preserves (from interpretation) most of the special
characters within STRING. See Chapter 5.

full quoting [single quote]. 'STRING' preserves all special characters within STRING. This is a
stronger form of quoting than "STRING". See Chapter 5.

comma operator. The comma operator [1] links together a series of arithmetic operations. All are
evaluated, but only the last one is returned.

1 let "t2 = ((a =9, 15 / 3))"
2 # Set "a = 9" and "t2 = 15 / 3"

The comma operator can also concatenate strings.

1 for file in /{,usr/}bin/*calc

2 # ~ Find all executable files ending in "calc"
3 #+ in /bin and /usr/bin directories.

4 do

5 if [-x "S$file"]

6 then

7 echo $file

8 fi

9 done
10

11 # /bin/ipcalc

12 # /usr/bin/kcalc

13 # /usr/bin/oidcalc

14 # /usr/bin/oocalc

15

16

17 # Thank you, Rory Winston, for pointing this out.

Lowercase conversion in parameter substitution (added in version 4 of Bash).
escape [backslash]. A quoting mechanism for single characters.

\X escapes the character X. This has the effect of "quoting" X, equivalent to 'X'. The \ may be used to
quote " and ', so they are expressed literally.

See Chapter 5 for an in-depth explanation of escaped characters.

Filename path separator [forward slash]. Separates the components of a filename (as in
/home /bozo/projects/Makefile).

This is also the division arithmetic operator.

command substitution. The “‘command” construct makes available the output of command for
assignment to a variable. This is also known as backquotes or backticks.

null command [colon]. This is the shell equivalent of a "NOP" (no op, a do-nothing operation). It

may be considered a synonym for the shell builtin true. The ":" command is itself a Bash builtin, and
its exit status is true (0).

1 :
2 echo $? # 0

Endless loop:

1 while

2 do

3 operation-1
4 operation-2
5 c.

6 operation-n
7 done

8

9 # Same as:
10 # while true
11 # do
12 # c.
13 # done

Placeholder in if/then test:

if condition
then : # Do nothing and branch ahead
else # Or else

take-some—-action

DSw N

5 &
Provide a placeholder where a binary operation is expected, see Example 8-2 and default parameters.

$S{username="whoami " }
${username="whoami’ } Gives an error without the leading
#

1
2
3 unless "username" is a command or builtin...
4
5

${1?"Usage: $O0 ARGUMENT"} # From "usage-message.sh example script.
Provide a placeholder where a command is expected in a here document. See Example 19-10.

Evaluate string of variables using parameter substitution (as in Example 10-7).

1 : ${HOSTNAME?} S${USER?} ${MAIL?}
2 # Prints error message
3 #+ if one or more of essential environmental variables not set.

Variable expansion / substring replacement.

In combination with the > redirection operator, truncates a file to zero length, without changing its
permissions. If the file did not previously exist, creates it.

1 > data.xxx # File "data.xxx" now empty.

2

3 # Same effect as cat /dev/null >data.xxx

4 # However, this does not fork a new process, since ":" is a builtin.

See also Example 16-15.

In combination with the >> redirection operator, has no effect on a pre-existing target file (: >>
target_file). If the file did not previously exist, creates it.

;1 This applies to regular files, not pipes, symlinks, and certain special files.

May be used to begin a comment line, although this is not recommended. Using # for a comment
turns off error checking for the remainder of that line, so almost anything may appear in a comment.
However, this is not the case with :.

1 : This is a comment that generates an error, (if [$x —-eq 3]).
The ":" serves as a field separator, in /et c/passwd, and in the $PATH variable.

bash$ echo $PATH
/usr/local/bin:/bin:/usr/bin:/usr/X11R6/bin:/sbin:/usr/sbin:/usr/games

A colon is acceptable as a function name.

1 :0)

2 {

3 echo "The name of this function is "$SFUNCNAME" "
4 # Why use a colon as a function name?

5 # It's a way of obfuscating your code.

6}

7

8

9

10 # The name of this function is

This is not portable behavior, and therefore not a recommended practice. In fact, more recent releases
of Bash do not permit this usage. An underscore _ works, though.
A colon can serve as a placeholder in an otherwise empty function.

1 not_empty ()

2 {

3 3

4 } # Contains a : (null command), and so is not empty.

reverse (or negate) the sense of a test or exit status [bang]. The ! operator inverts the exit status of
the command to which it is applied (see Example 6-2). It also inverts the meaning of a test operator.
This can, for example, change the sense of equal (=) to not-equal (!=). The ! operator is a Bash

keyword.

In a different context, the ! also appears in indirect variable references.

In yet another context, from the command line, the ! invokes the Bash history mechanism (see
Appendix L). Note that within a script, the history mechanism is disabled.

wild card [asterisk]. The * character serves as a "wild card" for filename expansion in globbing. By
itself, it matches every filename in a given directory.

bash$ echo *
abs-book.sgml add-drive.sh agram.sh alias.sh

The * also represents any number (or zero) characters in a regular expression.
arithmetic operator. In the context of arithmetic operations, the * denotes multiplication.
** A double asterisk can represent the exponentiation operator or extended file-match globbing.

test operator. Within certain expressions, the ? indicates a test for a condition.

In a double-parentheses construct, the ? can serve as an element of a C-style trinary operator. [2]
condition?result-if-trueiresult-if-false

1 ((var0 = varl<98?29:21))
2 # A A
3
4

1if ["Svarl" -1t 98]

then

var0=9
else

var0=21
fi

In a parameter substitution expression, the ? tests whether a variable has been set.

O 0 J oy U0

wild card. The ? character serves as a single-character "wild card" for filename expansion in
globbing, as well as representing one character in an extended regular expression.

Yariable substitution (contents of a variable).

varl=5
var2=23skidoo

echo S$varl # 5
echo S$var2 # 23skidoo

g s w N

A $ prefixing a variable name indicates the value the variable holds.
end-of-line. In a regular expression, a "$" addresses the end of a line of text.
Parameter substitution.

Quoted string expansion. This construct expands single or multiple escaped octal or hex values into
ASCII [3] or Unicode characters.

$*, $@
positional parameters.

$?
exit status variable. The $? variable holds the exit status of a command, a function, or of the script
itself.

$$
process ID variable. The $$ variable holds the process ID [4] of the script in which it appears.

0

command group.

1 (a=hello; echo $a)
'1; A listing of commands within parentheses starts a subshell.

Variables inside parentheses, within the subshell, are not visible to the rest of the
script. The parent process, the script, cannot read variables created in the child
process, the subshell.

a=123
(a=321;)

S N

echo "a = $a" # a = 123
5 # "a" within parentheses acts like a local variable.

array initialization.

1 Array=(elementl element2 element3)

{xxX,yyy,222,...}
Brace expansion.

1 echo \"{These,words,are,quoted}\" # " prefix and suffix
2 # "These" "words" "are" "quoted"

3

4

5 cat {filel,file2,file3} > combined file

6 # Concatenates the files filel, file2, and file3 into combined_file.
7
8

cp file22.{txt,backup}
9 # Copies "file22.txt" to "file22.backup"

A command may act upon a comma-separated list of file specs within braces. [5] Filename
expansion (globbing) applies to the file specs between the braces.

<1 No spaces allowed within the braces unless the spaces are quoted or
escaped.

echo {filel,file2}\ :{\ A," B",' C'}

filel : A filel : B filel : C file2 : A file2 : B
filez : C
{a..z}

Extended Brace expansion.

echo {a..z} # abcdefghijklmnopgrstuvw?ixyz
Echoes characters between a and z.

1
2
3
4 echo {0..3} # 0 1 2 3

5 # Echoes characters between 0 and 3.
6

7

8

base64_charset=({A..Z} {a..z} {0..9} + / =)
9 # Initializing an array, using extended brace expansion.
10 # From vladz's "base64.sh" example script.

The {a..z} extended brace expansion construction is a feature introduced in yersion 3 of Bash.
{}

Block of code [curly brackets]. Also referred to as an inline group, this construct, in effect, creates
an anonymous function (a function without a name). However, unlike in a "standard" function, the
variables inside a code block remain visible to the remainder of the script.

bash$ { local a;

a=123; }
bash: local: can only be used in a
function
1 a=123
2 { a=321; }
3 echo "a = $a" # a = 321 (value inside code block)
4
5 # Thanks, S.C.

The code block enclosed in braces may have I/O redirected to and from it.

Example 3-1. Code blocks and I/O redirection

#!/bin/bash
Reading lines in /etc/fstab.

1
2
3
4 File=/etc/fstab
5
6

10
11
12
13
14
15
16
17
18
19
20
21

read linel
read line2
} < S$File

echo "First line in $File is:"
echo "S$Slinel"

echo

echo "Second line in $File is:"
echo "S$line2"

exit O
Now, how do you parse the separate fields of each line?

Hint: use awk, or
. . . Hans-Joerg Diers suggests using the "set" Bash builtin.

Example 3-2. Saving the output of a code block to a file

0 J o U W

B W WwWwWwWwwwwwwwdhdhdNhdNhDNDNMdDNMDNMDNNMdDNNMDNNRERRPRPRERERRRERERERERE &
P O W o Jo Ul WP O WOowWw-JoUl s WDNDE OWOow-Joyul & WwWwbdhEFE O

#!/bin/bash

rpm-check.sh

Queries an rpm file for description, listing,
#+ and whether it can be installed.

Saves output to a file.

#

This script illustrates using a code block.
SUCCESS=0

E_NOARGS=65

if [-z "S1"]

then
echo "Usage: “basename $0° rpm-file"
exit S$E_NOARGS

fi

{ # Begin code block.

echo
echo "Archive Description:"
rpm —-gpi $1 # Query description.
echo
echo "Archive Listing:"
rpm —-gpl $1 # Query listing.
echo
rpm -i —-test $1 # Query whether rpm file can be installed.
if ["$?" —eqg S$SUCCESS]
then
echo "$1 can be installed."
else
echo "$1 cannot be installed."
fi
echo # End code block.
} > "S$l.test" # Redirects output of everything in block to
echo "Results of rpm test in file $1l.test"

See rpm man page for explanation of options.

exit O

file.

)

o\

[]

(L1

[]

[]

$[...

Unlike a command group within (parentheses), as above, a code block enclosed by
{braces} will not normally launch a subshell. [6]

It is possible to iterate a code block using a non-standard for-loop.

placeholder for text. Used after xargs —i (replace strings option). The {} double curly brackets are a

placeholder for output text.

ls . | xargs -i -t cp ./{} $1

AN AA

BSw N -

From "ex42.sh" (copydir.sh) example.

pathname. Mostly used in find constructs. This is not a shell builtin.

Definition: A pathname is a filename that includes the complete path. As an example,
/home/bozo/Notes/Thursday/schedule.txt. This is sometimes referred to as the
absolute path.

;1 The ";" ends the —exec option of a find command sequence. It needs to be
~ escaped to protect it from interpretation by the shell.

test.

Test expression between []. Note that [is part of the shell builtin test (and a synonym for it), not a
link to the external command /usr/bin/test.

test.

Test expression between [[]]. More flexible than the single-bracket [] test, this is a shell keyword.
See the discussion on the [[...]] construct.

array element.

In the context of an array, brackets set off the numbering of each element of that array.

1 Array[l]=slot_1
2 echo ${Array[1l]}

range of characters.

As part of a regular expression, brackets delineate a range of characters to match.
integer expansion.

Evaluate integer expression between $[.

a=3
b=7

echo $[$a+$b] # 10
echo $[S$Sa*$b] # 21

Note that this usage is deprecated, and has been replaced by the ((_...)) construct.
(@),

integer expansion.

Expand and evaluate integer expression between (()).

See the discussion on the ((...)) construct.
>&>>&>><<>

redirection.

scriptname >filename redirects the output of scriptname to file £ilename. Overwrite
filename if it already exists.

command &>filename redirects both the st dout and the stderr of command to filename.

‘& This is useful for suppressing output when testing for a condition. For example, let us
~ test whether a certain command exists.

bash$ type bogus_command &>/dev/null

bash$ echo $?
1

Or in a script:

1 command_test () { type "S$1" &>/dev/null; }
2 # ~

3

4 cmd=rmdir # Legitimate command.
5 command_test $cmd; echo $? # 0

6

7

8 cmd=bogus_command # Illegitimate command
9 command_test $cmd; echo $? # 1

command >&2 redirects stdout of command to stderr.
scriptname >>filename appends the output of scriptname to file filename. If

filename does not already exist, it is created.

[i]<>filename opens file £ilename for reading and writing, and assigns file descriptor i to it. If
filename does not exist, it is created.

process substitution.
(command) >
< (command)

In a different context, the "<" and ">" characters act as string comparison operators.

In yet another context, the "<" and ">" characters act as integer comparison operators. See also

Example 16-9.
<<

redirection used in a here document.
<<

redirection used in a here string.

ASCII comparison.

vegl=carrots
veg2=tomatoes

if [["S$Svegl" < "Sveg2" 1]
then
echo "Although $vegl precede $veg2 in the dictionary,"
echo -n "this does not necessarily imply anything "
echo "about my culinary preferences."
else
echo "What kind of dictionary are you using, anyhow?"
fi

P O W o Jo Ul b W

o

\<, \>
word boundary in a regular expression.

bash$ grep '\<the\>' textfile

pipe. Passes the output (st dout) of a previous command to the input (st din) of the next one, or to
the shell. This is a method of chaining commands together.

1 echo 1s -1 | sh

2 # Passes the output of "echo 1ls -1" to the shell,

3 #+ with the same result as a simple "1s -1".

4

5

6 cat *.1lst | sort | unig

7 # Merges and sorts all ".lst" files, then deletes duplicate lines.

A pipe, as a classic method of interprocess communication, sends the st dout of one process to the
stdin of another. In a typical case, a command, such as cat or echo, pipes a stream of data to a
filter, a command that transforms its input for processing. [7]

cat $filenamel $filename2 | grep $search word

For an interesting note on the complexity of using UNIX pipes, see the UNIX FAQ, Part 3.

The output of a command or commands may be piped to a script.

#!/bin/bash
uppercase.sh : Changes input to uppercase.

1
2
3
4 tr 'a-z' 'A-Z'

5 # Letter ranges must be quoted

6 #+ to prevent filename generation from single-letter filenames.
7

8

exit O

Now, let us pipe the output of Is -1 to this script.

bash$ 1s -1 | ./uppercase.sh

—RW-RW-R—— 1 BOZO BOZO 109 APR 7 19:49 1.TXT
—RW-RW-R—— 1 BOZO BOZO 109 APR 14 16:48 2.TXT

http://www.faqs.org/faqs/unix-faq/faq/part3/

—RW-R-—-R-— 1 BOzZO BOZO 725 APR 20 20:56 DATA-FILE

& The stdout of each process in a pipe must be read as the stdin of the next. If this
is not the case, the data stream will block, and the pipe will not behave as expected.

1 cat filel file2 | 1ls -1 | sort
2 # The output from "cat filel file2" disappears.

A pipe runs as a child process, and therefore cannot alter script variables.

1 variable="initial_ wvalue"
2 echo "new_value" | read variable
3 echo "variable = S$Svariable" # variable = initial_value

If one of the commands in the pipe aborts, this prematurely terminates execution of the
pipe. Called a broken pipe, this condition sends a SIGPIPE gignal.

force redirection (even if the noclobber option is set). This will forcibly overwrite an existing file.

OR logical operator. In a test construct, the Il operator causes a return of O (success) if either of the
linked test conditions is true.

Run job in background. A command followed by an & will run in the background.

bash$ sleep 10 &
[1] 850
[1]+ Done sleep 10

Within a script, commands and even loops may run in the background.

Example 3-3. Running a loop in the background

1 #!/bin/bash
2 # background-loop.sh
3
4 for i in 1 2 3456 7 8 9 10 # First loop.
5 do
6 echo -n "$i "
7 done & # Run this loop in background.
8 # Will sometimes execute after second loop.
9
10 echo # This 'echo' sometimes will not display.
11
12 for i in 11 12 13 14 15 16 17 18 19 20 # Second loop.
13 do
14 echo -n "$i "
15 done
16
17 echo # This 'echo' sometimes will not display.
18
19 #
20
21 # The expected output from the script:
22 #1 23 456789 10
23 # 11 12 13 14 15 16 17 18 19 20
24
25 # Sometimes, though, you get:
26 # 11 12 13 14 15 16 17 18 19 20
27 # 1 2 3 456 7 8 9 10 bozo $
28 # (The second 'echo' doesn't execute. Why?)

29

30 # Occasionally also:

31 # 123 456 789 10 11 12 13 14 15 16 17 18 19 20
32 # (The first 'echo' doesn't execute. Why?)

33

34 # Very rarely something like:

35 # 11 12 13 1 2 3 4 5 6 7 8 9 10 14 15 16 17 18 19 20
36 # The foreground loop preempts the background one.

37

38 exit O

39

40 # Nasimuddin Ansari suggests adding sleep 1
41 #+ after the echo —n "S$i" in lines 6 and 14,

42 #+ for some real fun.

<1 A command run in the background within a script may cause the script to hang,
waiting for a keystroke. Fortunately, there is a remedy for this.

AND logical operator. In a test construct, the && operator causes a return of 0 (success) only if both
the linked test conditions are true.

option, prefix. Option flag for a command or filter. Prefix for an operator. Prefix for a default
parameter in parameter substitution.

COMMAND -[Optionl] [Option2][...]
ls -al

sort —-dfu $filename

1 if [$filel -ot S$file2]

2 then # A

3 echo "File $filel is older than S$file2."
4 fi

5

6 if ["$a" -eq "$b"]

7 then # A

8 echo "$a is equal to $b."

9 fi
10
11 if ["$c" -eq 24 -a "$d" -eq 47]
12 then # A A
13 echo "S$c equals 24 and $d equals 47."
14 fi
15
16
17 param2=${paraml:-$SDEFAULTVAL}
18 # A

The double-dash —— prefixes long (verbatim) options to commands.
sort —--ignore-leading-blanks
Used with a Bash builtin, it means the end of options to that particular command.

i) This provides a handy means of removing files whose names begin with a dash.

bash$ 1ls -1
—-rw—-r——r—— 1 bozo bozo 0 Nov 25 12:29 -badname

bash$ rm —-- -badname

bash$ 1s -1
total O

The double-dash is also used in conjunction with get.
set —- $variable (as in Example 15-18)
redirection from/to stdin or stdout [dash].

bash$ cat -
abc
abc

Ctl-D
As expected, cat — echoes stdin, in this case keyboarded user input, to stdout. But, does I/O
redirection using - have real-world applications?

1 (cd /source/directory && tar cf - .) | (cd /dest/directory && tar xpvf -)
2 # Move entire file tree from one directory to another
3 # [courtesy Alan Cox <a.cox@swansea.ac.uk>, with a minor change]
4
5 # 1) cd /source/directory
6 # Source directory, where the files to be moved are.
T # 2) &&
8 # "And-1list": if the 'cd' operation successful,
9 # then execute the next command.
10 # 3) tar cf -
11 # The 'c' option 'tar' archiving command creates a new archive,
12 # the '"f' (file) option, followed by '-' designates the target file
13 # as stdout, and do it in current directory tree ('.').
14 # 4)
15 # Piped to
16 # 5) (...)
17 # a subshell
18 # 6) cd /dest/directory
19 # Change to the destination directory.
20 # 7) &&
21 # "And-1list", as above
22 # 8) tar xpvf -
23 # Unarchive ('x'), preserve ownership and file permissions ('p'),
24 # and send verbose messages to stdout ('v'),
25 # reading data from stdin ('f' followed by '-'").
26 #
27 # Note that 'x' is a command, and 'p', 'v', 'f' are options.
28 #
29 # Whew!
30
31
32
33 # More elegant than, but equivalent to:
34 # cd source/directory
35 # tar c¢f - . | (cd ../dest/directory; tar xpvf -)
36 #
37 # Also having same effect:
38 # cp —a /source/directory/* /dest/directory
#

Or:

40 # cp —-a /source/directory/* /source/directory/.[”.]* /dest/directory
41 # If there are hidden files in /source/directory.

1 bunzip2 -c linux-2.6.16.tar.bz2 | tar xvf -

2 # ——uncompress tar file—-— | ——then pass it to "tar"-—-

3 # If "tar" has not been patched to handle "bunzip2",

4 #+ this needs to be done in two discrete steps, using a pipe.

5 # The purpose of the exercise is to unarchive "bzipped" kernel source.

Note that in this context the "-" is not itself a Bash operator, but rather an option recognized by certain
UNIX utilities that write to stdout, such as tar, cat, etc.

bash$ echo "whatever" | cat -
whatever
Where a filename is expected, — redirects output to st dout (sometimes seen with tar cf), or

accepts input from stdin, rather than from a file. This is a method of using a file-oriented utility as
a filter in a pipe.

bash$ file
Usage: file [-bciknvzL] [-f namefile] [-m magicfiles] file...

By itself on the command-line, file fails with an error message.
Add a "-" for a more useful result. This causes the shell to await user input.

bash$ file -
abc
standard input: ASCII text

bash$ file -
#!/bin/bash
standard input: Bourne-Again shell script text executable

Now the command accepts input from stdin and analyzes it.

The "-" can be used to pipe stdout to other commands. This permits such stunts as prepending lines
to a file.

Using diff to compare a file with a section of another:
grep Linux filel | diff file2 -

Finally, a real-world example using — with tar.

Example 3-4. Backup of all files changed in last day

1 #!/bin/bash

2

3 # Backs up all files in current directory modified within last 24 hours
4 #+ in a "tarball" (tarred and gzipped file).

5

6 BACKUPFILE=backup-$ (date +%m-%d-%Y)

7 # Embeds date in backup filename.

8 # Thanks, Joshua Tschida, for the idea.

9 archive=${1:-$BACKUPFILE}
10 # If no backup-archive filename specified on command-line,
11 #+ it will default to "backup-MM-DD-YYYY.tar.gz."

12

13 tar cvf - "find . —mtime -1 -type f -print® > Sarchive.tar

14 gzip $archive.tar

15 echo "Directory S$PWD backed up in archive file \"S$Sarchive.tar.gz\"."
16

17

18 # Stephane Chazelas points out that the above code will fail

19 #+ if there are too many files found

20 #+ or if any filenames contain blank characters.

21

22 # He suggests the following alternatives:

23 ff =—=————===—=======c===
24 # find . -mtime -1 -type f -print0O | xargs -0 tar rvf "Sarchive.tar"
25 # using the GNU version of "find".

26

27

28 # find . —mtime -1 -type f -exec tar rvf "S$Sarchive.tar" '{}' \;

29 # portable to other UNIX flavors, but much slower.

30 §f ===—=——=—=——===—==
31

32

33 exit O

nn non

<1 Filenames beginning wit may cause problems when coupled with the
redirection operator. A script should check for this and add an appropriate prefix to
such filenames, for example . /-FILENAME, $SPWD/-FILENAME, or
SPATHNAME /-FILENAME

If the value of a variable begins with a —, this may likewise create problems.

1 var="-n"
2 echo $var
3 # Has the effect of "echo -n", and outputs nothing.

previous working directory. A cd - command changes to the previous working directory. This uses
the SOLDPWD environmental variable.

<1 Do not confuse the "-" used in this sense with the "-" redirection operator just
discussed. The interpretation of the "-" depends on the context in which it
appears.

Minus. Minus sign in an arithmetic operation.

Equals. Assignment operator

1 a=28

2 echo $a # 28
In a different context, the "=" is a string comparison operator.
Plus. Addition arithmetic operator.
In a different context, the + is a Regular Expression operator.

Option. Option flag for a command or filter.

Certain commands and builtins use the + to enable certain options and the — to disable them. In
parameter substitution, the + prefixes an _alternate value that a variable expands to.

modulo. Modulo (remainder of a division) arithmetic operation.

1 let "z =5 % 3"
2 echo $z # 2

In a different context, the % is a pattern matching operator.

home directory [tilde]. This corresponds to the SHOME internal variable. ~bozo is bozo's home
directory, and Is ~bozo lists the contents of it. ~/ is the current user's home directory, and Is ~/ lists the
contents of it.

bash$ echo ~bozo
/home/bozo

bash$ echo ~
/home/bozo

bash$ echo ~/
/home /bozo/

bash$ echo ~:
/home/bozo:

bash$ echo ~nonexistent-user
~nonexistent-user

current working directory. This corresponds to the $PWD internal variable.

previous working directory. This corresponds to the SOLDPWD internal variable.
regular expression match. This operator was introduced with version 3 of Bash.
beginning-of-line. In a regular expression, a "" addresses the beginning of a line of text.

Uppercase conversion in parameter substitution (added in yersion 4 of Bash).

Control Characters
change the behavior of the terminal or text display. A control character is a CONTROL + key
combination (pressed simultaneously). A control character may also be written in octal or
hexadecimal notation, following an escape.

Control characters are not normally useful inside a script.
0ctl-a

Moves cursor to beginning of line of text (on the command-line).
0Cctl-B

Backspace (nondestructive).
0
Ctl-C

Break. Terminate a foreground job.
0
Ctl-D

Log out from a shell (similar to exit).

EOF (end-of-file). This also terminates input from stdin.

When typing text on the console or in an xterm window, Ct1-D erases the character under
the cursor. When there are no characters present, Ct1-D logs out of the session, as expected.
In an xterm window, this has the effect of closing the window.

0 Ctl-E

Moves cursor to end of line of text (on the command-line).
0 Ctl-F

Moves cursor forward one character position (on the command-line).

0

Ctl-G

BEL. On some old-time teletype terminals, this would actually ring a bell. In an xterm it
might beep.

0

Ctl-H

Rubout (destructive backspace). Erases characters the cursor backs over while backspacing.

QO J oy U b W N

e

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

#!/bin/bash
Embedding Ctl-H in a string.

a="~HAH"

%

Two Ctl-H's —— backspaces
ctl-V ctl-H, using vi/vim
echo "abcdef" # abcdef
echo
echo -n "abcdef$a " # abcd £
Space at end * A
echo
echo -n "abcdef$a" # abcdef
No space at end ~ Doesn't backspace (why?).

Results may not be quite as expected.

%

Backspaces twice.

echo; echo

Constantin Hagemeier suggests trying:
a=$'\010\010"

a=S$'\b\b'

a=$"'\x08\x08"

But, this does not change the results.

G o o o i
Now, try this.

rubout=""H*"H"H "H"H" # 5 x Ctl-H.
echo —n "12345678"

sleep 2

echo -n "S$Srubout"
sleep 2

0ctl-I

Horizontal tab.

0

Ctl-J

Newline (line feed). In a script, may also be expressed in octal notation -- \012' or in

hexadecimal -- \x0a'.
¢ Ctl-K

Vertical tab.

When typing text on the console or in an xterm window, Ct1-K erases from the character
under the cursor to end of line. Within a script, Ct 1-K may behave differently, as in Lee Lee
Maschmeyer's example, below.

0Cctl-L

Formfeed (clear the terminal screen). In a terminal, this has the same effect as the clear
command. When sent to a printer, a Ct 1-L causes an advance to end of the paper sheet.

0

Ctl-M

Carriage return.

QO J oy U b W N

e

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

#!/bin/bash
Thank you, Lee Maschmeyer, for this example.

read -n 1 -s —p \

$'Control-M leaves cursor at beginning of this line. Press Enter. \x0d'
Of course, '0d' is the hex equivalent of Control-M.

echo >&2 # The '-s' makes anything typed silent,
#+ so it is necessary to go to new line explicitly.

read —-n 1 -s —-p $'Control-J leaves cursor on next line. \x0a'

'Oa' is the hex equivalent of Control-J, linefeed.
echo >&2
#H4
read -n 1 -s -p $'And Control-K\xObgoes straight down.'

echo >&2 # Control-K is vertical tab.
A better example of the effect of a vertical tab is:

var=$'\x0aThis is the bottom line\x0bThis is the top line\x0a'

echo "S$var"

This works the same way as the above example. However:

echo "$var" | col

This causes the right end of the line to be higher than the left end.
It also explains why we started and ended with a line feed --

27 #+ to avoid a garbled screen.
28
29 # As Lee Maschmeyer explains:
30 §f ===———=—=——==—=—==============
31 # In the [first vertical tab example] . . . the vertical tab
32 #+ makes the printing go straight down without a carriage return.
33 # This i1s true only on devices, such as the Linux console,
34 #+ that can't go "backward."
35 # The real purpose of VT is to go straight UP, not down.
36 # It can be used to print superscripts on a printer.
37 # The col utility can be used to emulate the proper behavior of VT.
38
39 exit O
0Ctl-N

Erases a line of text recalled from history buffer [8] (on the command-line).
0ctl-o

Issues a newline (on the command-line).
0Ctl-pP

Recalls last command from history buffer (on the command-line).
0ctl-9

Resume (XON).

This resumes stdin in a terminal.
¢ Ctl-R

Backwards search for text in history buffer (on the command-line).
0ctl-s

Suspend (XOFF).

This freezes st din in a terminal. (Use Ctl-Q to restore input.)
0ctl-T

Reverses the position of the character the cursor is on with the previous character (on the
command-line).
0ctl-u

Erase a line of input, from the cursor backward to beginning of line. In some settings, Ct1-U
erases the entire line of input, regardless of cursor position.
0ctl-v

When inputting text, Ct1-V permits inserting control characters. For example, the following
two are equivalent:

1 echo -e '\x0a'
2 echo <Ctl-V><Ctl-J>

Ct1-Vis primarily useful from within a text editor.
0ctl-w

When typing text on the console or in an xterm window, Ct 1-W erases from the character
under the cursor backwards to the first instance of whitespace. In some settings, Ct 1-W
erases backwards to first non-alphanumeric character.

0ctl-x

In certain word processing programs, Cuts highlighted text and copies to clipboard.
0ctl-y

Pastes back text previously erased (with Ct1-U or Ct1-W).
0ctl-z

Pauses a foreground job.

Substitute operation in certain word processing applications.

EOF (end-of-file) character in the MSDOS filesystem.
Whitespace

functions as a separator between commands and/or variables. Whitespace consists of either
spaces, tabs, blank lines, or any combination thereof. [9] In some contexts, such as variable

assignment, whitespace is not permitted, and results in a syntax error.

Blank lines have no effect on the action of a script, and are therefore useful for visually separating
functional sections.

$IES, the special variable separating fields of input to certain commands. It defaults to whitespace.

Definition: A field is a discrete chunk of data expressed as a string of consecutive characters.
Separating each field from adjacent fields is either whitespace or some other designated character
(often determined by the $IFS). In some contexts, a field may be called a record.

To preserve whitespace within a string or in a variable, use quoting.

UNIX filters can target and operate on whitespace using the POSIX character class [:space:].

Notes

[1] An operator is an agent that carries out an operation. Some examples are the common arithmetic
operators, + - * /. In Bash, there is some overlap between the concepts of operator and keyword.

[2] This is more commonly known as the ternary operator. Unfortunately, fernary is an ugly word. It
doesn't roll off the tongue, and it doesn't elucidate. It obfuscates. Trinary is by far the more elegant
usage.

31
American Standard Code for Information Interchange. This is a system for encoding text characters
(alphabetic, numeric, and a limited set of symbols) as 7-bit numbers that can be stored and manipulated
by computers. Many of the ASCII characters are represented on a standard keyboard.

4]

A PID, or process ID, is a number assigned to a running process. The PIDs of running processes may
be viewed with a ps command.

Definition: A process is a currently executing command (or program), sometimes referred to as a
job.

[51 The shell does the brace expansion. The command itself acts upon the result of the expansion.
[6] Exception: a code block in braces as part of a pipe may run as a subshell.

1 1s | { read firstline; read secondline; }

2 # Error. The code block in braces runs as a subshell,

3 #+ so the output of "1ls" cannot be passed to variables within the block.

4 echo "First line is S$firstline; second line is $secondline" # Won't work.

5

6 # Thanks, S.C.

[71 Even as in olden times a philtre denoted a potion alleged to have magical transformative powers, so
does a UNIX filter transform its target in (roughly) analogous fashion. (The coder who comes up with a
"love philtre" that runs on a Linux machine will likely win accolades and honors.)

[8] Bash stores a list of commands previously issued from the command-line in a buffer, or memory space,
for recall with the builtin history commands.

[9]1 A linefeed (newline) is also a whitespace character. This explains why a blank line, consisting only of a
linefeed, is considered whitespace.

Prev Home Next

Basics Up Introduction to Variables and
Parameters

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Next

Chapter 4. Introduction to Variables and
Parameters

Variables are how programming and scripting languages represent data. A variable is nothing more than a
label, a name assigned to a location or set of locations in computer memory holding an item of data.

Variables appear in arithmetic operations and manipulation of quantities, and in string parsing.

4.1. Variable Substitution

The name of a variable is a placeholder for its value, the data it holds. Referencing (retrieving) its value is
called variable substitution.

$

Let us carefully distinguish between the name of a variable and its value. If variablel is the name
of a variable, then $variablel is a reference to its value, the data item it contains. [1]

bash$ variablel=23

bash$ echo variablel
variablel

bash$ echo $variablel

23
The only times a variable appears "naked" -- without the $ prefix -- is when declared or assigned,
when unset, when exported, in an arithmetic expression within double parentheses ((...)), or in the

special case of a variable representing a signal (see Example 32-5). Assignment may be with an = (as
in var1=27), in a read statement, and at the head of a loop (for var2 in 1 2 3).

Enclosing a referenced value in double quotes (" ... ") does not interfere with variable substitution.
This is called partial quoting, sometimes referred to as "weak quoting."” Using single quotes (' ...")
causes the variable name to be used literally, and no substitution will take place. This is full quoting,
sometimes referred to as 'strong quoting.' See Chapter 5 for a detailed discussion.

Note that $variable is actually a simplified form of $ {variable}. In contexts where the
$variable syntax causes an error, the longer form may work (see Section 10.2, below).

Example 4-1. Variable assignment and substitution

1 #!/bin/bash

2 # ex9.sh

3

4 # Variables: assignment and substitution

5

6 a=375

7 hello=$Sa

8 # ~n

9

10 ff====—==—===
11 # No space permitted on either side of = sign when initializing variables.
12 # What happens if there is a space?

13

14 # "VARIABLE =value"

15 # ~

16 #% Script tries to run "VARIABLE" command with one argument, "=value".

17

18 # "VARIABLE= value"

19 # ~
20 #% Script tries to run "value" command with
21 #+ the environmental variable "VARIABLE" set to "".
22 fj===
23

N
IS

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

echo hello # hello
Not a variable reference, just the string "hello"

echo S$hello # 375

~ This *is* a variable reference.

echo ${hello} # 375

Likewise a variable reference, as above.
Quoting .

echo "Shello" # 375

echo "${hello}" # 375

echo

hello="A B C D"

echo S$hello # A BCD
echo "Shello" # A B C D

As we see, echo S$hello and echo "Shello" give different results.
#

Quoting a variable preserves whitespace.

#

echo

echo 'Shello' # Shello

A A
Variable referencing disabled (escaped) by single quotes,
#+ which causes the "$" to be interpreted literally.

Notice the effect of different types of quoting.

hello= # Setting it to a null value.
echo "\S$hello (null value) = Shello" # Shello (null value) =
Note that setting a variable to a null value is not the same as

#+ unsetting it, although the end result is the same (see below) .

It is permissible to set multiple variables on the same line,
#+ 1f separated by white space.
Caution, this may reduce legibility, and may not be portable.

varl=21 wvar2=22 var3=5$V3

echo
echo "varl=$varl var2=Svar?2 var3=$var3"
May cause problems with legacy versions of "sh"

echo; echo

numbers="one two three"

A A

other_numbers="1 2 3"

AN

If there is whitespace embedded within a variable,

#+ then quotes are necessary.

other_numbers=1 2 3 # Gives an error message.
echo "numbers = S$numbers"

echo "other numbers = Sother numbers" # other_numbers = 1 2 3

Escaping the whitespace also works.

mixed_bag=2\ —---\ Whatever

~ ~ Space after escape (\).

91 echo "$mixed_bag" # 2 ——— Whatever

92

93 echo; echo

94

95 echo "uninitialized_variable = Suninitialized_variable"

96 # Uninitialized variable has null value (no value at all!).

97 uninitialized_variable= # Declaring, but not initializing it --—
98 #+ same as setting it to a null value, as above.
99 echo "uninitialized_variable = Suninitialized_variable"

100 # It still has a null value.

101

102 uninitialized variable=23 # Set it.

103 unset uninitialized_variable # Unset it.

104 echo "uninitialized_ variable = Suninitialized_variable"

105 # uninitialized_variable =

106 # It still has a null value.

107 echo

108

109 exit O

An uninitialized variable has a "null" value -- no assigned value at all (nof zero!).

1 if [-z "Sunassigned"]

2 then

3 echo "\Sunassigned is NULL."
4 fi # Sunassigned is NULL.

Using a variable before assigning a value to it may cause problems. It is nevertheless
possible to perform arithmetic operations on an uninitialized variable.

1 echo "S$Suninitialized" # (blank line)
2 let "uninitialized += 5" # Add 5 to it.
3 echo "S$Suninitialized" # 5

4

5 # Conclusion:

6 # An uninitialized variable has no value,

7 #+ however it evaluates as 0 in an arithmetic operation.

See also Example 15-23.
Notes

[11 Technically, the name of a variable is called an /value, meaning that it appears on the left side of an
assignment statment, as in VARIABLE=23. A variable's value is an rvalue, meaning that it appears on
the right side of an assignment statement, as in VAR2=$VARIABLE.

A variable's name is, in fact, a reference, a pointer to the memory location(s) where the actual data
associated with that variable is kept.

Prev Home Next
Special Characters Up Variable Assignment
Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Chapter 4. Introduction to Variables and Parameters Next

4.2. Variable Assighnment

the assignment operator (no space before and after)

¢ 1 Do not confuse this with = and -eq, which test, rather than assign!

Note that = can be either an assignment or a test operator, depending on context.

Example 4-2. Plain Variable Assignment

1 #!/bin/bash

2 # Naked variables

3

4 echo

5

6 # When is a variable "naked", i.e., lacking the '$' in front?
7 # When it is being assigned, rather than referenced.

8

9 # Assignment
10 a=879
11 echo "The value of \"a\" is $a."
12
13 # Assignment using 'let'
14 let a=16+5
15 echo "The value of \"a\" is now $a."
16
17 echo
18
19 # In a 'for' loop (really, a type of disguised assignment) :

N
o

echo -n "Values of \"a\" in the loop are: "
for a in 7 8 9 11
do

echo -n "$a "

DN DNN
Sw N

done

NN
o U1

echo

N
~J

echo

NN
O

In a 'read' statement (also a type of assignment) :
echo -n "Enter \"a\" "

read a

echo "The value of \"a\" is now $a."

w w w w w
S w N PO

echo

w W
o U1

exit O

Example 4-3. Variable Assignment, plain and fancy

#!/bin/bash

a=23 # Simple case
echo S$a

b=S%a

echo $b

~N o U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23

Now, getting a little bit fancier (command substitution) .

a="echo Hello!" # Assigns result of 'echo' command to 'a'

echo $a

Note that including an exclamation mark (!) within a

#+ command substitution construct will not work from the command-line,

#+ since this triggers the Bash "history mechanism."

Inside a script, however, the history functions are disabled by default.

a="1ls -1° # Assigns result of 'ls -1' command to 'a'
echo $a # Unquoted, however, it removes tabs and newlines.
echo
echo "$a" # The quoted variable preserves whitespace.
(See the chapter on "Quoting.")
exit O

Variable assignment using the $(...) mechanism (a newer method than backquotes). This is likewise a
form of command substitution.

1
2
3

From /etc/rc.d/rc.local
R=$ (cat /etc/redhat-release)
arch=$ (uname -m)

Prev Home Next
Introduction to Variables and Up Bash Variables Are Untyped
Parameters

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Chapter 4. Introduction to Variables and Parameters Next

4.3. Bash Variables Are Untyped

Unlike many other programming languages, Bash does not segregate its variables by "type." Essentially, Bash
variables are character strings, but, depending on context, Bash permits arithmetic operations and
comparisons on variables. The determining factor is whether the value of a variable contains only digits.

Example 4-4. Integer or string?

1 #!/bin/bash

2 # int-or-string.sh

3

4 a=2334 # Integer.

5 let "a += 1"

6 echo "a = $a " # a = 2335

7 echo # Integer, still.

8

9
10 b=5${a/23/BB} # Substitute "BB" for "23".
11 # This transforms $b into a string.
12 echo "b = $b" # b = BB35
13 declare -i b # Declaring it an integer doesn't help.
14 echo "b = $b" # b = BB35
15
16 let "b += 1" # BB35 + 1
17 echo "b = $b" # b =1
18 echo # Bash sets the "integer value" of a string to 0.
19
20 c=BB34
21 echo "c = $c" # c = BB34
22 d=${c/BB/23} # Substitute "23" for "BB".
23 # This makes $d an integer.
24 echo "d = $d" # d = 2334
25 let "d += 1" # 2334 + 1
26 echo "d = $d" # d = 2335
27 echo
28
29

30 # What about null variables?

31 e="" # ... Or e="" ... Or e=

32 echo "e = se" # e =

33 let "e += 1" # Arithmetic operations allowed on a null variable?
34 echo "e = se" #e=1

35 echo # Null variable transformed into an integer.
36

37 # What about undeclared variables?

38 echo "f = $f£" # £ =

39 let "f += 1" # Arithmetic operations allowed?

40 echo "f = $f£" # £ =1

41 echo # Undeclared variable transformed into an integer.
42 #

43 # However

44 let "f /= Sundecl_var" # Divide by zero?

45 # let: £ /= : syntax error: operand expected (error token is " ")
46 # Syntax error! Variable S$undecl_var is not set to zero here!

47 #

48 # But still

49 let "f /= 0"

50 # let: £ /= 0: division by 0 (error token is "0O")

51 # Expected behavior.
52
53

54 # Bash (usually) sets the "integer value" of null to zero
55 #+ when performing an arithmetic operation.

56 # But, don't try this at home, folks!

57 # 1It's undocumented and probably non-portable behavior.
58

59

60 # Conclusion: Variables in Bash are untyped,

61 #+ with all attendant consequences.

62

63 exit $°?

Untyped variables are both a blessing and a curse. They permit more flexibility in scripting and make it easier
to grind out lines of code (and give you enough rope to hang yourself!). However, they likewise permit subtle
errors to creep in and encourage sloppy programming habits.

To lighten the burden of keeping track of variable types in a script, Bash does permit declaring variables.

Prev Home Next
Variable Assignment Up Special Variable Types
Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting

Prev Chapter 4. Introduction to Variables and Parameters Next

4.4. Special Variable Types

Local variables

Variables visible only within a code block or function (see also local variables in functions)
Environmental variables

Variables that affect the behavior of the shell and user interface

=) In a more general context, each process has an "environment", that is, a group
of variables that the process may reference. In this sense, the shell behaves like
any other process.

Every time a shell starts, it creates shell variables that correspond to its own
environmental variables. Updating or adding new environmental variables
causes the shell to update its environment, and all the shell's child processes
(the commands it executes) inherit this environment.

<1 The space allotted to the environment is limited. Creating too many environmental
variables or ones that use up excessive space may cause problems.

bash$ eval "'seq 10000 | sed -e 's/.*/export var&=ZZZZZZZZZZZZZZ/' "

bash$ du
bash: /usr/bin/du: Argument list too long

Note: this "error" has been fixed, as of kernel version 2.6.23.

(Thank you, Stéphane Chazelas for the clarification, and for providing the above
example.)
If a script sets environmental variables, they need to be "exported," that is, reported to the
environment local to the script. This is the function of the export command.

&) A script can export variables only to child processes, that is, only to commands or
processes which that particular script initiates. A script invoked from the
command-line cannot export variables back to the command-line environment.
Child processes cannot export variables back to the parent processes that spawned
them.

Definition: A child process is a subprocess launched by another process, its

parent.
Positional parameters
Arguments passed to the script from the command line [1] : $0, $1, $2, $3 ...

$0 is the name of the script itself, $1 is the first argument, $2 the second, $3 the third, and so forth.
[2] After $9, the arguments must be enclosed in brackets, for example, ${10}, ${11}, ${12}.

The special variables $* and $@ denote all the positional parameters.

Example 4-5. Positional Parameters

#!/bin/bash

Call this script with at least 10 parameters, for example
./scriptname 1 2 3 4 5 6 7 8 9 10

0 J o U

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

MINPARAMS=10
echo

echo "The name of this script is \"SO\"."

Adds ./ for current directory
echo "The name of this script is \" basename $0°\"."
Strips out path name info (see 'basename')
echo
if [-n "S1"] # Tested variable is quoted.
then
echo "Parameter #1 is $1" # Need quotes to escape #
fi
if [-n "$2"]
then
echo "Parameter #2 is $2"
fi
if [-n "$3"]
then
echo "Parameter #3 is $3"
fi
#
if [-n "${10}"] # Parameters > $9 must be enclosed in {brackets}.
then
echo "Parameter #10 is S${10}"
fi
echo w_ "
echo "All the command-line parameters are: "$*""
if [$S# -1t "SMINPARAMS"]
then
echo
echo "This script needs at least $MINPARAMS command-line arguments!"
fi
echo
exit O

Bracket notation for positional parameters leads to a fairly simple way of referencing the last
argument passed to a script on the command-line. This also requires indirect referencing.

1
2
3
4
5
6
7
8

args=S$#
lastarg=${'args}
Note: This is an *indirect reference* to $args

Number of args passed.

Or: lastarg=${!'#} (Thanks,
This is an *indirect reference* to the $# variable.
Note that lastarg=${!$#} doesn't work.

Chris Monson.)

Some scripts can perform different operations, depending on which name they are invoked with. For
this to work, the script needs to check $0, the name it was invoked by. [3] There must also exist
symbolic links to all the alternate names of the script. See Example 16-2.

j) If a script expects a command-line parameter but is invoked without one, this may
cause a null variable assignment, generally an undesirable result. One way to prevent
this is to append an extra character to both sides of the assignment statement using the
expected positional parameter.

variablel =$1_ # Rather than variablel=S$1
This will prevent an error, even if positional parameter is absent.

critical_argumentOl=Svariablel_

The extra character can be stripped off later, like so.
variablel=${variablel_/_/}

Side effects only if $variablel_ begins with an underscore.

This uses one of the parameter substitution templates discussed later.
(Leaving out the replacement pattern results in a deletion.)

O J o U W N

o e
N P O W

A more straightforward way of dealing with this is
#+ to simply test whether expected positional parameters have been passed.
if [-z $1]
then
exit S$E_MISSING_POS_PARAM
fi

[e
O LW wWJdo U bW
+=

However, as Fabian Kreutz points out,

the above method may have unexpected side-effects.
A better method is parameter substitution:
S{1l:-$DefaultVval}

"Parameter Substition" section

"Variables Revisited" chapter.

DN NN
Sw N =
+= o

See the
in the

N
al

Example 4-6. wh, whois domain name lookup

1 #!/bin/bash
2 # ex18.sh
3
4 # Does a 'whois domain-name' lookup on any of 3 alternate servers:
5 # ripe.net, cw.net, radb.net
6
7 # Place this script —- renamed 'wh' —-- in /usr/local/bin
8
9 # Requires symbolic links:
10 # 1n -s /usr/local/bin/wh /usr/local/bin/wh-ripe
11 # 1n -s /usr/local/bin/wh /usr/local/bin/wh-apnic
12 # 1n -s /usr/local/bin/wh /usr/local/bin/wh-tucows
13
14 E_NOARGS=75
15
16
17 if [-z "$1"]
18 then
19 echo "Usage: "basename $0° [domain-name]"
20 exit S$E_NOARGS
21 fi
22
23 # Check script name and call proper server.
24 case “basename $0° in # Or: case S{O0##*/} in
25 "wh") whois $1@whois.tucows.com; ;
26 "wh-ripe") whois $1@whois.ripe.net;;
27 "wh-apnic") whois $1l@whois.apnic.net;;
28 "wh—cw") whois $1@whois.cw.net;;
29 *) echo "Usage: “basename $0° [domain-name]";;

30
31
32

esac

exit $°?

The shift command reassigns the positional parameters, in effect shifting them to the left one notch.

$1<---52,82<---$3, $3 <--- $4, etc.

The old $1 disappears, but SO (the script name) does not change. If you use a large number of
positional parameters to a script, shift lets you access those past 10, although {bracket} notation also
permits this.

Example 4-7. Using shift

0 J o U W

]

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

#!/bin/bash
shft.sh: Using 'shift' to step through all the positional parameters.

Name this script something like shft.sh,
#+ and invoke it with some parameters.
#+ For example:

sh shft.sh a b ¢ def 83 barndoor
until [-z "$1"] # Until all parameters used up
do

echo —n "S$1 "

shift
done
echo # Extra linefeed.

But, what happens to the "used-up" parameters?

echo "S$2"

Nothing echoes!

When $2 shifts into $1 (and there is no $3 to shift into $2)
#+ then $2 remains empty.

So, it is not a parameter *copy*, but a *move*.

exit

See also the echo-params.sh script for a "shiftless"
#+ alternative method of stepping through the positional params.

The shift command can take a numerical parameter indicating how many positions to shift.

#!/bin/bash

shift-past.sh

shift 3 # Shift 3 positions.
n=3; shift S$n

Has the same effect.

echo "S$S1"

exit O

========================

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

& The shift command works in a similar fashion on parameters passed to a function. See

$
4

I g
+ + +

HE oS S S S FE HE 3

%

sh shift-past.sh 1 2 3 4 5

However, as Eleni Fragkiadaki, points out,
attempting a 'shift' past the number of

positional parameters (S$#) returns an exit status of 1,
and the positional parameters themselves do not change.

This means possibly getting stuck in an endless loop.
For example:

until [-z "$1"]
do

echo -n "$1 "

shift 20 # If less than 20 pos params,
done #+ then loop never ends!

When in doubt, add a sanity check.
shift 20 || break

AAAAAAANA

Example 36-18.

Notes

1l

Note that functions also take positional parameters.

[2] The process calling the script sets the $0 parameter. By convention, this parameter is the name of the
script. See the manpage (manual page) for execv.
From the command-line, however, $0 is the name of the shell.
bash$ echo $0
bash
tcsh% echo $0
tcsh
[3] If the the script is sourced or symlinked, then this will not work. It is safer to check $BASH Source.
Prev Home Next
Bash Variables Are Untyped Up Quoting
Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Next

Chapter 5. Quoting

Quoting means just that, bracketing a string in quotes. This has the effect of protecting special characters in
the string from reinterpretation or expansion by the shell or shell script. (A character is "special” if it has an
interpretation other than its literal meaning. For example, the asterisk * represents a wild card character in

globbing and Regular Expressions).

bash$ 1ls -1 [Vv]*

—IrW—TrwW-—r—— 1 bozo Dbozo 324 Apr 2 15:05 VIEWDATA.BAT
—IrW-TrwW-—r—— 1 bozo Dbozo 507 May 4 14:25 vartrace.sh
—IrW-TrwW-—r—— 1 bozo Dbozo 539 Apr 14 17:11 viewdata.sh

bash$ 1s -1 '[Vv]*'
ls: [Vv]*: No such file or directory

In everyday speech or writing, when we "quote" a phrase, we set it apart and give it special meaning. In a
Bash script, when we quote a string, we set it apart and protect its literal meaning.

Certain programs and utilities reinterpret or expand special characters in a quoted string. An important use of
quoting is protecting a command-line parameter from the shell, but still letting the calling program expand it.

bash$ grep '[Fflirst' *.txt
filel.txt:This is the first line of filel.txt.
file2.txt:This is the First line of file2.txt.

Note that the unquoted grep [Ff]irst *.txt works under the Bash shell. [1]

Quoting can also suppress echo's "appetite” for newlines.

bash$ echo $(1s -1)
total 8 —-rw-rw-r—-—- 1 bo bo 13 Aug 21 12:57 t.sh -rw—rw-r—-—- 1 bo bo 78 Aug 21 12:57 u.sh

bash$ echo "$(1ls -1)"

total 8

—-rw—rw-r—-— 1 bo bo 13 Aug 21 12:57 t.sh
-rw—rw-r—-— 1 bo bo 78 Aug 21 12:57 u.sh

5.1. Quoting Variables

When referencing a variable, it is generally advisable to enclose its name in double quotes. This prevents
reinterpretation of all special characters within the quoted string -- except $, * (backquote), and \ (escape). [2]
Keeping $ as a special character within double quotes permits referencing a quoted variable
("$variable™), that is, replacing the variable with its value (see Example 4-1, above).

Use double quotes to prevent word splitting. [3] An argument enclosed in double quotes presents itself as a
single word, even if it contains whitespace separators.

List="one two three"

for a in $List # Splits the variable in parts at whitespace.
do
echo "$a"
done
one
two
three

O J o o W

o)

10

11 eghe W==="

12

13 for a in "SList" # Preserves whitespace in a single variable.
14 do # ~ ~

15 echo "$a"

16 done

17 # one two three

A more elaborate example:

1 variablel="a variable containing five words"

2 COMMAND This is $variablel # Executes COMMAND with 7 arguments:
3 # "This" "is" "a" "variable" "containing" "five" "words"

4

5 COMMAND "This is $variablel" # Executes COMMAND with 1 argument:
6 # "This is a variable containing five words"

7

8

9 variable2="" # Empty.
10
11 COMMAND Svariable2 S$variable2 S$variable?2
12 # Executes COMMAND with no arguments.
13 COMMAND "Svariable2" "Svariable2" "Svariablel2"
14 # Executes COMMAND with 3 empty arguments.
15 COMMAND "Svariable2 S$variable2 S$Svariable2"
16 # Executes COMMAND with 1 argument (2 spaces).
17

18 # Thanks, Stéphane Chazelas.

i) Enclosing the arguments to an echo statement in double quotes is necessary only when word splitting or
preservation of whitespace is an issue.

Example 5-1. Echoing Weird Variables

#!/bin/bash
weirdvars.sh: Echoing weird variables.

echo

0 J o

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

var=""' (J\\{}\$\""

echo Svar # T (IN{IS"

echo "Svar" # " (I\{}s" Doesn't make a difference.
echo

IFS="\"

echo S$var # "(]1 {}sS" \ converted to space. Why?
echo "Svar" # T (IN{IS"

Examples above supplied by Stephane Chazelas.

echo

var2="\\\\\""

echo S$var2 # "

echo "S$var2" #O\\"

echo

But ... var2="\\\\"" is illegal. Why?
var3="\\\\"

echo "S$var3" # NN\

Strong quoting works, though.

KA AR A A R AR A AR A AR AR A AR A AR AR A A A I A A AR AR A A A A AR AR A A AR A AR A AR XKk

As the first example above shows, nesting quotes is permitted.
echo "s (echo LI LA) " # "

A A

At times this comes in useful.

varl="Two bits"
echo "\$varl = "Svarl"" # Svarl = Two bits
A N

Or, as Chris Hiestand points out
if [["$(du "SMy _Filel")" -gt "$(du "SMy_File2")"]]
A A AN A A AN

then

fi

KRR AR AR AR A AR A AR AR A AR A AR AR A A A I A A AR AR A A A A A A AR A AR A A A AR AR A AR XKk

Single quotes (' ') operate similarly to double quotes, but do not permit referencing variables, since the special
meaning of $ is turned off. Within single quotes, every special character except ' gets interpreted literally.
Consider single quotes ("full quoting") to be a stricter method of quoting than double quotes ("partial
quoting").

&) Since even the escape character (\) gets a literal interpretation within single quotes, trying to enclose a
single quote within single quotes will not yield the expected result.

echo "Why can't I write 's between single quotes"

echo

echo '"Why can'\''t I write '""'"'s between single quotes'
| === N | |- |

1

2

3

4

5 # The roundabout method.

6

7

8 # Three single-quoted strings, with escaped and quoted single quotes between.
9

10 # This example courtesy of Stéphane Chazelas.

Notes

[11 Unless there is a file named f£irst in the current working directory. Yet another reason to guote.
(Thank you, Harald Koenig, for pointing this out.

2]

Encapsulating

mn

within double quotes gives an error when used from the command line. This is

interpreted as a history command. Within a script, though, this problem does not occur, since the Bash
history mechanism is disabled then.

Of more concern is the apparently inconsistent behavior of \ within double quotes, and especially
following an echo -e command.

bash$ echo hello\!

hello!

bash$ echo "hello\!"
hello\!

bash$
>
bash$
>
bash$
a
bash$
\a

bash$
Xty
bash$
x\ty

bash$
Xty
bash$
X

echo

echo

echo

echo

echo

echo

echo

echo
Y

ll\ll
\a

ll\all

x\ty

"x\ty"

-e x\ty

-e le\tyu

Double quotes following an echo sometimes escape \. Moreover, the —e option to echo causes the "\t"
to be interpreted as a tab.

(Thank you, Wayne Pollock, for pointing this out, and Geoff Lee and Daniel Barclay for explaining it.)

[3] "Word splitting," in this context, means dividing a character string into separate and discrete arguments.

Prev Home Next
Special Variable Types Up Escaping
Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Chapter 5. Quoting Next

5.2. Escaping

Escaping is a method of quoting single characters. The escape (\) preceding a character tells the shell to
interpret that character literally.

<1 With certain commands and utilities, such as echo and sed, escaping a character may have the opposite
effect - it can toggle on a special meaning for that character.
Special meanings of certain escaped characters

used with echo and sed

\n

means newline
\r

means return
\t

means tab
\v

means vertical tab
\b

means backspace
\a

means alert (beep or flash)
\Oxx

translates to the octal ASCII equivalent of Onn, where nn is a string of digits

!

"The$' ... ' quoted string-expansion construct is a mechanism that uses escaped
octal or hex values to assign ASCII characters to variables, e.g., quote=$"\042".

Example 5-2. Escaped Characters

#!/bin/bash
escaped.sh: escaped characters

E i
First, let's show some basic escaped-character usage.
B

O ~J o oW

Escaping a newline.

O
4=

=
=)

echo ""

o
w N

echo "This will print
as two lines."

This will print

as two lines.

R e e
© J o U

echo "This will print \
as one line."
This will print as one line.

NN DN
N P O w0

echo; echo

NN
DSw
(]
Q
oy
(]

|

|

|

|

|

|

|

|

|

|

|

|

|

N
ul

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

echo "\v\v\v\v" # Prints \v\v\v\v literally.

Use the -e option with 'echo' to print escaped characters.
el ====——=——=———cC

echo "VERTICAL TABS"

echo -e "\v\v\v\v" # Prints 4 vertical tabs.

echo A\l n

echo "QUOTATION MARK"

echo —-e "\042" # Prints " (quote, octal ASCII character 42).
echo A\l n
The $'\X' construct makes the —-e option unnecessary.

echo; echo "NEWLINE and (maybe) BEEP"

echo $'\n' # Newline.
echo $'\a' # Alert (beep).

May only flash, not beep, depending on terminal.
We have seen $'\nnn" string expansion, and now

#

Version 2 of Bash introduced the $'\nnn' string expansion construct.

#

echo "Introducing the \$\' ... \' string-expansion construct "
echo ". . . featuring more quotation marks."

echo $'\t \042 \t' # Quote (") framed by tabs.

Note that '\nnn' is an octal value.

It also works with hexadecimal values, in an $'\xhhh' construct.

echo $'\t \x22 \t' # Quote (") framed by tabs.
Thank you, Greg Keraunen, for pointing this out.
Earlier Bash versions allowed '\x022'.

echo

Assigning ASCII characters to a variable.

quote=5$'\042" # " assigned to a variable.

echo "S$quote Quoted string S$quote and this lies outside the quotes."

echo

Concatenating ASCII chars in a variable.

triple_underline=$"'\137\137\137' # 137 is octal ASCII code for '_

echo "S$triple_underline UNDERLINE S$triple_underline"
echo

ABC=$'\101\102\103\010" # 101, 102, 103 are octal A, B,
echo S$ABC

echo

escape=5$'\033" # 033 is octal for escape.
echo "\"escape\" echoes as $escape"

no visible output.

echo

exit O

v

A more elaborate example:

Example 5-3. Detecting key-presses

1 #!/bin/bash

2 # Author: Sigurd Solaas, 20 Apr 2011
3 # Used in ABS Guide with permission.
4 # Requires version 4.2+ of Bash.

5

6 key="no value yet"

7 while true; do

8 clear

9 echo "Bash Extra Keys Demo. Keys to try:"
10 echo

11 echo "* Insert, Delete, Home, End, Page_Up and Page_Down"
12 echo "* The four arrow keys"

13 echo "* Tab, enter, escape, and space key"
14 echo "* The letter and number keys, etc."
15 echo

16 echo " d = show date/time"

17 echo " g = quit"

18 echo " "

19 echo
20

21 # Convert the separate home-key to home-key_ num_7:
22 if ["Skey" = $'\x1lb\x4f\x48']; then
23 key=$"\x1b\x5b\x31\x7e"

24 # Quoted string-expansion construct.
25 fi
26

27 # Convert the separate end-key to end-key num_1.
28 if ["skey" = $'\x1lb\x4f\x46']; then

29 key=$"\x1b\x5b\x34\x7e"

30 fi

31

32 case "Skey" in

33 $'\x1b\x5b\x32\x7e') # Insert

34 echo Insert Key

35 ¥

36 S'"\x1b\x5b\x33\x7e"') # Delete

37 echo Delete Key

38 ¥

39 $'"\x1b\x5b\x31\x7e"') # Home_key_num_7
40 echo Home Key

41 i

42 $'\x1b\x5b\x34\x7e"') # End_key_num_1
43 echo End Key

44 Vi

45 $'"\x1b\x5b\x35\x7e"') # Page_Up
46 echo Page_Up

47 Vi

48 $'"\x1b\x5b\x36\x7e') # Page_Down
49 echo Page_Down

50 ¥

51 $'"\x1b\x5b\x41"') # Up_arrow

52 echo Up arrow

53 ¥

54 $'\x1b\x5b\x42') # Down_arrow

55 echo Down arrow

56 ¥

57 $'\x1b\x5b\x43"') # Right_arrow
58 echo Right arrow

\$

\

59 g5
60 S'\x1b\x5b\x44"') # Left_arrow

61 echo Left arrow

62 g5

63 $'\x09'") # Tab

64 echo Tab Key

65 g5

66 $'\x0a') # Enter

67 echo Enter Key

68 g5

69 $'"\x1b') # Escape
70 echo Escape Key

71 P

72 $'\x20"') # Space

73 echo Space Key

74 P

75 d)

76 date

77 P

78 q)

79 echo Time to quit...
80 echo

81 exit 0

82 g5

83)

84 echo You pressed: \'"Skey"\'
85 g5

86 esac

87

88 echo

89 echo " "
90

91 unset K1 K2 K3
92 read -s -N1 -p "Press a key: "
93 KI1="SREPLY"
94 read -s -N2 -t 0.001
95 K2="SREPLY"
96 read -s -N1 -t 0.001
97 K3="SREPLY"
98 key="SKISK2SK3"
99

100 done

101

102 exit $?

See also Example 37-1.
gives the quote its literal meaning

1 echo "Hello" # Hello
2 echo "\"Hello\" ... he said." # "Hello" ... he said.

gives the dollar sign its literal meaning (variable name following \$ will not be referenced)

1 echo "\S$variableO1" # SvariableOl
2 echo "The book cost \$7.98." # The book cost $7.98.

gives the backslash its literal meaning

1 echo "\\" # Results in \
2

3 # Whereas

4

5 echo "\" # Invokes secondary prompt from the command-line.

6 # In a script, gives an error message.
7

8 # However

9
10 echo '"\' # Results in \

& The behavior of \ depends on whether it is escaped, strong-quoted, weak-quoted, or appearing within
command substitution or a here document.

1 # Simple escaping and quoting
2 echo \z # z
3 echo \\z # \z
4 echo '\z' # \z
5 echo '"\\z' # \\z
6 echo "\z" # \z
7 echo "\\z" # \z
8
9 # Command substitution
10 echo “echo \z° # z
11 echo “echo \\z° # z
12 echo “echo \\\z° # \z
13 echo “echo \\\\z® # \z
14 echo “echo \\\\\\z’ # \z
15 echo “echo \\\\\\\z" # \\z
16 echo “echo "\z" # \z
17 echo “echo "\\z"" # \z
18
19 # Here document
20 cat <<EOF
21 \z
22 EOF # \z
23
24 cat <<EOF
25 \\z
26 EOF # \z
27

28 # These examples supplied by Stéphane Chazelas.
Elements of a string assigned to a variable may be escaped, but the escape character alone may not be
assigned to a variable.

1 variable=\
2 echo "S$variable"
3 # Will not work - gives an error message:
4 # test.sh: : command not found
5 # A "naked" escape cannot safely be assigned to a variable.
6 #
7 # What actually happens here is that the "\" escapes the newline and
8 #+ the effect is variable=echo "$variable"
9 #+ invalid variable assignment
10
11 variable=\
12 23skidoo
13 echo "S$Svariable" # 23skidoo
14 # This works, since the second line
15 #+ 1s a valid variable assignment.
16
17 variable=\
18 # A7 escape followed by space
19 echo "$variable" # space
20
21 variable=\\
22 echo "$variable" # 0\

N
w

24
25
26
27
28
29
30
31
32
33
34
35

variable=\\\

echo "S$Svariable"

Will not work - gives an error message:

test.sh: \: command not found

#

First escape escapes second one, but the third one is left "naked",
#+ with same result as first instance, above.

variable=\\\\

echo "S$Svariable" # \\
Second and fourth escapes escaped.
This is o.k.

Escaping a space can prevent word splitting in a command's argument list.

1
2
3
4
5
6
7
8

file
Li

_list="/bin/cat /bin/gzip /bin/more /usr/bin/less /usr/bin/emacs-20.7"
st of files as argument (s) to a command.

Add two files to the list, and list all.

ls -

1 /usr/X11R6/bin/xsetroot /sbin/dump $file_list

9 # What happens if we escape a couple of spaces?

10
11
12

ls -
Er
#

1 /usr/X11R6/bin/xsetroot\ /sbin/dump\ S$file_list
ror: the first three files concatenated into a single argument to 'ls -1'
because the two escaped spaces prevent argument (word) splitting.

The escape also provides a means of writing a multi-line command. Normally, each separate line constitutes a
different command, but an escape at the end of a line escapes the newline character, and the command
sequence continues on to the next line.

9
10

(cd
(cd
Re
bu

As
tar
tar
Se
(T

/source/directory && tar cf - .) | \
/dest/directory && tar xpvf -)

peating Alan Cox's directory tree copy command,
t split into two lines for increased legibility.

an alternative:
cf - -C /source/directory . |
xpvEf — -C /dest/directory
e note below.
hanks, Stéphane Chazelas.)

&) If a script line ends with a |, a pipe character, then a \, an escape, is not strictly necessary. It is, however,
good programming practice to always escape the end of a line of code that continues to the following
line.

0 J o U W

el e e e e =
S0 U WN P O W

echo
bar"
#foo
#bar

echo

echo
bar'
#foo
#bar

echo
echo

bar
#foo

"foo

'foo
No difference yet.

foo\
Newline escaped.
bar

18

19 echo

20

21 echo "foo\
22 bar" # Same here, as \ still interpreted as escape within weak quotes.
23 #foobar

24

25 echo

26

27 echo 'foo\

28 bar' # Escape character \ taken literally because of strong quoting.
29 #foo\

30 #bar

31

32 # Examples suggested by Stéphane Chazelas.

Prev
Quoting

Prev

Home

Z

€X

Up Exit and Exit Status

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting

Z

Chapter 6. Exit and Exit Status

... there are dark corners in the Bourne shell, and
people use all of them.

--Chet Ramey
The exit command terminates a script, just as in a C program. It can also return a value, which is available to
the script's parent process.

Every command returns an exit status (sometimes referred to as a return status or exit code). A successful
command returns a 0, while an unsuccessful one returns a non-zero value that usually can be interpreted as an
error code. Well-behaved UNIX commands, programs, and utilities return a 0 exit code upon successful
completion, though there are some exceptions.

Likewise, functions within a script and the script itself return an exit status. The last command executed in the
function or script determines the exit status. Within a script, an exit nnncommand may be used to deliver
an nnn exit status to the shell (nnn must be an integer in the 0 - 255 range).

&) When a script ends with an exit that has no parameter, the exit status of the script is the exit status of the
last command executed in the script (previous to the exit).

#!/bin/bash
COMMAND_ 1

1
2
3
4
5
6
7 COMMAND_LAST
8

9 # Will exit with status of last command.
10
11 exit

The equivalent of a bare exit is exit $? or even just omitting the exit.

#!/bin/bash

COMMAND_ 1

COMMAND_LAST

Will exit with status of last command.

H O W 0w Jo Ul WDN -

e

exit $7

#!/bin/bash

COMMAND1

COMMAND_LAST

Will exit with status of last command.

$ 2 reads the exit status of the last command executed. After a function returns, $? gives the exit status of the
last command executed in the function. This is Bash's way of giving functions a "return value." [1]

Following the execution of a pipe, a $? gives the exit status of the last command executed.
After a script terminates, a $? from the command-line gives the exit status of the script, that is, the last

command executed in the script, which is, by convention, 0 on success or an integer in the range 1 - 255 on
error.

Example 6-1. exit / exit status

1 #!/bin/bash

2

3 echo hello

4 echo $? # Exit status 0 returned because command executed successfully.
5

6 lskdf # Unrecognized command.

7 echo $? # Non-zero exit status returned —-- command failed to execute.
8

9 echo
10
11 exit 113 # Will return 113 to shell.
12 # To verify this, type "echo $?" after script terminates.
13

14 # By convention, an 'exit 0' indicates success,
15 #+ while a non-zero exit value means an error or anomalous condition.
16 # See the "Exit Codes With Special Meanings" appendix.

$? is especially useful for testing the result of a command in a script (see Example 16-35 and Example 16-20).

=& The !, the logical not qualifier, reverses the outcome of a test or command, and this affects its exit status.

Example 6-2. Negating a condition using !

1 true # The "true" builtin.

2 echo "exit status of \"true\" = s$?" # 0

3

4 ! true

5 echo "exit status of \"! true\" = $?" # 1

6 # Note that the "!" needs a space between it and the command.
7 # 'true leads to a "command not found" error

8 #

9 # The '!' operator prefixing a command invokes the Bash history mechanism.
10
11 true
12 !true

=
w

No error this time, but no negation either.
It just repeats the previous command (true).

el
< o U1
+=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
+=

18 # Preceding a _pipe_ with ! inverts the exit status returned.
19 1s | bogus_command # bash: bogus_command: command not found
20 echo $? # 127

21

22 ! 1s | bogus_command # bash: bogus_command: command not found
23 echo $? # 0

24 # Note that the ! does not change the execution of the pipe.
25 # Only the exit status changes.

26 # #
27
28 # Thanks, Stéphane Chazelas and Kristopher Newsome.

£1> Certain exit status codes have reserved meanings and should not be user-specified in a script.

Notes

[1] In those instances when there is no return terminating the function.

Prev Home
Escaping Up

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev

Z.
@
[><
=+

Tests

Z.
@
[><
=+

Chapter 7. Tests

Every reasonably complete programming language can test for a condition, then act according to the result of
the test. Bash has the test command, various bracket and parenthesis operators, and the if/then construct.

7.1. Test Constructs

¢ An if/then construct tests whether the exit status of a list of commands is O (since 0 means "success”
by UNIX convention), and if so, executes one or more commands.

¢ There exists a dedicated command called [(left bracket special character). It is a synonym for test,
and a builtin for efficiency reasons. This command considers its arguments as comparison expressions
or file tests and returns an exit status corresponding to the result of the comparison (O for true, 1 for
false).

¢ With version 2.02, Bash introduced the [[... 1] extended test command, which performs comparisons
in a manner more familiar to programmers from other languages. Note that [[is a keyword, not a
command.

Bashsees [[$a —1t $b]] as a single element, which returns an exit status.

[]
The ((...)) and et ... constructs return an exit status, according to whether the arithmetic expressions
they evaluate expand to a non-zero value. These arithmetic-expansion constructs may therefore be

used to perform arithmetic comparisons.

1 ((0 && 1)) # Logical AND
2 echo $? # 1 WRE

3 # And so

4 let "num = ((O && 1))"

5 echo $num # 0

6 # But

7 let "num = ((O && 1))"

8 echo $? # 1 WRE

9

10

11 ((200 || 11)) # Logical OR
12 echo $? # 0 WR W

13 # ...

14 let "num = ((200 || 11))"

15 echo $num # 1

16 let "num = ((200 || 11))"

17 echo $? # 0 WR W

18

19
20 ((200 | 11)) # Bitwise OR
21 echo $7 # 0 L
22 # ...
23 let "num = ((200 | 11))"
24 echo $num # 203
25 let "num = ((200 | 11))"
26 echo $7 # 0 LI
27

28 # The "let" construct returns the same exit status
29 #+ as the double-parentheses arithmetic expansion.

<1 Again, note that the exit status of an arithmetic expression is not an error value.

var=-2 && ((var+=2))
echo $7? # 1

var=-2 && ((var+=2)) && echo Svar
Will not echo S$var!

o W NP

An if can test any command, not just conditions enclosed within brackets.

1 if cmp a b &> /dev/null # Suppress output.

fi

O J oy U W

9 then echo
10 fi

11

12 word=Linux

then echo "Files a and b are identical."
else echo "Files a and b differ."

The very useful "if-grep" construct:

if grep —-g Bash file

"File contains at least one occurrence of Bash."

13 letter_sequence=inu
14 if echo "S$word" | grep —-g "S$letter_ sequence"
15 # The "-g" option to grep suppresses output.

16 then

17 echo "$letter_sequence found in $word"

18 else

19 echo "$letter_sequence not found in $word"
20 fi

21

22

23 if COMMAND_WHOSE_EXIT_STATUS_IS_0_UNLESS_ERROR_OCCURRED

24 then echo
25 else echo
26 fi

"Command succeeded."
"Command failed."

® These last two examples courtesy of Stéphane Chazelas.

Example 7-1. What is truth?

O ~J o U W

W wwwwwdhddhDNhdDNMdDNDNNDNMDNMdNNMNNNRERPRPRRPRRPRRERERR P
ad WNhE O WOW-TOoUu d WNE O WOW-Jo Ul WNEFE O W

#!/bin/bash

Tip:

1If you're unsure how a certain condition might evaluate,
#+ test it in an if-test.

echo

echo "Testing \"O\""

if [0] # zero
then
echo "0 is true.
else # Or else
echo "0 is false."
fi # 0 is true.
echo

echo "Testing \"1\""

if [1] # one
then
echo "1 is true.
else
echo "1 is false."
fi # 1 is true.
echo

echo "Testing \"-1\""

if [-1] # minus one
then

echo "-1 is true."
else

echo "-1 is false."

fi # -1 is true.

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101

echo

echo "Testing \"NULL\""

if [] # NULL (empty condition)
then
echo "NULL is true."
else
echo "NULL is false."
fi # NULL is false.
echo
echo "Testing \"xyz\""

if [xyz] # string
then
echo "Random string is true."
else
echo "Random string is false."
fi # Random string is true.
echo
echo "Testing \"\$xyz\""

if [Sxyz 1 # Tests 1f $xyz is null, but...
it's only an uninitialized variable.

then
echo "Uninitialized variable is true."
else
echo "Uninitialized variable is false."
fi # Uninitialized variable is false.
echo
echo "Testing \"-n \$xyz\""

if [-n "S$xyz"] # More pedantically correct.
then
echo "Uninitialized variable is true."
else
echo "Uninitialized variable is false."
fi # Uninitialized variable is false.
echo
Xyz= # Initialized, but set to null value.

echo "Testing \"-n \Sxyz\""
if [-n "S$xyz"]

then
echo "Null variable is true."
else
echo "Null variable is false."
fi # Null variable is false.
echo
When is "false" true-?

echo "Testing \"false\""

if ["false"] # It seems that "false" is
then

echo "\"false\" is true." #+ and it tests true.
else

just a string

102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

echo "\"false\" is false."

fi # "false" is true.
echo
echo "Testing \"\$false\"" # Again, uninitialized variable.
if ["Sfalse"]
then
echo "\"\Sfalse\" is true."
else
echo "\"\Sfalse\" is false."
fi # "Sfalse" is false.

Now, we get the expected result.
What would happen if we tested the uninitialized variable "S$true"?
echo

exit O

Exercise. Explain the behavior of Example 7-1, above.

1
2
3

4
5
6
7
8
9

10
11

if [condition-true]
then

command 1

command 2

else # Or else
Adds default code block executing if original condition tests false.
command 3
command 4

fi

= When if and then are on same line in a condition test, a semicolon must terminate the if statement. Both if
and then are keywords. Keywords (or commands) begin statements, and before a new statement on the
same line begins, the old one must terminate.

1 if [-x "S$filename"]; then

Else if and elif

elif

elif is a contraction for else if. The effect is to nest an inner if/then construct within an outer one.

if [conditionl]
then
commandl
command?2
command3
elif [condition2]
Same as else if
then
command4
10 command5
11 else
12 default-command
13 fi

O J oy U W N

)

The if test condition-true constructis the exact equivalent of if [condition-true]. As
it happens, the left bracket, [, is a foken [1] which invokes the test command. The closing right bracket,] , in
an if/test should not therefore be strictly necessary, however newer versions of Bash require it.

&) The test command is a Bash builtin which tests file types and compares strings. Therefore, in a Bash
script, test does not call the external /usr/bin/test binary, which is part of the sh-utils package.
Likewise, [does not call /usr/bin/ [, whichis linked to /usr/bin/test.

bash$ type test

test is a shell builtin
bash$ type '['

[1is a shell builtin
bash$ type '[['

[[is a shell keyword
bash$ type '11]'

]] is a shell keyword
bash$ type ']’

bash: type:]: not found

If, for some reason, you wish to use /usr/bin/test in a Bash script, then specify it by full
pathname.

Example 7-2. Equivalence of test, /usr/bin/test,[],and /usr/bin/[

O ~J o U W

BwWwWwwwwwwwwwdhdhdhdNhdNhhDNMdDNMdDDNMdDNMdDNMdDNRERERRPRERRERERERPRE R B E
O W0 JOo Ul d WNEFE O WOOW--JoUl b WNREFE O WOWw-Jo Ul WN PP O

41

#!/bin/bash
echo
if test -z "sS1"
then
echo "No command-line arguments."
elise
echo "First command-line argument is $1."
fi
echo
if /usr/bin/test -z "S$1" # Equivalent to "test" builtin.
o Annnnanannana # Specifying full pathname.
then
echo "No command-line arguments."
elise
echo "First command-line argument is $1."
fi
echo
A€ [=z PELY] # Functionally identical to above code blocks.
AE [=z "SILT should work, but...
#+ Bash responds to a missing close-bracket with an error message.
then
echo "No command-line arguments."
elise
echo "First command-line argument is $1."
fi
echo
if /usr/bin/[-z "$1"] # Again, functionally identical to above.
if /usr/bin/[-z "$1" # Works, but gives an error message.
Note:
This has been fixed in Bash, version 3.x.
then
echo "No command-line arguments."

42
43
44
45
46
47
48

else
echo "First command-line argument is $1."
fi

echo

exit O

The [[]] construct is the more versatile Bash version of []. This is the extended test command, adopted from
ksh88.

k kK

No filename expansion or word splitting takes place between [[and]], but there is parameter expansion and
command substitution.

1
2
3
4
5
6

file=/etc/passwd

if [[—e S$file]]
then

echo "Password file exists."
fi

Using the [[...]] test construct, rather than [...] can prevent many logic errors in scripts. For example, the
&&, I, <, and > operators work within a [[]] test, despite giving an error within a [] construct.

Arithmetic evaluation of octal / hexadecimal constants takes place automatically within a [[...]] construct.

[[Octal and hexadecimal evaluation]]
Thank you, Moritz Gronbach, for pointing this out.
decimal=15
octal=017 # = 15 (decimal)
hex=0x0f # = 15 (decimal)
if ["Sdecimal" -eq "Soctal"]
then
echo "$decimal equals S$Soctal"
else
echo "$decimal is not equal to Soctal" # 15 is not equal to 017
fi # Doesn't evaluate within [single brackets]!
if [["$decimal" -eq "Soctal" 1]
then
echo "S$decimal equals Soctal" # 15 equals 017
else
echo "$decimal is not equal to Soctal"
fi # Evaluates within [[double brackets]]!

if [["$decimal" -eq "Shex"]]

then

echo "$decimal equals Shex" # 15 equals 0x0f
else

echo "$decimal is not equal to Shex"
fi # [[Shexadecimal]] also evaluates!

&) Following an if, neither the test command nor the test brackets ([] or [[]]) are strictly necessary.

dir=/home/bozo

1
2
3 if c¢d "$dir" 2>/dev/null; then # "2>/dev/null" hides error message.
4 echo "Now in $dir."
5 else

6 echo "Can't change to $dir."

7 fi

The "if COMMAND" construct returns the exit status of COMMAND.

Similarly, a condition within test brackets may stand alone without an if, when used in combination with
a list construct.

1 varl=20

2 var2=22

3 ["Svarl" -ne "S$var2"] && echo "S$varl is not equal to Svar2"
4

5 home=/home/bozo

6 [-d "Shome"] || echo "Shome directory does not exist."

The (()) construct expands and evaluates an arithmetic expression. If the expression evaluates as zero, it

returns an exit status of 1, or "false". A non-zero expression returns an exit status of 0, or "true". This is in
marked contrast to using the test and [] constructs previously discussed.

Example 7-3. Arithmetic Tests using (())

1 #!/bin/bash
2 # arith-tests.sh
3 # Arithmetic tests.
4
5 # The ((...)) construct evaluates and tests numerical expressions.
6 # Exit status opposite from [...] construct!
-
8 ((0))
9 echo "Exit status of \"((0))\" is $?." # 1
10
11 (1))
12 echo "Exit status of \"((1))\" is s$2." # 0
13
14 ((5 >4)) # true
15 echo "Exit status of \"((5 > 4))\" is $?." # 0
16
17 ((5 > 9)) # false
18 echo "Exit status of \"((5 > 9))\" is $?." # 1
19
20 ((5 ==)) # true
21 echo "Exit status of \"((5 == 5))\" is $2." # 0
22 # ((5 =5)) gives an error message.
23
24 ((5 = 5)) # 0
25 echo "Exit status of \"((5 - 5))\" is s$2." # 1
26
27 ((5/ 4)) # Division o.k.
28 echo "Exit status of \"((5 / 4))\" is s$2." # 0
29
30 ((1/ 2)) # Division result < 1.
31 echo "Exit status of \"((1 / 2))\" is $?." # Rounded off to 0.
32 # 1
33
34 ((1 / 0)) 2>/dev/null # Illegal division by 0.
35 # ANANNNNANAN
36 echo "Exit status of \"((1 / 0))\" is $?2." # 1

(O8]
-

38 # What effect does the "2>/dev/null" have?

39 # What would happen if it were removed?

40 # Try removing it, then rerunning the script.
41

42 # #
43

44 # ((...)) also useful in an if-then test.
45

46 varl=5

47 var2=4

48

49 if ((varl > wvar2))

50 then #° A Note: Not $varl, S$var2. Why?
51 echo "$varl is greater than S$var2"

52 fi # 5 is greater than 4

53

54 exit 0

Notes

[1]1 A token is a symbol or short string with a special meaning attached to it (a meta-meaning). In Bash,
certain tokens, such as [and . (dot-command), may expand to keywords and commands.

Prev Home Next
Exit and Exit Status Up File test operators
Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Chapter 7. Tests Next

7.2. File test operators

Returns true if...

file exists

file exists

This is identical in effect to -e. It has been "deprecated," [1] and its use is discouraged.

file is a regular file (not a directory or device file)

file is not zero size
file is a directory

file is a block device

file is a character device

if [-b "$deviceO"]
then

echo "S$SdeviceO is a block device."
fi

/dev/sda2 is a block device.

QO J oy U b W N

o)

10

device0="/dev/sda2" # / (root directory)

11 devicel="/dev/ttyS1" # PCMCIA modem card.

12 if [-c "Sdevicel"]
13 then

14 echo "S$devicel is a character device."

15 fi
16
17 # /dev/ttySl is a character device.

file is a pipe

function show_input_type ()
{
[-p /dev/fd/0] && echo PIPE ||

show_input_type "Input"
echo "Input" | show_input_type

O 0w J oy Ul WDN

file is a symbolic link

file is a symbolic link

file is a socket

echo STDIN

This example courtesy of Carl Anderson.

f1 -nt 2

f1 -ot 2

f1 -ef f2

file (descriptor) is associated with a terminal device

This test option _may be used to check whether the stdin [=t 0 Jorstdout [=t 1]ina
given script is a terminal.

file has read permission (for the user running the test)

file has write permission (for the user running the test)

file has execute permission (for the user running the test)

set-group-id (sgid) flag set on file or directory

If a directory has the sgid flag set, then a file created within that directory belongs to the group that
owns the directory, not necessarily to the group of the user who created the file. This may be useful
for a directory shared by a workgroup.

set-user-id (suid) flag set on file

A binary owned by root with set ~user-1id flag set runs with root privileges, even when an
ordinary user invokes it. [2] This is useful for executables (such as pppd and cdrecord) that need to
access system hardware. Lacking the suid flag, these binaries could not be invoked by a non-root
user.

—rwsr—xr-t 1 root 178236 Oct 2 2000 /usr/sbin/pppd

A file with the suid flag set shows an s in its permissions.

sticky bit set

Commonly known as the sticky bit, the save-text-mode flag is a special type of file permission. If a
file has this flag set, that file will be kept in cache memory, for quicker access. [3] If set on a
directory, it restricts write permission. Setting the sticky bit adds a ¢ to the permissions on the file or
directory listing. This restricts altering or deleting specific files in that directory to the owner of those
files.

drwxrwxrwt 7 root 1024 May 19 21:26 tmp/

If a user does not own a directory that has the sticky bit set, but has write permission in that directory,
she can only delete those files that she owns in it. This keeps users from inadvertently overwriting or
deleting each other's files in a publicly accessible directory, such as /tmp. (The owner of the
directory or root can, of course, delete or rename files there.)

you are owner of file

group-id of file same as yours

file modified since it was last read

file £1 is newer than £2

file £1 is older than £2

files £1 and £2 are hard links to the same file

"not" -- reverses the sense of the tests above (returns true if condition absent).

Example 7-4. Testing for broken links

1 #!/bin/bash

2 # broken-link.sh

3 # Written by Lee bigelow <ligelowbee@yahoo.com>

4 # Used in ABS Guide with permission.

5

6 # A pure shell script to find dead symlinks and output them quoted
7 #+ so they can be fed to xargs and dealt with :)

8 #+ eg. sh broken-link.sh /somedir /someotherdir|xargs rm

9 #
10 # This, however, is a better method:
11 #

12 # find "somedir" -type 1 -printO0|\

13 # =xargs -r0 file|\

14 # grep "broken symbolic"|

15 # sed -e 's/"\|: *broken symbolic.*$/"/g'

16 #

17 #+ but that wouldn't be pure Bash, now would it.

18 # Caution: beware the /proc file system and any circular links!
NN S E R LT EEEE TR TR TR EE R TR R o i o
20
21
22 # 1If no args are passed to the script set directories-to-search

23 #+ to current directory. Otherwise set the directories-to-search
24 #+ to the args passed.

25 ##HHHEHHHHS S AR LSS

26

27 [$# -eq 0] && directorys="pwd || directorys=s$a@

28

29

30 # Setup the function linkchk to check the directory it is passed
31 #+ for files that are links and don't exist, then print them quoted.
32 # If one of the elements in the directory is a subdirectory then
33 #+ send that subdirectory to the linkcheck function.

34 #EHHHHHHES

35

36 linkchk () {

37 for element in $1/*; do

38 [-h "Selement" -a ! —-e "Selement"] && echo \"S$Selement\"

39 [-d "Selement"] && linkchk S$element

40 # Of course, '-h' tests for symbolic link, '-d' for directory.
41 done

42}

43

44 # Send each arg that was passed to the script to the linkchk () function
45 #+ if it is a valid directoy. If not, then print the error message
46 #+ and usage info.

47 #EHHHHF S AR

48 for directory in $directorys; do

49 if [-d S$directory]

50 then linkchk $directory

51 else

52 echo "S$directory is not a directory"

53 echo "Usage: $0 dirl dir2 ..."

54 fi

55 done

56

57 exit $§7

Example 31-1, Example 11-8, Example 11-3, Example 31-3, and Example A-1 also illustrate uses of the file
test operators.

Notes

[1] Per the 1913 edition of Webster's Dictionary:

Deprecate

1
2
3
4 To pray against, as an evil;
5 to seek to avert by prayer;
6 to desire the removal of;

7 to seek deliverance from;

8 to express deep regret for;
9 to disapprove of strongly.

[2] Be aware that suid binaries may open security holes. The suid flag has no effect on shell scripts.

[31 On Linux systems, the sticky bit is no longer used for files, only on directories.

Prev Home Next
Tests Up Other Comparison Operators
Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Chapter 7. Tests Next

7.3. Other Comparison Operators

A binary comparison operator compares two variables or quantities. Note that integer and string comparison
use a different set of operators.

integer comparison

_eq
is equal to
if [" $a" _eq " $b"]
-ne
is not equal to
if [" $a" -ne " $b"]
_gt
is greater than
if [" $a" _gt " $b"]
_ge
is greater than or equal to
if [" $a" _ge " $b"]
-1t
is less than
if [" $a" _lt " $b"]
-le
is less than or equal to
if ["$a" _le "$b"]
<
is less than (within double parentheses)
(("$a" < "$b"))
<=
is less than or equal to (within double parentheses)
(("$a" <= "$b"))
>
is greater than (within double parentheses)
(("$a" > "$b"))
>=

is greater than or equal to (within double parentheses)
(("$a" >= "$b"))

string comparison

is equal to

if ["$a" = "$b"]
g 1 » Note the whitespace framing the =.
if ["$a"="$b"] isnot equivalent to the above.
is equal to
if ["$a" == "$b"]

This is a synonym for =.

5) The == comparison operator behaves differently within a double-brackets test than within

single brackets.

1 [[$Sa == z*]] # True if Sa starts with
2 [[$Sa == "z*"]] # True if S$Sa is equal to
3
4 [$a == z*] # File globbing and word
5 ["S$a" == "z*"] # True if S$a is equal to
6
7

Thanks, Stéphane Chazelas

is not equal to

lf [n$au != n$bu]

This operator uses pattern matching within a [[...]] construct.

is less than, in ASCII alphabetical order

if [["$a" < "$b"]]

if ["$a" \< "$b"]

Note that the "<" needs to be escaped withina [] construct.
is greater than, in ASCII alphabetical order

if [["$a" > "$b"]]

if ["$a" \> "$b"]

Note that the ">" needs to be escaped withina [] construct.

an "z" (pattern matching) .
z* (literal matching) .

splitting take place.
z* (literal matching) .

See Example 27-11 for an application of this comparison operator.

string is null, that is, has zero length

echo "\$String is NOT null."

1 String='"' # Zero—-length ("null") string variable.
2

3 if [-z "$String"]

4 then

5 echo "\$String is null."

6 else

7

8 fi # $String is null.
string is not null.

<1 The —n test requires that the string be quoted within the test brackets. Using an
unquoted string with / -z, or even just the unquoted string alone within test brackets
(see Example 7-6) normally works, however, this is an unsafe practice. Always quote a
tested string. [1]

Example 7-5. Arithmetic and string comparisons

1 #!/bin/bash

2

3 a=4

4 b=5

5

6 # Here "a" and "b" can be treated either as integers or strings.
7 # There is some blurring between the arithmetic and string comparisons,
8 #+ since Bash variables are not strongly typed.

9
10 # Bash permits integer operations and comparisons on variables
11 #+ whose value consists of all-integer characters.
12 # Caution advised, however.
13
14 echo
15
16 if ["$a" -ne "S$b"]
17 then
18 echo "$a is not equal to $b"

19 echo " (arithmetic comparison)"
20 fi

21

22 echo

23

24 if ["$a" != "sb"]

25 then

26 echo "$a is not equal to $b."
27 echo " (string comparison)"

28 # "t4qn = n"gn

29 # ASCII 52 != ASCII 53

30 fi

31

32 # In this particular instance, both "-ne" and "!=" work.
33

34 echo

35

36 exit O

Example 7-6. Testing whether a string is null

#!/bin/bash
str-test.sh: Testing null strings and unquoted strings,
#+ but not strings and sealing wax, not to mention cabbages and kings

Using if [...]

If a string has not been initialized, it has no defined value.
This state is called "null" (not the same as zero!).

O J o Ul W

10 if [-n $stringl] # stringl has not been declared or initialized.
11 then

12 echo "String \"stringl\" is not null."

13 else

14 echo "String \"stringl\" is null."

15 fi # Wrong result.

16 # Shows $stringl as not null, although it was not initialized.
17

18 echo

19

20 # Let's try it again.

21

22 if [-n "$stringl"] # This time, $stringl is quoted.

23 then

24 echo "String \"stringl\" is not null."

25 else

26 echo "String \"stringl\" is null."

27 fi # Quote strings within test brackets!
28

29 echo

30

31 if [$stringl] # This time, $stringl stands naked.
32 then

33 echo "String \"stringl\" is not null."

34 else

35 echo "String \"stringl\" is null."

36 fi # This works fine.

37 # The [...] test operator alone detects whether the string is null.
38 # However it is good practice to quote it (if ["S$stringl"]).
39 #

40 # As Stephane Chazelas points out,

41 # if [$stringl] has one argument, "]"

42 # if ["S$stringl"] has two arguments, the empty "$stringl" and "]1"
43

44

45 echo

46

47

48 stringl=initialized

49

50 if [$stringl] # Again, S$stringl stands unquoted.

51 then

52 echo "String \"stringl\" is not null."

53 else

54 echo "String \"stringl\" is null."

55 fi # Again, gives correct result.

56 # Still, it 1is better to quote it ("S$stringl"), because

57

58

59 stringl="a = b"

60

61 if [$stringl] # Again, S$stringl stands unquoted.

62 then

63 echo "String \"stringl\" is not null."

64 else

65 echo "String \"stringl\" is null."

66 fi # Not quoting "$stringl" now gives wrong result!
67

68 exit O # Thank you, also, Florian Wisser, for the "heads-up".

Example 7-7. zmore

1 #!/bin/bash
2 # zmore
3
4 # View gzipped files with 'more' filter.
5
6 E_NOARGS=85
7 E_NOTFOUND=86
8 E_NOTGZIP=87
9
10 if [$# -eq 0] # same effect as: 1if [-z "S1"]
11 # $1 can exist, but be empty: zmore "" arg2 arg3
12 then
13 echo "Usage: “basename $0° filename" >&2
14 # Error message to stderr.
15 exit $E_NOARGS
16 # Returns 85 as exit status of script (error code).
17 fi
18
19 filename=51
20
21 if [! —-f "$filename"] # Quoting $filename allows for possible spaces.
22 then
23 echo "File $filename not found!" >&2 # Error message to stderr.
24 exit S$E_NOTFOUND
25 fi
26
27 if [${filename##*.} != "gz"]
28 # Using bracket in variable substitution.
29 then

30 echo "File $1 is not a gzipped file!"

31 exit S$E_NOTGZIP

32 fi

33

34 zcat $1 | more

35

36 # Uses the 'more' filter.

37 # May substitute 'less' if desired.

38

39 exit $7? # Script returns exit status of pipe.

40 # Actually "exit $?" is unnecessary, as the script will, in any case,
41 #+ return the exit status of the last command executed.

compound comparison

-a
logical and

expl -a expZ2returns true if both expl and exp?2 are true.
logical or
expl -o expZ2 returns true if either expl or exp2 is true.
These are similar to the Bash comparison operators && and Il, used within double brackets.

1 [[conditionl && condition2 1]
The -0 and -a operators work with the test command or occur within single test brackets.

1 if ["$Sexprl" -a "Sexpr2"]

2 then

3 echo "Both exprl and expr2 are true."
4 else

5 echo "Either exprl or expr2 is false."
6 fi

<1 But, as rihad points out:

1 [1 -egql] & [—-n "“echo true 1>&2°"] # true

2 [1 -eq 2] & [—n "‘echo true 1>&2°"] # (no output)

3 # "MA~A2” False condition. So far, everything as expected.

4

5 # However

6 [1 —eq 2 —a —n "“echo true 1>&2°"] # true

7 # "M False condition. So, why "true" output?

8

9 # Is it because both condition clauses within brackets evaluate?
10 [[1 -eq 2 && —n "'echo true 1>&2 "]] # (no output)
11 # No, that's not it.
12
13 # Apparently && and || "short-circuit" while -a and -o do not.

Refer to Example 8-3, Example 27-17, and Example A-29 to see compound comparison operators in action.

Notes

[11 As S.C. points out, in a compound test, even quoting the string variable might not suffice. [—n
"$string" -o "$a" = "$b"] may cause an error with some versions of Bash if Sstringis
empty. The safe way is to append an extra character to possibly empty variables, ["x$string" !=
x —o "x$a" = "x$b"] (the "x's" cancel out).

Prev Home Next

File test operators Up Nested i £/then Condition Tests

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Chapter 7. Tests

Z
¢l
<
—

7.4. Nested if/then Condition Tests

Condition tests using the i £/t hen construct may be nested. The net result is equivalent to using the & &
compound comparison operator.

1 a=3
2
3 if ["sa" -gt 0]
4 then
5 if ["$a" -1t 5]
6 then
7 echo "The value of \"a\" lies somewhere between 0 and 5."
8 fi
9 fi
10
11 # Same result as:
12
13 if ["$a" —-gt 0] && ["sa" -1t 5]
14 then
15 echo "The value of \"a\" lies somewhere between 0 and 5."
16 fi

Example 37-4 and Example 17-11 demonstrate nested 1 £/t hen condition tests.

Prev Home Next
Other Comparison Operators Up Testing Your Knowledge of Tests
Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Chapter 7. Tests Next

7.5. Testing Your Knowledge of Tests

The systemwide xinitrc file can be used to launch the X server. This file contains quite a number of if/then
tests. The following is excerpted from an "ancient" version of xinitrc (Red Hat 7.1, or thereabouts).

if [-f SHOME/.Xclients]; then
exec SHOME/.Xclients

elif [—-f /etc/X1ll/xinit/Xclients]; then
exec /etc/X11l/xinit/Xclients

failsafe settings. Although we should never get here
(we provide fallbacks in Xclients as well) it can't hurt.
xclock —-geometry 100x100-5+5 &

9 xterm —-geometry 80x50-50+150 &

10 if [-f /usr/bin/netscape -a —-f /usr/share/doc/HTML/index.html]; then
11 netscape /usr/share/doc/HTML/index.html &

12 fi

13 fi

Explain the test constructs in the above snippet, then examine an updated version of the file,
/etc/X11l/xinit/xinitrc, and analyze the if/then test constructs there. You may need to refer ahead to
the discussions of grep, sed, and regular expressions.

Prev Home Next
Nested i f/then Condition Tests Up Operations and Related Topics
Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Next

Chapter 8. Operations and Related Topics

8.1. Operators

assignment

variable assignment
Initializing or changing the value of a variable

All-purpose assignment operator, which works for both arithmetic and string assignments.
1 var=27

2 category=minerals # No spaces allowed after the "=".

<1 Do not confuse the "=" assignment operator with the = test operator.

1 # = as a test operator

2

3 if ["S$stringl" = "S$string2"]

4 then

5 command

6 fi

7

8 # if ["XS$stringl" = "XS$string2"] is safer,

9 #+ to prevent an error message should one of the variables be empty.
10 # (The prepended "X" characters cancel out.)

arithmetic operators

+
plus
minus
ES
multiplication
/
division
ke
exponentiation
1 # Bash, version 2.02, introduced the "**" exponentiation operator.
2
3 let "z=5**3" # 5 %5 x5
4 echo "z = $z" # z = 125
%

modulo, or mod (returns the remainder of an integer division operation)

bash$ expr 5 % 3
2

5/3 = 1, with remainder 2

This operator finds use in, among other things, generating numbers within a specific range (see
Example 9-11 and Example 9-15) and formatting program output (see Example 27-16 and Example
A-6). It can even be used to generate prime numbers, (see Example A-15). Modulo turns up
surprisingly often in numerical recipes.

Example 8-1. Greatest common divisor

1 #!/bin/bash

2 # gcd.sh: greatest common divisor

3 # Uses Euclid's algorithm

4

5 # The "greatest common divisor" (gcd) of two integers

6 #+ is the largest integer that will divide both, leaving no remainder.
7

8 # Euclid's algorithm uses successive division.

9 # In each pass,

10 #+ dividend <--- divisor

11 #+ divisor <-—-—- remainder

12 #+ until remainder = 0.

13 # The gcd = dividend, on the final pass.

14 #

15 # For an excellent discussion of Euclid's algorithm, see

16 #+ Jim Loy's site, http://www.jimloy.com/number/euclids.htm.

17

18

19 §f ===——==——==
20 # Argument check
21 ARGS=2
22 E_BADARGS=85
23
24 if [$# -ne "SARGS"]
25 then
26 echo "Usage: “basename $0° first-number second-number"
27 exit $E_BADARGS
28 fi
29 jf =—=—=—==—=—========================—=======================

30

31

32 gcd ()
33 {
34
35 dividend=5$1 # Arbitrary assignment.
36 divisor=$2 #! It doesn't matter which of the two is larger.
37 # Why not?
38
39 remainder=1 # If an uninitialized variable is used inside
40 #+ test brackets, an error message results.
41
42 until ["S$remainder" -eq 0]
43 do # Aonanannnn s Must be previously initialized!
44 let "remainder = $dividend % S$divisor"
45 dividend=$divisor # Now repeat with 2 smallest numbers.
46 divisor=Sremainder
47 done # Euclid's algorithm
48
49 1} # Last $dividend is the gcd.
50
51
52 gcd $1 $2
53
54 echo; echo "GCD of $1 and $2 = $dividend"; echo
55
56
57 # Exercises
58 # —————————
59 # 1) Check command-line arguments to make sure they are integers,
60 #+ and exit the script with an appropriate error message if not.
61 # 2) Rewrite the gcd () function to use local variables.

62

63 exit O

plus-equal (increment variable by a constant) [1]
let "var += 5" results in var being incremented by 5.

minus-equal (decrement variable by a constant)

k—

times-equal (multiply variable by a constant)

let "var *= 4" results in var being multiplied by 4.
/=

slash-equal (divide variable by a constant)
%=

mod-equal (remainder of dividing variable by a constant)

Arithmetic operators often occur in an expr or let expression.

Example 8-2. Using Arithmetic Operations

#!/bin/bash
Counting to 11 in 10 different ways.

n=1; echo -n "$n "

let "n = Sn + 1" # let "n = n + 1" also works.
echo —n "$n "

0 J o U W

=
[@ RN}

$((n = $n + 1))
":" necessary because otherwise Bash attempts
#+ to interpret "S$((n = Sn + 1))" as a command.
echo -n "$n "

e e
s WwN e

((n=n+1))

16 # A simpler alternative to the method above.

17 # Thanks, David Lombard, for pointing this out.
18 echo -n "S$n "

19

20 n=$((Sn + 1))

21 echo -n "$n "

22

23 S[n = %n + 1]

24 # ":" necessary because otherwise Bash attempts
25 #+ to interpret "$[n = $n + 1]" as a command.
26 # Works even if "n" was initialized as a string.
27 echo -n "$n "

28

29 n=$[$Sn + 1]

w
o

Works even if "n" was initialized as a string.

#* Avoid this type of construct, since it is obsolete and nonportable.
Thanks, Stephane Chazelas.

echo -n "$n "

w w w w w
g W N

Now for C-style increment operators.

36 # Thanks, Frank Wang, for pointing this out.
37

38 let "n++" # let "+4+n" also works.
39 echo -n "$n "

is
o

41 ((nt+))

((++n)) also works.

42 echo -n "S$n "

43
44 : S((nt+

)) # : $((++n)) also works.

45 echo -n "S$n "

46
47 : S[n+t+]

: $[++n] also works

48 echo -n "S$n "

49

50 echo
51

52 exit O

&) Integer variables in older versions of Bash were signed long (32-bit) integers, in the range of
-2147483648 to 2147483647. An operation that took a variable outside these limits gave an erroneous

result.

O J o U Ww N

NeJ

10
11

echo $BASH_VERSION # 1.14

a=2147483646
echo "a = S$a"
let "a+=1"
echo "a = S$a"
let "a+=1"
echo "a = $a"

a = 2147483646

Increment "a".

a = 2147483647

increment "a" again, past the limit.

a = —-2147483648

ERROR: out of range,

+ and the leftmost bit, the sign bit,

+ has been set, making the result negative.

As of version >= 2.05b, Bash supports 64-bit integers.

Bash does not understand floating point arithmetic. It treats numbers containing a decimal point as

let "b = $a + 1.3" # Error.

strings.
1 a=1.5
2
3
4 # t2.sh: let:
5 #
6
7 echo "b = $b"

b =1.5+ 1.3: syntax error in expression
(error token is ".5 4+ 1.3")

b=1

Use be in scripts that that need floating point calculations or math library functions.

bitwise operators. The bitwise operators seldom make an appearance in shell scripts. Their chief use seems to
be manipulating and testing values read from ports or sockets. "Bit flipping" is more relevant to compiled
languages, such as C and C++, which provide direct access to system hardware. However, see viadz's
ingenious use of bitwise operators in his base64.sh (Example A-54) script.

bitwise operators

<<

bitwise left shift (multiplies by 2 for each shift position)

<<=

left-shift-equal

let "wvar <<= 2" resultsin var left-shifted 2 bits (multiplied by 4)

>>

bitwise right shift (divides by 2 for each shift position)

>>=
right-shift-equal (inverse of <<=)

&
bitwise AND
&=
bitwise AND-equal
[
bitwise OR
|=
bitwise OR-equal
bitwise NOT
N
bitwise XOR
N—

bitwise XOR-equal

logical (boolean) operators

NOT

1 if [! —f SFILENAME]
2 then

&&
if [Sconditionl] && [$condition2]

1
2 # Same as: if [Sconditionl -a $condition2]

3 # Returns true if both conditionl and condition2 hold true...
4

5

if [[Sconditionl && S$Scondition2 1] # Also works.
6 # Note that && operator not permitted inside brackets
7 #+ of [...] construct.

& && may also be used, depending on context, in an and list to concatenate commands.

OR

if [S$Sconditionl] || [S$Scondition2]
Same as: 1f [Sconditionl -o $condition2]
Returns true if either conditionl or condition2 holds true...

1
2
3
4
5 if [[$conditionl || S$condition2]] # Also works.

6 # Note that || operator not permitted inside brackets
7 #+ of a [...] construct.

&) Bash tests the exit status of each statement linked with a logical operator.

Example 8-3. Compound Condition Tests Using && and |l

#!/bin/bash

1

2

3 a=24
4 b=47
5

6 if ["$a" -eq 24] && ["Sb" -eq 47]

7 then

8 echo "Test #1 succeeds."

9 else
10 echo "Test #1 fails."
11 fi
12
13 # ERROR: if ["$a" -eq 24 && "S$b" -eq 47]
14 #+ attempts to execute ' ["$a" -eq 24 '
15 #+ and fails to finding matching ']'.
16 #

17 # Note: if [[$Sa -eq 24 && Sb -eqg 24]] works.
18 # The double-bracket if-test is more flexible
19 #+ than the single-bracket version.

20 # (The "&&" has a different meaning in line 17 than in line 6.)
21 # Thanks, Stephane Chazelas, for pointing this out.
22

23

24 if ["S$a" -eq 98] || ["S$b" -eq 47 1]

25 then

26 echo "Test #2 succeeds."

27 else

28 echo "Test #2 fails."

29 fi

30

31

32 # The -a and -o options provide

33 #+ an alternative compound condition test.

34 # Thanks to Patrick Callahan for pointing this out.
35

36

37 1f ["$a" -eq 24 -a "$b" -eq 47]

38 then

39 echo "Test #3 succeeds."

40 else

41 echo "Test #3 fails."

42 fi

43

44

45 if ["$a" -eq 98 -o "$b" -eq 47]

46 then

47 echo "Test #4 succeeds."

48 else

49 echo "Test #4 fails."

50 fi

51

52

53 a=rhino

54 b=crocodile

55 if ["$a" = rhino] && ["Sb" = crocodile]

56 then

57 echo "Test #5 succeeds."

58 else

59 echo "Test #5 fails."

60 fi

61

62 exit O

The && and Il operators also find use in an arithmetic context.

bash$ echo $((1 && 2)) $((3 & 0)) $((4 || 0)) $((0 || 0))
1010

miscellaneous operators

Comma operator

The comma operator chains together two or more arithmetic operations. All the operations are
evaluated (with possible side effects. [2]

1 let "tl = ((5 + 3, 7 -1, 15 - 4))"

2 echo "tl = $tl" AANAANANAAN # tl — ll

3 # Here tl is set to the result of the last operation. Why?

4

5 let "t2 = ((a =9, 15/ 3))" # Set "a" and calculate "t2".
6 echo "t2 = $t2 a = sa" # t2 =5 a =9

The comma operator finds use mainly in for loops. See Example 11-13.

Notes

[1]1 In adifferent context, += can serve as a string concatenation operator. This can be useful for modifying
environmental variables.

[2] Side effects are, of course, unintended -- and usually undesirable -- consequences.

Prev Home Next
Testing Your Knowledge of Tests Up Numerical Constants
Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Chapter 8. Operations and Related Topics Next

8.2. Numerical Constants

A shell script interprets a number as decimal (base 10), unless that number has a special prefix or notation. A
number preceded by a 0is octal (base 8). A number preceded by 0x is hexadecimal (base 16). A
number with an embedded # evaluates as BASE#NUMBER (with range and notational restrictions).

Example 8-4. Representation of numerical constants

1 #!/bin/bash

2 # numbers.sh: Representation of numbers in different bases.
3

4 # Decimal: the default

5 let "dec = 32"

6 echo "decimal number = S$dec" # 32

7 # Nothing out of the ordinary here.

8

9
10 # Octal: numbers preceded by '0' (zero)
11 let "oct = 032"
12 echo "octal number = S$oct" # 26
13 # Expresses result in decimal.
14 §f Smcmmmems commes oo oooesee

15

16

17 # Hexadecimal: numbers preceded by 'Ox' or '0X'
18 let "hex = 0x32"

19 echo "hexadecimal number = S$hex" # 50
20
21 echo $((0x9%abc)) # 39612
22 # AN AN double-parentheses arithmetic expansion/evaluation
23 # Expresses result in decimal.
24
25
26
27 # Other bases: BASE#NUMBER

28 # BASE between 2 and 64.

29 # NUMBER must use symbols within the BASE range, see below.

30

31

32 let "bin = 2#111100111001101"

33 echo "binary number = S$bin" # 31181

34

35 let "b32 = 32#77"

36 echo "base-32 number = $b32" # 231

37

38 let "b64 = 64#@_"

39 echo "base-64 number = $b64" # 4031

40 # This notation only works for a limited range (2 - 64) of ASCII characters.
41 # 10 digits + 26 lowercase characters + 26 uppercase characters + @ + _
42

43

44 echo

45

46 echo $((36#zz)) $((2#10101010)) $((1l6#AF16)) $((53#1lahd))

47 # 1295 170 44822 3375
48

49

50 # Important note:

Ul
i

,,,,,,,,,,,,,,
Using a digit out of range of the specified base notation
#+ gives an error message.

o o1 U1
BSw N

55 let "bad_oct = 081"
56 # (Partial) error message output:

57 # Dbad_oct = 081l: value too great for base (error token is "081")
58 # Octal numbers use only digits in the range 0 - 7.
59

60 exit $°? # Exit value = 1 (error)

61

62 # Thanks, Rich Bartell and Stephane Chazelas, for clarification.

Prev Home Next
Operations and Related Topics Up The Double-Parentheses Construct
Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Chapter 8. Operations and Related Topics Next

8.3. The Double-Parentheses Construct

Similar to the let command, the ((...)) construct permits arithmetic expansion and evaluation. In its simplest
form,a=$((5 + 3)) wouldsetato5 + 3, or 8. However, this double-parentheses construct is also a
mechanism for allowing C-style manipulation of variables in Bash, for example, ((var++)).

Example 8-5. C-style manipulation of variables

1 #!/bin/bash

2 # c-vars.sh

3 # Manipulating a variable, C-style, using the ((...)) construct.
4

5

6 echo

9

8 ((a=23)) # Setting a value, C-style,

9 #+ with spaces on both sides of the "=".
10 echo "a (initial value) = Sa" # 23

11

12 ((a++)) # Post-increment 'a', C-style.

13 echo "a (after a++) = $a" # 24

14

15 ((a——)) # Post-decrement 'a', C-style.

16 echo "a (after a—--) = $a" # 23

17

18

19 ((++a)) # Pre—-increment 'a', C-style.
20 echo "a (after ++a) = Sa" # 24
21
22 ((——a)) # Pre-decrement 'a', C-style.
23 echo "a (after —--a) = Sa" # 23
24
25 echo
26
BRI EE AL EEEEEEEEEEEEEEEEEEEEEEEEEE
28 # Note that, as in C, pre- and post-decrement operators
29 #+ have different side-effects.

30

31 n=1; let ——n && echo "True" || echo "False" # False

32 n=1; let n—— && echo "True" || echo "False" # True

33

34 # Thanks, Jeroen Domburg.

35 H#HHHHFEHHFEHH A A A A A A A A H S A
36

37 echo

38

39 ((t = a<457?7:11)) # C-style trinary operator.

40 # AR

41 echo "If a < 45, then t = 7, else t = 11." # a 23

42 echo "t = St " #t =7

43

44 echo

45

46

A7 § =mmmm—emmmmm———==

48 # Easter Egg alert!

49 f =—m———cm—=mm==—===

50 # Chet Ramey seems to have snuck a bunch of undocumented C-style
51 #+ constructs into Bash (actually adapted from ksh, pretty much).

52 # In the Bash docs, Ramey calls ((...)) shell arithmetic,

53 #+ but it goes far beyond that.

54 # Sorry, Chet, the secret is out.

56 # See also "for" and "while" loops using the ((...)) construct.

58 # These work only with version 2.04 or later of Bash.

60 exit

See also Example 11-13 and Example 8-4.

Prev Home Next
Numerical Constants Up Operator Precedence
Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Chapter 8. Operations and Related Topics Next

8.4. Operator Precedence

In a script, operations execute in order of precedence: the higher precedence operations execute before the

lower precedence ones. [1]

Table 8-1. Operator Precedence

Operator

Meaning

Comments

HIGHEST PRECEDENCE

var++ var——

post-increment,
post-decrement

C-style operators

++var --var pre-increment,
pre-decrement
I~ negation logical / bitwise, inverts sense of following
operator
* exponentiation arithmetic operation
* /% multiplication, division, arithmetic operation
modulo
+ - addition, subtraction arithmetic operation
<< >> left, right shift bitwise
-z -n unary comparison string is/is-not null
-e -f -t unary comparison file-test
< -1t > —-gt <= -le >= [compound comparison string and integer
—ge
-nt -ot compound comparison file-test
== -eq l= -ne equality / inequality test operators, string and integer
& AND bitwise
~ XOR exclusive OR, bitwise
OR bitwise
§& —a AND logical, compound comparison
|| -o OR logical, compound comparison
?: trinary operator C-style
= assignment (do not confuse with equality tesr)
*= /= % combination assignment times-equal, divide-equal, mod-equal, etc.
&=

comma

links a sequence of operations

| [LOWEST PRECEDENCE

In practice, all you really need to remember is the following:

¢ The "My Dear Aunt Sally" mantra (multiply, divide, add, subtract) for the familiar arithmetic
operations.

® The compound logical operators, &&, Il, -a, and -o have low precedence.

¢ The order of evaluation of equal-precedence operators is usually left-to-right.

Now, let's utilize our knowledge of operator precedence to analyze a couple of lines from the
/etc/init.d/functions file, asfound in the Fedora Core Linux distro.

1 while [-n "S$remaining" -a "S$retry" -gt 0]; do
2

3 # This looks rather daunting at first glance.

4

5

6 # Separate the conditions:

7 while [-n "Sremaining" -a "Sretry" -gt 0]; do
8 # ——condition 1-- ** —-condition 2-

9
10 # If variable "S$remaining" is not zero length
11 #+ AND (-a)
12 #+ variable "Sretry" is greater-than zero
13 #+ then
14 #+ the [expresion-within-condition-brackets] returns success (0)
15 #+ and the while-loop executes an iteration.
16 #

17 # Evaluate "condition 1" and "condition 2" ***beforex*xx*

18 #+ ANDing them. Why? Because the AND (-a) has a lower precedence
19 #+ than the -n and -gt operators,

20 #+ and therefore gets evaluated *last*.

21

RVRNE i
23

24 if [—-f /etc/sysconfig/il8n -a -z "${NOLOCALE:-}"] ; then

25

26

27 # Again, separate the conditions:

28 if [—-f /etc/sysconfig/il8n —-a -z "${NOLOCALE:-}"] ; then

29 # ==goneliltien Ll=—======== A* ——condition 2-————
30

31 # If file "/etc/sysconfig/il8n" exists

32 #+ AND (-a)

33 #+ variable S$NOLOCALE is zero length

34 #+ then

35 #+ the [test-expresion-within-condition-brackets] returns success (0)
36 #+ and the commands following execute.

37 #

38 # As before, the AND (-a) gets evaluated *last*

39 #+ because it has the lowest precedence of the operators within

40 #+ the test brackets.

41 #
42 # Note:

43 # S{NOLOCALE:-} is a parameter expansion that seems redundant.

44 # But, 1f $SNOLOCALE has not been declared, it gets set to *null*,
45 #+ in effect declaring it.

46 # This makes a difference in some contexts.

i) To avoid confusion or error in a complex sequence of test operators, break up the sequence into
bracketed sections.

1 if ["$vl" -gt "S$v2" -o "Svi" -1t "Sv2" -a -e "S$filename"]

2 # Unclear what's going on here...

3

4 if [["$v1" —-gt "Sv2"]] || [["s$vl" -1t "Sv2"]] && [[—e "Sfilename"]]
5 # Much better —— the condition tests are grouped in logical sections.

Notes

[11 Precedence, in this context, has approximately the same meaning as priority

Prev Home Next
The Double-Parentheses Construct Up Beyond the Basics
Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Next

Part 3. Beyond the Basics

Table of Contents
9. Another L.ook at Variables

10. Manipulating Variables
11. Loops and Branches
12. Command Substitution

13. Arithmetic Expansion
14. Recess Time

Prev Home Next
Operator Precedence Another Look at Variables
Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Next

Chapter 9. Another Look at Variables

Used properly, variables can add power and flexibility to scripts. This requires learning their subtleties and
nuances.

9.1. Internal Variables

Builtin variables:

variables affecting bash script behavior
SBASH

The path to the Bash binary itself

bash$ echo $BASH
/bin/bash

$BASH ENV

An environmental variable pointing to a Bash startup file to be read when a script is invoked

SBASH_SUBSHELL

A variable indicating the subshell level. This is a new addition to Bash, version 3.

See Example 21-1 for usage.
$BASHPID

Process ID of the current instance of Bash. This is not the same as the $$ variable, but it often gives

the same result.

bash4$ echo $$
11015

bash4$ echo $BASHPID
11015

bash4$ ps ax | grep bash4

11015 pts/2 R 0:00 bash4
But ...
1 #!/bin/bash4
2
3 echo "\$\$ outside of subshell = $S" # 9602
4 echo "\S$SBASH SUBSHELL outside of subshell = $SBASH SUBSHELL" # 0
5 echo "\S$BASHPID outside of subshell = S$SBASHPID" # 9602
6
7 echo
8
9 (echo "\$5\$ inside of subshell = $$" # 9602
10 echo "\SBASH SUBSHELL inside of subshell = $BASH SUBSHELL" # 1
11 echo "\S$BASHPID inside of subshell = $BASHPID" # 9603

12 # Note that $$ returns PID of parent process.
SBASH_VERSINFO[n]

A 6-element array containing version information about the installed release of Bash. This is similar

to SBASH_VERSION, below, but a bit more detailed.

Bash version info:

1

2

3 for n in 0 1 2 3 4 5

4 do

5 echo "BASH_VERSINFO[$n] = ${BASH_VERSINFO[S$n]}"
6 done
7
8
9
0
1

BASH_VERSINFO[0] = 3
BASH_VERSINFO[1] = 00
10 # BASH_VERSINFO[2] = 14 #
11 # BASH_VERSINFO[3] = 1 #

Major
Minor
Patch
Build

version no.
version no.
level.
version.

12 # BASH VERSINFO[4] = release # Release status.
13 # BASH_VERSINFO[5] = i386-redhat-linux—-gnu # Architecture
14 # (same as S$SMACHTYPE) .

SBASH_VERSION
The version of Bash installed on the system

bash$ echo $BASH VERSION
3.2.25(1)-release

tcsh% echo $BASH_VERSION
BASH_VERSION: Undefined variable.

Checking $BASH_VERSION is a good method of determining which shell is running. $SHELL does
not necessarily give the correct answer.
SCDPATH

A colon-separated list of search paths available to the ¢cd command, similar in function to the SPATH
variable for binaries. The SCDPATH variable may be set in the local ~/ .bashrc file.

bash$ ed bash-doc
bash: cd: bash-doc: No such file or directory

bash$ CDPATH=/usr/share/doc
bash$ ed bash-doc
/usr/share/doc/bash-doc

bash$ echo $PWD
/usr/share/doc/bash-doc

SDIRSTACK
The top value in the directory stack [1] (affected by pushd and popd)

This builtin variable corresponds to the dirs command, however dirs shows the entire contents of the
directory stack.
SEDITOR
The default editor invoked by a script, usually vi or emacs.
SEUID
"effective" user ID number

Identification number of whatever identity the current user has assumed, perhaps by means of su.

<1 The SEUID is not necessarily the same as the $UID.

SFUNCNAME
Name of the current function

1 xyz23 ()

2 A

3 echo "SFUNCNAME now executing." # xyz23 now executing.

4}

5

6 xyz23

7

8 echo "FUNCNAME = S$FUNCNAME" # FUNCNAME =

9 # Null value outside a function.

See also Example A-50.
SGLOBIGNORE

A list of filename patterns to be excluded from matching in globbing.

SGROUPS

SHOME

Groups current user belongs to

This is a listing (array) of the group id numbers for current user, as recorded in /et c/passwd and
/etc/group.

root# echo $GROUPS
0

root# echo ${GROUPS[1]}
1

root# echo ${GROUPS[5]}
6

Home directory of the user, usually /home /username (see Example 10-7)

SHOSTNAME

The hostname command assigns the system host name at bootup in an init script. However, the
gethostname () function sets the Bash internal variable $SHOSTNAME. See also Example 10-7.

SHOSTTYPE

SIFS

host type

Like SMACHTYPE, identifies the system hardware.

bash$ echo $HOSTTYPE
1686

internal field separator

This variable determines how Bash recognizes fields, or word boundaries, when it interprets character
strings.

$IFS defaults to whitespace (space, tab, and newline), but may be changed, for example, to parse a
comma-separated data file. Note that $* uses the first character held in STFS. See Example 5-1.

bash$ echo "$IFS"

(With $IFS set to default, a blank line displays.)

bash$ echo "S$IFS" | cat -vte

/\I$

$

(Show whitespace: here a single space, "I [horizontal tab],
and newline, and display "$" at end-of-line.)

bash$ bash -c 'set w x y z; IFS=":—;"; echo "§*"'
WixX:iy:z
(Read commands from string and assign any arguments to pos params.)

Set SIFS to eliminate whitespace in pathnames.

1 IFS="$ (printf '\n\t')" # Per David Wheeler.

¢] $IFS does not handle whitespace the same as it does other characters.

Example 9-1. $IFS and whitespace

1 #!/bin/bash
2 # ifs.sh
3
4
5 varl="atb+c"
6 var2="d-e-f"
7 var3="g,h,1i"
8
9 IFS=+
10 # The plus sign will be interpreted as a separator.
11 echo $varl # abc
12 echo $var2 # d-e-f
13 echo $var3 # g,h,1
14
15 echo
16
17 IFS="-"
18 # The plus sign reverts to default interpretation.
19 # The minus sign will be interpreted as a separator.
20 echo $varl # atb+c
21 echo $var2 # de f
22 echo $var3 # g,h,1
23
24 echo
25
26 IFsS=","
27 # The comma will be interpreted as a separator.
28 # The minus sign reverts to default interpretation.
29 echo $varl # atb+c
30 echo $var2 # d-e-f
31 echo $var3 # gh i
32
33 echo
34
35 IFS=" "
36 # The space character will be interpreted as a separator.
37 # The comma reverts to default interpretation.
38 echo $Svarl # atb+c
39 echo $var2 # d-e-f
40 echo $var3 # g,h,1
41
42 # #
43
44 # However
45 # SIFS treats whitespace differently than other characters.
46
47 output_args_one_per_line ()
48 {
49 for arg
50 do
51 echo "[Sarg]"
52 done # * A Embed within brackets, for your viewing pleasure.
53 }
54
55 echo; echo "IFS=\" \""
56 echo "-————- "
57
58 IFS=" "

59 var=" a b c "

60 # ~oan ann

61 output_args_one_per_line $var # output_args_one_per_line ‘echo " a b c we
62 # [a]

63 # [b]

64 # [c]

65

66

67 echo; echo "IFS=:"

68 echo "————- "

69

70 IFS=:

71 var=":a::b:c:::" # Same pattern as above,

72 # NN AN #+ but substituting ":" for " "
73 output_args_one_per_line S$var

74 # []

75 [a]

76 []

77 [b]

78 [c]

79 []

80 [1

81

82 # Note "empty" brackets.

83 # The same thing happens with the "FS" field separator in awk.
84

85

86 echo

87

88 exit

CeE

(Many thanks, Stéphane Chazelas, for clarification and above examples.)

See also Example 16-41, Example 11-8, and Example 19-14 for instructive examples of using $IFS.
$IGNOREEOF

Ignore EOF: how many end-of-files (control-D) the shell will ignore before logging out.
$LC_COLLATE

Often set in the . bashrc or /etc/profile files, this variable controls collation order in filename

expansion and pattern matching. If mishandled, LC_COLLATE can cause unexpected results in

filename globbing.

<& As of version 2.05 of Bash, filename globbing no longer distinguishes
between lowercase and uppercase letters in a character range between
brackets. For example, Is [A-M]* would match both Filel.txt and
filel.txt. Torevert to the customary behavior of bracket matching, set
LC_COLLATE to C by an export LC_COLLATE=Cin /etc/profile
and/or ~/ .bashrec.
$LC_CTYPE
This internal variable controls character interpretation in globbing and pattern matching.
SLINENO
This variable is the line number of the shell script in which this variable appears. It has significance
only within the script in which it appears, and is chiefly useful for debugging purposes.

1 # *** BEGIN DEBUG BLOCK ***

2 last_cmd_arg=$_ # Save it.

3

4 echo "At line number S$LINENO, variable \"v1\" = $v1"

5 echo "Last command argument processed = $last_cmd_arg"
6 # *** END DEBUG BLOCK ***

SMACHTYPE

machine type
Identifies the system hardware.

bash$ echo SMACHTYPE
1686
$OLDPWD
Old working directory ("OLD-Print-Working-Directory", previous directory you were in).
$OSTYPE
operating system type

bash$ echo $OSTYPE
linux

SPATH
Path to binaries, usually /usr/bin/, /usr/X11R6/bin/, /usr/local/bin, etc.

When given a command, the shell automatically does a hash table search on the directories listed in
the path for the executable. The path is stored in the environmental variable, SPATH, a list of
directories, separated by colons. Normally, the system stores the $SPATH definition in

/etc/profile and/or ~/.bashrc (see Appendix H).

bash$ echo $PATH
/bin:/usr/bin:/usr/local/bin:/usr/X11R6/bin:/sbin:/usr/sbin

PATH=$ {PATH} : /opt /bin appends the /opt /bin directory to the current path. In a script, it
may be expedient to temporarily add a directory to the path in this way. When the script exits, this
restores the original $PATH (a child process, such as a script, may not change the environment of the
parent process, the shell).

<& The current "working directory", . /, is usually omitted from the $PATH as a
security measure.

SPIPESTATUS
Array variable holding exit status(es) of last executed foreground pipe.

bash$ echo $PIPESTATUS
0

bash$ 1s —al | bogus_command

bash: bogus_command: command not found
bash$ echo ${PIPESTATUS[1]}

127

bash$ 1s —al | bogus_command

bash: bogus_command: command not found
bash$ echo $°?

127

The members of the SPIPESTATUS array hold the exit status of each respective command executed
in a pipe. SPIPESTATUS [0] holds the exit status of the first command in the pipe,
SPIPESTATUS [1] the exit status of the second command, and so on.

<1> The $PIPESTATUS variable may contain an erroneous 0 value in a login shell (in
releases prior to 3.0 of Bash).

tcsh% bash

bash$ who | grep nobody | sort

bash$ echo ${PIPESTATUS[*]}
0

The above lines contained in a script would produce the expected 0 1 0 output.

Thank you, Wayne Pollock for pointing this out and supplying the above example.

& The SPIPESTATUS variable gives unexpected results in some contexts.

bash$ echo $BASH VERSION
3.00.14 (1) -release

bash$ $§ 1ls | bogus_command | wc
bash: bogus_command: command not found
0 0 0

bash$ echo ${PIPESTATUSI[Q]}
141 127 O

Chet Ramey attributes the above output to the behavior of Is. If Is writes to a pipe
whose output is not read, then STGPIPE Kkills it, and its exit status is 141. Otherwise
its exit status is 0, as expected. This likewise is the case for tr.

&) SPIPESTATUS is a "volatile" variable. It needs to be captured immediately after the
pipe in question, before any other command intervenes.

bash$ $ 1ls | bogus_command | wc
bash: bogus_command: command not found
0 0 0

bash$ echo ${PIPESTATUS[Q]}
0 127 O

bash$ echo ${PIPESTATUS[Q]}
0

<& The pipefail option may be useful in cases where SPIPESTATUS does not give the
desired information.
SPPID

The $PPID of a process is the process ID (pid) of its parent process. [2]

Compare this with the pidof command.
SPROMPT__COMMAND
A variable holding a command to be executed just before the primary prompt, SPS1 is to be
displayed.
SPS1
This is the main prompt, seen at the command-line.
SPS2
The secondary prompt, seen when additional input is expected. It displays as ">".
SPS3
The tertiary prompt, displayed in a select loop (see Example 11-30).

$Ps4
The quartenary prompt, shown at the beginning of each line of output when invoking a script with the

" "

-x [verbose trace] option. It displays as "+".

As a debugging aid, it may be useful to embed diagnostic information in $PS4.

P4='$ (read time junk < /proc/$$/schedstat; echo "@QR@ $time @EREQ ")'
Per suggestion by Erik Brandsberg.

set -x

Various commands follow

SPWD
Working directory (directory you are in at the time)

This is the analog to the pwd builtin command.

#!/bin/bash

E_WRONG_DIRECTORY=85

1
2
3
4
5 clear # Clear the screen.
6
7 TargetDirectory=/home/bozo/projects/GreatAmericanNovel
8
9 cd $TargetDirectory
10 echo "Deleting stale files in $TargetDirectory."

12 if ["$PWD" != "STargetDirectory"]

13 then # Keep from wiping out wrong directory by accident.
14 echo "Wrong directory!"

15 echo "In $PWD, rather than $TargetDirectory!"

16 echo "Bailing out!"

17 exit S$E_WRONG_DIRECTORY

18 fi

20 rm -rf *

21 rm .[A-Za-z0-9]%* # Delete dotfiles.

22 # rm —f .[~.]* ..2% to remove filenames beginning with multiple dots.
23 # (shopt -s dotglob; rm —-f *) will also work.

24 # Thanks, S.C. for pointing this out.

26 # A filename (basename’) may contain all characters in the 0 - 255 range,
27 #+ except "/".

28 # Deleting files beginning with weird characters, such as -

29 #+ 1is left as an exercise. (Hint: rm ./-weirdname or rm —- -—-weirdname)

30 result=$? # Result of delete operations. If successful = 0.

32 echo

33 1s -al # Any files left?

34 echo "Done."

35 echo "Old files deleted in $TargetDirectory."
36 echo

38 # Various other operations here, as necessary.
39
40 exit Sresult
SREPLY
The default value when a variable is not supplied to read. Also applicable to select menus, but only
supplies the item number of the variable chosen, not the value of the variable itself.

#!/bin/bash
reply.sh

REPLY is the default value for a 'read' command.
echo -n "What is your favorite vegetable? "
read

echo "Your favorite vegetable is SREPLY."

1
2
3
4
5
6 echo
7
8
9
0
1 # REPLY holds the value of last "read" if and only if

12
13
14
15
16
17
18
19
20
21
22
23
24
25

$SSECONDS

#+ no variable supplied.

echo

echo -n "What is your favorite fruit? "

read fruit

echo "Your favorite fruit is S$fruit."

echo "but..."

echo "Value of \$REPLY is still SREPLY."

SREPLY is still set to its previous value because
#+ the variable S$fruit absorbed the new "read" value.

echo

exit O

The number of seconds the script has been running.

O J oy U b W N

=
[@Ne}

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

#!/bin/bash

TIME_LIMIT=10
INTERVAL=1

echo
echo "Hit Control-C to exit before $TIME_LIMIT seconds."
echo

while ["$SECONDS" -le "STIME_LIMIT"]
do # SSECONDS is an internal shell variable.
if ["S$SECONDS" -eq 1]
then
units=second
else
units=seconds
fi

echo "This script has been running $SECONDS S$units."
On a slow or overburdened machine, the script may skip a count
#+ every once in a while.
sleep SINTERVAL
done

echo -e "\a" # Beep!

exit O

SSHELLOPTS
The list of enabled shell options, a readonly variable.

bash$ echo $SHELLOPTS
braceexpand:hashall:histexpand:monitor:history:interactive-comments:emacs

SSHLVL

Shell level, how deeply Bash is nested. [3] If, at the command-line, $SHLVL is 1, then in a script it
will increment to 2.

&) This variable is not affected by subshells. Use $BASH SUBSHELL when
you need an indication of subshell nesting.

STMOUT

If the $TMOUT environmental variable is set to a non-zero value t ime, then the shell prompt will
time out after $t ime seconds. This will cause a logout.

As of version 2.05b of Bash, it is now possible to use $TMOUT in a script in combination with read.

Works in scripts for Bash, versions 2.05b and later.

TMOUT=3 # Prompt times out at three seconds.

echo "Quickly now, you only have $TMOUT seconds to answer!"

1
2
3
4
5 echo "What is your favorite song?"
6
7 read song

8

9 if [-z "$song"]

10 then

11 song=" (no answer)"
12 # Default response.
13 fi

14

15 echo "Your favorite song is $song."

There are other, more complex, ways of implementing timed input in a script. One alternative is to set
up a timing loop to signal the script when it times out. This also requires a signal handling routine to
trap (see Example 32-5) the interrupt generated by the timing loop (whew!).

Example 9-2. Timed Input

1 #!/bin/bash
2 # timed-input.sh
3
4 # TMOUT=3 Also works, as of newer versions of Bash.
5
6 TIMER_INTERRUPT=14
7 TIMELIMIT=3 # Three seconds in this instance.
8 # May be set to different value.
9
10 PrintAnswer ()
11 {
12 if ["Sanswer" = TIMEOUT]
13 then
14 echo $answer
15 else # Don't want to mix up the two instances.
16 echo "Your favorite veggie is S$answer"
17 kill $! # Kills no-longer—-needed TimerOn function
18 #+ running in background.
19 # S$! is PID of last job running in background.
20 fi
21
22}
23
24
25 TimerOn ()
26 {
27 sleep STIMELIMIT && kill -s 14 $$ &
28 # Waits 3 seconds, then sends sigalarm to script.
29 }
30
31
32 Intl4Vector ()
33 {
34 answer="TIMEOUT"
35 PrintAnswer
36 exit $TIMER_INTERRUPT
37 }
38
39 trap Intl4Vector S$STIMER_INTERRUPT

40 # Timer interrupt (14) subverted for our purposes.

sy
=

42 echo "What is your favorite vegetable "
43 TimerOn

44 read answer

45 PrintAnswer

46

47

48 # Admittedly, this is a kludgy implementation of timed input.
49 # However, the "-t" option to "read" simplifies this task.

50 # See the "t-out.sh" script.

51 # However, what about timing not just single user input,

52 #+ but an entire script?

53

54 # TIf you need something really elegant

55 #+ consider writing the application in C or C++,

56 #+ using appropriate library functions, such as 'alarm' and 'setitimer.
57

58 exit 0

An alternative is using stty.

Example 9-3. Once more, timed input

1 #!/bin/bash
2 # timeout.sh
3
4 # Written by Stephane Chazelas,
5 #+ and modified by the document author.
6
7 INTERVAL=5 # timeout interval
8
9 timedout_read() {
10 timeout=5$1
11 varname=S$2
12 old_tty_settings= stty —-g’
13 stty —icanon min 0 time ${timeout}O
14 eval read S$varname # or just read S$varname
15 stty "Sold_tty_settings"
16 # See man page for "stty."
17 }
18
19 echo; echo -n "What's your name? Quick! "
20 timedout_read SINTERVAL your_name
21
22 # This may not work on every terminal type.
23 # The maximum timeout depends on the terminal.
24 #+ (it is often 25.5 seconds).
25
26 echo
27
28 if [! -z "Syour_name"] # If name input before timeout
29 then
30 echo "Your name is S$your_name."
31 else
32 echo "Timed out."
33 fi
34
35 echo
36
37 # The behavior of this script differs somewhat from "timed-input.sh."

w
[e¢]

At each keystroke, the counter resets.

IS OV]
[@ RN}

exit O

SUID

Perhaps the simplest method is using the —t option to read.

Example 9-4. Timed read

1 #!/bin/bash

2 # t-out.sh [time-out]

3 # Inspired by a suggestion from "syngin seven" (thanks).
4

5

6 TIMELIMIT=4 # 4 seconds

-

8 read -t STIMELIMIT variable <&l

9 # ann
10 # In this instance, "<&l1l" is needed for Bash 1.x and 2.x,
11 # Dbut unnecessary for Bash 3+.

12

13 echo

14

15 if [-z "S$Svariable"] # Is null?

16 then

17 echo "Timed out, variable still unset."
18 else

19 echo "variable = S$variable"
20 fi
21
22 exit O

User ID number

Current user's user identification number, as recorded in /et c/passwd

This is the current user's real id, even if she has temporarily assumed another identity through su.
$UID is a readonly variable, not subject to change from the command line or within a script, and is

the counterpart to the id builtin.

Example 9-5. Am I root?

1 #!/bin/bash

2 # am—i-root.sh: Am I root or not?

3

4 ROOT_UID=0 # Root has S$UID O.

5

6 1f ["SUID" -eqg "SROOT_UID"] # Will the real "root" please stand up?
7 then

8 echo "You are root."

9 else
10 echo "You are just an ordinary user (but mom loves you just the same) ."
11 fi
12
13 exit O
14
15
16 # #

17 # Code below will not execute, because the script already exited.

18
19 # An alternate method of getting to the root of matters:
20

21
22
23
24
25
26
27
28
29

ROOTUSER_NAME=root

username="1id -nu’ # Or... username=" whoami’
if ["Susername" = "SROOTUSER_NAME"]
then
echo "Rooty, toot, toot. You are root."
else
echo "You are just a regular fella."
fi

See also Example 2-3.

& The variables SENV, SLOGNAME, SMAIL, STERM, SUSER, and SUSERNAME are not
Bash builtins. These are, however, often set as environmental variables in one of the
Bash or login startup files. $SHELL, the name of the user's login shell, may be set
from /etc/passwd orin an "init" script, and it is likewise not a Bash builtin.

tcsh% echo $LOGNAME

bozo

tcsh% echo $SHELL
/bin/tcsh

tcsh% echo $TERM
rxvt

bash$ echo $LOGNAME
bozo

bash$ echo $SHELL
/bin/tcsh

bash$ echo $TERM
rxvt

Positional Parameters

S0, $1, $2, etc.

Positional parameters, passed from command line to script, passed to a function, or set to a variable

(see Example 4-5 and Example 15-16)

SH

Number of command-line arguments [4] or positional parameters (see Example 36-2)

$~k

All of the positional parameters, seen as a single word

&) "$*" must be quoted.

s@

Same as $*, but each parameter is a quoted string, that is, the parameters are passed on intact, without
interpretation or expansion. This means, among other things, that each parameter in the argument list

is seen as a separate word.

&) Of course, "$@" should be quoted.

Example 9-6. arglist: Listing arguments with $* and $@

#!/bin/bash
arglist.sh
Invoke this script with several arguments, such as "one two three"

E_BADARGS=85

if [! -n "$1"]

then

9 echo "Usage: “basename $0° argumentl argument2 etc."
10 exit $E_BADARGS

11 fi

12

13 echo

14

15 index=1 # Initialize count.

16

17 echo "Listing args with \"\S$*\":"

18 for arg in "$*" # Doesn't work properly if "$*" isn't quoted.
19 do

20 echo "Arg #S$index = $Sarg"

21 let "index+=1"

5
6
7
8

22 done # $* sees all arguments as single word.
23 echo "Entire arg list seen as single word."

24

25 echo

26

27 index=1 # Reset count.

28 # What happens if you forget to do this?
29

30 echo "Listing args with \"\S$@\":"

31 for arg in "s@"

32 do

33 echo "Arg #S$index = $Sarg"

34 let "index+=1"

35 done # $@ sees arguments as separate words.
36 echo "Arg list seen as separate words."
37

38 echo

39

40 index=1 # Reset count.

41

42 echo "Listing args with \$* (unquoted) :"
43 for arg in $*

44 do

45 echo "Arg #$index = Sarg"

46 let "index+=1"

47 done # Unquoted $* sees arguments as separate words.
48 echo "Arg list seen as separate words."

49

50 exit O

Following a shift, the $@ holds the remaining command-line parameters, lacking the previous $1,
which was lost.

1 #!/bin/bash

2 # Invoke with ./scriptname 1 2 3 4 5
3

4 echo "$@" # 12345

5 shift

6 echo "s@" # 2 3 45

7 shift

8 echo "s@" # 3 45

9

10 # Each "shift" loses parameter $1.
11 # "$@" then contains the remaining parameters.

The $@ special parameter finds use as a tool for filtering input into shell scripts. The cat '"'$@"'
construction accepts input to a script either from stdin or from files given as parameters to the

script. See Example 16-24 and Example 16-25.

<1 The $* and $@ parameters sometimes display inconsistent and puzzling behavior,
depending on the setting of $IES.

Example 9-7. Inconsistent $* and $@ behavior

O ~J o U W

GO OO OO0 0O B BB DD DD DD WWWWWWWWWwWwNNNNNNNNNDNE s s
O AN D WN R OW®OW-UJNU ™ WNR OWW-LGOTdWNREROWO®OWLUGdOU®WNROWO®O®-Io U & WN - O W

#!/bin/bash

Erratic behavior of the "$*" and "$Q" internal Bash variables,

#+ depending on whether or not they are quoted.

Demonstrates inconsistent handling of word splitting and linefeeds.

set —— "First one" "second" "third:one" "" "Fifth: :one"

Setting the script arguments, $1, $2, $3, etc.

echo

echo 'IFS unchanged, using "$*"'

c=0

for i in "$*" # quoted

do echo "$((c+=1)): [Si]" # This line remains the same in every instance.
Echo args.

done

echo ———

echo 'IFS unchanged, using $*'

c=0

for i in $* # unquoted

do echo "S$((c+=1)): [$i]"

done

echo ———

echo 'IFS unchanged, using "$@"'

c=0

for i in "s@"

do echo "S$((c+=1)): [$i]"

done

echo ———

echo 'IFS unchanged, using $Q@'

c=0

for i in $@

do echo "$((c+=1)): [$i]"

done

echo ———

IFS=:

echo 'IFS=":", using "S$*"!'

c=0

for i in "S$*"

do echo "S$((c+=1)): [$i]"

done

echo ———

echo 'IFS=":", using $*'

c=0

for i in $*

do echo "$((c+=1)): [$i]"

done

echo ———

var=$*

echo 'IFS=":", using "S$Svar" (var=$*)'

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

c=0
for i in "S$var"

do echo "S$((c+=1)): [Si]"

done

echo ———

echo 'IFS=":", using $var (var=$*)'
c=0

for i in $var

do echo "S$((c+=1)): [Si]"

done

echo ———

var="s*"

echo 'IFS=":", using $var (var="$*")'
c=0

for i in $var

do echo "S$((c+=1)): [Si]"

done

echo ———

echo 'IFS=":", using "Svar" (var="sx*")'
c=0

for i in "S$var"

do echo "S$((c+=1)): [Si]"

done

echo ———

echo 'IFS=":", using "$@"'

c=0

for i in "$@"

do echo "S$((c+=1)): [Si]"

done

echo ———

echo 'IFS=":", using $@'

c=0

for i in $@

do echo "S$((c+=1)): [Si]"

done

echo ———

var=5Q@

echo 'IFS=":", using $var (var=$@)'
c=0

for i in $var

do echo "S$((c+=1)): [Si]"

done

echo ———

echo 'IFS=":", using "Svar" (var=$Q)'"
c=0

for i in "S$var"

do echo "S$((c+=1)): [$Si]"

done

echo ———

var="s@"

echo 'IFS=":", using "S$var" (var="$@Q")'
c=0

for i in "S$var"

do echo "S$((c+=1)): [Si]"

done

echo ———

echo 'IFS=":", using S$var (var="s@")'

125 c=0

126 for i in $var

127 do echo "S$((c+=1)): [$i]"

128 done

129

130 echo

131

132 # Try this script with ksh or zsh -y.

133

134 exit O

135

136 # This example script written by Stephane Chazelas,
137 #+ and slightly modified by the document author.

&) The $@ and $* parameters differ only when between double quotes.

Example 9-8. $* and $@ when $IFS is empty

1 #!/bin/bash

2

3 # If SIFS set, but empty,

4 #+ then "$*" and "$@" do not echo positional params as expected.
5

6 mecho () # Echo positional parameters.

7 A

8 echo "$1,82,83";

9 1
10
11
12 IFS="" # Set, but empty.
13 set a b ¢ # Positional parameters.
14
15 mecho "$*" # abc,,

16 # an

17 mecho $* # a,b,c

18

19 mecho $@ # a,b,c
20 mecho "$@" # a,b,c
21
22 # The behavior of $* and $@ when $IFS is empty depends
23 #+ on which Bash or sh version being run.
24 # It is therefore inadvisable to depend on this "feature" in a script.
25
26
27 # Thanks, Stephane Chazelas.
28
29 exit

Other Special Parameters

$ —
Flags passed to script (using set). See Example 15-16.
<1> This was originally a ksh construct adopted into Bash, and unfortunately it does
not seem to work reliably in Bash scripts. One possible use for it is to have a
script self-test whether it is interactive.
$!

PID (process ID) of last job run in background

LOG=50.1log
COMMAND1="sleep 100"
echo "Logging PIDs background commands for script: $0" >> "SLOG"

So they can be monitored, and killed as necessary.
echo >> "SLOG"

QO J oy U b W N

e

Logging commands.

10

11 echo —n "PID of \"SCOMMANDI\": " >> "SLOG"

12 ${COMMAND1l} &

13 echo $! >> "SLOG"

14 # PID of "sleep 100": 1506

15

16 # Thank you, Jacques Lederer, for suggesting this.

Using $! for job control:

1 possibly_hanging_job & { sleep ${TIMEOUT}; eval 'kill -9 $!' &> /dev/null; }
2 # Forces completion of an ill-behaved program.

3 # Useful, for example, in init scripts.
4
5

Thank you, Sylvain Fourmanoit, for this creative use of the "!" variable.

Or, alternately:

This example by Matthew Sage.
Used with permission.

1

2

3

4 TIMEOUT=30 # Timeout value in seconds
5 count=0

6

7 possibly_hanging_job & {

8 while ((count < TIMEOUT)); do

9 eval '[! -d "/proc/$!"] && ((count = TIMEOUT))'
10 # /proc is where information about running processes is found.
11 # "-d" tests whether it exists (whether directory exists).
12 # So, we're waiting for the job in question to show up.
13 ((count++))
14 sleep 1
15 done
16 eval '[-d "/proc/S$!"] && kill -15 $!'!
17 # If the hanging job is running, kill it.
18 }
19
I I #
21

22 # However, this may not not work as specified if another process
23 #+ begins to run after the "hanging_job"

24 # 1In such a case, the wrong job may be killed.

25 # Ariel Meragelman suggests the following fix.

26

27 TIMEOUT=30

28 count=0

29 # Timeout value in seconds

30 possibly_hanging_job & {

31

32 while ((count < TIMEOUT)); do

33 eval '[! -d "/proc/$lastjob"] && ((count = TIMEOUT))'
34 lastjob=$!

35 ((count++))

36 sleep 1

37 done

38 eval '[-d "/proc/Slastjob"] && kill -15 Slastjob'

39

40 }

41

42 exit
S_
Special variable set to final argument of previous command executed.
Example 9-9. Underscore variable
1 #!/bin/bash
2
3 echo $_ # /bin/bash
4 # Just called /bin/bash to run the script.
5 # Note that this will vary according to
6 #+ how the script is invoked.
.
8 du >/dev/null # So no output from command.
9 echo $_ # du
10
11 1s -al >/dev/null # So no output from command.
12 echo $_ # -al (last argument)
13
14
15 echo $_ #
$?
Exit status of a command, function, or the script itself (see Example 24-7)
$S
Process ID (PID) of the script itself. [S] The $$ variable often finds use in scripts to construct
"unique" temp file names (see Example 32-6, Example 16-31, and Example 15-27). This is usually
simpler than invoking mktemp.
Notes

[1] A stack register is a set of consecutive memory locations, such that the values stored (pushed) are
retrieved (popped) in reverse order. The last value stored is the first retrieved. This is sometimes called
a LIFO (last-in-first-out) or pushdown stack.

[2] The PID of the currently running script is $$, of course.
[31

Somewhat analogous to recursion, in this context nesting refers to a pattern embedded within a larger
pattern. One of the definitions of nest, according to the 1913 edition of Webster's Dictionary, illustrates
this beautifully: "A collection of boxes, cases, or the like, of graduated size, each put within the one next
larger."

[4] The words "argument" and "parameter" are often used interchangeably. In the context of this document,
they have the same precise meaning: a variable passed to a script or function.

[5] Within a script, inside a subshell, $$ returns the PID of the script, not the subshell.

Prev Home Next
Beyond the Basics Up Typing variables: declare or
typeset

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Chapter 9. Another Look at Variables Next

9.2. Typing variables: declare or typeset

The declare or typeset builtins, which are exact synonyms, permit modifying the properties of variables. This
is a very weak form of the fyping [1] available in certain programming languages. The declare command is
specific to version 2 or later of Bash. The fypeset command also works in ksh scripts.

declare/typeset options

-r readonly
(declare -r varl works the same as readonly varl)

This is the rough equivalent of the C const type qualifier. An attempt to change the value of a
readonly variable fails with an error message.

1 declare -r varl=l
2 echo "varl = S$varl" # varl = 1
3
4 ((varl++)) # x.sh: line 4: varl: readonly variable
-i integer
1 declare -i number
2 # The script will treat subsequent occurrences of "number" as an integer.
3
4 number=3
5 echo "Number = S$number" # Number = 3
6
7 number=three
8 echo "Number = $number" # Number = 0
9 # Tries to evaluate the string "three" as an integer.
Certain arithmetic operations are permitted for declared integer variables without the need for expr or
let.
1 n=6/3
2 echo "n = $n" # n=6/3
3
4 declare -i n
5 n=6/3
6 echo "n = $n" # n =2
-aarray

1 declare -a indices
The variable i ndices will be treated as an array.
-f function (s)

1 declare -f
A declare -f line with no arguments in a script causes a listing of all the functions previously
defined in that script.

1 declare —-f function_name
A declare -f function_name in a script lists just the function named.
-X export

1 declare -x var3
This declares a variable as available for exporting outside the environment of the script itself.
-x var=$value

1 declare -x var3=373

The declare command permits assigning a value to a variable in the same statement as setting its

properties.

Example 9-10. Using declare to type variables

1 #!/bin/bash

2

3 funcl ()

4 {

5 echo This is a function.

6 }

9

8 declare -f # Lists the function above.

9
10 echo
11
12 declare -i varl # varl is an integer.
13 varl=2367
14 echo "varl declared as S$varl"
15 varl=varl+l # Integer declaration eliminates the need for 'let'.
16 echo "varl incremented by 1 is $varl."

17 # Attempt to change variable declared as integer.

18 echo "Attempting to change varl to floating point value, 2367.1."

19 varl=2367.1 # Results in error message, with no change to variable.
20 echo "varl is still $varl"
21
22 echo
23
24 declare -r var2=13.36 # 'declare' permits setting a variable property
25 #+ and simultaneously assigning it a value.
26 echo "var2 declared as $var2" # Attempt to change readonly variable.
27 var2=13.37 # Generates error message, and exit from script.
28
29 echo "var2 is still $var2" # This line will not execute.

30

31 exit O # Script will not exit here.

<1 Using the declare builtin restricts the scope of a variable.

foo ()

{
FOO="bar"
}

bar ()

{

foo

echo $FOO
10 }

11
12

However. ..

0 J o U b W

]

bar # Prints bar.

1 foo (){

2 declare FOO="bar"
3}

5 bar ()

7 foo

8 echo S$FOO

9 }

10

11 bar # Prints nothing.

12

13

14 # Thank you, Michael Iatrou, for pointing this out.

9.2.1. Another use for declare

The declare command can be helpful in identifying variables, environmental or otherwise. This can be
especially useful with arrays.

bash$ declare | grep HOME
HOME=/home/bozo

bash$ zzy=68
bash$ declare | grep zzy
zzZy=68

bash$ Colors=([0]="purple" [l]="reddish-orange" [2]="1light green")
bash$ echo ${Colors[Q@]}

purple reddish-orange light green

bash$ declare | grep Colors

Colors=([0]="purple" [l]="reddish-orange" [2]="1light green")

Notes

[1] In this context, typing a variable means to classify it and restrict its properties. For example, a variable
declared or typed as an integer is no longer available for string operations.

1 declare —-i intvar
2
3 intvar=23
4 echo "S$intvar" # 23
5 intvar=stringval
6 echo "$intvar" # 0
Prev Home Next
Another Look at Variables Up $RANDOM: generate random
integer
Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Chapter 9. Another Look at Variables Next

9.3. SRANDOM: generate random integer

Anyone who attempts to generate random
numbers by deterministic means is, of course,
living in a state of sin.

--John von Neumann

SRANDOM is an internal Bash function (not a constant) that returns a pseudorandom [1] integer in the range 0
- 32767. It should not be used to generate an encryption key.

Example 9-11. Generating random numbers

#!/bin/bash

SRANDOM returns a different random integer at each invocation.
Nominal range: 0 - 32767 (signed 16-bit integer) .

MAXCOUNT=10
count=1

QO ~J oy U bW

e

echo
echo "S$SMAXCOUNT random numbers:"
QENE Vommmmommmsmeesmos "
while ["Scount" —-le S$SMAXCOUNT] # Generate 10 (SMAXCOUNT) random integers.
do
number=$RANDOM
echo $number
let "count += 1" # Increment count.

e e e N e
<o s W o

done

=
[ee]

echo "-"——————————————— "

N
[@2ANe]

If you need a random int within a certain range, use the 'modulo' operator.
This returns the remainder of a division operation.

N NN
w N =

RANGE=500

NN
ar

echo

NN
~ o

number=$RANDOM
let "number %= SRANGE"
AN

echo "Random number less than $RANGE --- S$Snumber"

W w w NN
N P O O @

echo

w w w w
o U Wb W

If you need a random integer greater than a lower bound,

w
~J

#+ then set up a test to discard all numbers below that.

w W
O @

FLOOR=200

IS
= O

number=0 #initialize
while ["Snumber" —-le S$SFLOOR]
do
number=$RANDOM
done
echo "Random number greater than $FLOOR —--- S$number"
echo

[N S ST N
O J oy U b W N

49 # Let's examine a simple alternative to the above loop, namely

50 # let "number = SRANDOM + SFLOOR"

51 # That would eliminate the while-loop and run faster.
52 # But, there might be a problem with that. What is it?
53

54

55

56 # Combine above two techniques to retrieve random number between two limits.
57 number=0 #initialize

58 while ["Snumber" -le SFLOOR]

59 do

60 number=$RANDOM

61 let "number %= SRANGE" # Scales S$number down within S$RANGE.
62 done

63 echo "Random number between $FLOOR and $RANGE —--—- S$number"

64 echo

65

66

67

68 # Generate binary choice, that is, "true" or "false" value.

69 BINARY=2

70 T=1

71 number=SRANDOM

72

73 let "number %= $BINARY"

74 # Note that let "number >>= 14" gives a better random distribution

75 #+ (right shifts out everything except last binary digit).
76 1f ["Snumber" -eq ST]

77 then

78 echo "TRUE"
79 else

80 echo "FALSE"
81 fi

82

83 echo

84

85

86 # Generate a toss of the dice.
87 SPOTS=6 # Modulo 6 gives range 0 — 5.

88 # Incrementing by 1 gives desired range of 1 - 6.

89 # Thanks, Paulo Marcel Coelho Aragao, for the simplification.
90 diel=0

91 die2=0

92 # Would it be better to just set SPOTS=7 and not add 1? Why or why not?
93
94 # Tosses each die separately, and so gives correct odds.

95
96 let "diel = SRANDOM % $SPOTS +1" # Roll first one.
97 let "die2 = SRANDOM % S$SPOTS +1" # Roll second one.
98 # Which arithmetic operation, above, has greater precedence —-
99 #+ modulo (%) or addition (+)?
100
101

102 let "throw = $diel + S$die2"

103 echo "Throw of the dice = $throw"
104 echo

105

106

107 exit O

Example 9-12. Picking a random card from a deck

#!/bin/bash
pick-card.sh

This is an example of choosing random elements of an array.

Pick a card, any card.

O J oy U W

]

Suites="Clubs
Diamonds
Hearts
Spades™"

R
=W NP o

Denominations="2

o
o U

NN R
B o © o J
W J oUW

9

10
Jack
Queen
King
Ace"

DN DNDDNDDNDDN
O J oy U b W N

Note variables spread over multiple lines.

w w N
= O O

suite=(SSuites) # Read into array variable.
denomination= ($Denominations)

w w W
BSw N

num_suites=${#suite[*]} # Count how many elements.
num_denominations=${#denomination[*]}

w W W
~ o U

echo —n "S${denomination[$ ((RANDOM%num_ denominations))]} of "
echo ${suite[$ ((RANDOM%num_suites))]}

SO W W
= O W ©

S$bozo sh pick-cards.sh

42 # Jack of Clubs

43

44

45 # Thank you, "Jjipe," for pointing out this use of S$SRANDOM.
46 exit O

Example 9-13. Brownian Motion Simulation

1 #!/bin/bash

2 # brownian.sh

3 # Author: Mendel Cooper

4 # Reldate: 10/26/07

5 # License: GPL3

6

A I
8 # This script models Brownian motion:

9 #+ the random wanderings of tiny particles in a fluid,
10 #+ as they are buffeted by random currents and collisions.
11 #+ This is colloquially known as the "Drunkard's Walk."
12
13 # It can also be considered as a stripped-down simulation of a

14 #+ Galton Board, a slanted board with a pattern of pegs,

15 #+ down which rolls a succession of marbles, one at a time.

16 #+ At the bottom is a row of slots or catch basins in which

17 #+ the marbles come to rest at the end of their journey.

18 # Think of it as a kind of bare-bones Pachinko game.

19 # As you see by running the script,

20 #+ most of the marbles cluster around the center slot.

21 #+ This is consistent with the expected binomial distribution.

22 # As a Galton Board simulation, the script

23 #+ disregards such parameters as

24 #+ board tilt-angle, rolling friction of the marbles,

25 #+ angles of impact, and elasticity of the pegs.

26 # To what extent does this affect the accuracy of the simulation?
27 i ==——=—=——==—========—===
28

29 PASSES=500
30 ROWS=10
31 RANGE=3
32 P0OS=0

33 RANDOM=$$%
34

35

36 declare -a Slots # Array holding cumulative results of passes.
37 NUMSLOTS=21 # Number of slots at bottom of board.

38

39

40 Initialize_Slots () { # Zero out all elements of the array.

41 for i in $(seg SNUMSLOTS)

42 do

43 Slots[$1]1=0

44 done

45

46 echo # Blank line at beginning of run.

47 }

48

49

50 Show_Slots () {

51 echo; echo

52 echo -n " "

53 for i1 in $(seg SNUMSLOTS) # Pretty-print array elements.

54 do

55 printf "$3d" ${Slots[$i]} # Allot three spaces per result.

56 done

Number of particle interactions / marbles.

Number of "collisions" (or horiz. peg rows) .

0 - 2 output range from S$SRANDOM.

Left/right position.

Seeds the random number generator from PID
+ of script.

57

58 echo # Row of slots:

59 echo " |_|__ || |||\ |_|_|_|__|_|__|_|_|_|_|__|__[__|"
60 echo " (R

61 echo # Note that if the count within any particular slot exceeds 99,
62 #+ it messes up the display.

63 # Running only(!) 500 passes usually avoids this.

64 }

65

66

67 Move () { # Move one unit right / left, or stay put.

68 Move=$SRANDOM # How random is S$RANDOM? Well, let's see

69 let "Move %= RANGE" # Normalize into range of 0 - 2.
70 case "$SMove" in

71 O) gz # Do nothing, i.e., stay in place.
72 1) ((POS—-));; # Left.

73 2) ((POS++));; # Right.

74 *) echo -n "Error ";; # Anomaly! (Should never occur.)
75 esac

76 }

77

78

79 Play () { # Single pass (inner loop) .

80 i=0

81 while ["$i"™ -1t "SROWS"] # One event per row.
82 do

83 Move

84 ((1++));

85 done

86

87 SHIFT=11 Why 11, and not 107
88 let "POS += S$SHIFT" Shift "zero position" to center.
89 ((Slots[SPOS]++)) # DEBUG: echo $POS

90

91 # echo -n "$POS "

92

93 }

94

95

96 Run () { # Outer loop.

97 p=0

98 while ["S$p" -1t "SPASSES"]

99 do
100 Play
101 ((pt+))
102 POS=0 # Reset to zero. Why?
103 done
104 }
105
106
107 ff ===—==—=======<=
108 # main ()
109 Initialize_Slots
110 Run
111 Show_Slots
112 ff ======—========
113
114 exit $7?
115
116 # Exercises:
117 ¢ ————————-
118 1) Show the results in a vertical bar graph, or as an alternative,
119 #+ a scattergram.
120 2) Alter the script to use /dev/urandom instead of S$SRANDOM.
121 Will this make the results more random?
122 3) Provide some sort of "animation" or graphic output
123 for each marble played.

+=

Jipe points out a set of techniques for generating random numbers within a range.

Generate random number between 6 and 30.
rnumber=$ ((RANDOM%25+6))

Generate random number in the same 6 - 30 range,
but the number must be evenly divisible by 3.
rnumber=$ (((RANDOM%30/3+1) *3))

®JdJ o U WN R
+=
+

Note that this will not work all the time.

9 # It fails if SRANDOM%30 returns O.
10
11 # Frank Wang suggests the following alternative:
12 rnumber=$ ((RANDOM%27/3*3+6))

Bill Gradwohl came up with an improved formula that works for positive numbers.

1 rnumber=$ (((RANDOMS (max-mint+divisibleBy)) /divisibleBy*divisibleBy+min))
Here Bill presents a versatile function that returns a random number between two specified values.

Example 9-14. Random between values

O ~J oy U W

UGG UIO 00T OSSR D DD WWWWWWWWWWNNNNNONNNNNONNONRE R PR R R R e
PO W®OWINOEWNRLOW®O-JONTEWNRLOW®D-JONUTEWNRL,OW®O-JONU®WNREROWO-JOUMSWNER O WO

#!/bin/bash

H o 3 o

random-between. sh
Random number between two specified values.

Script by Bill Gradwohl, with minor modifications by the document author.

Corrections in lines 187 and 189 by Anthony Le Clezio.
Used with permission.

randomBetween () {

Generates a positive or negative random number

#+ between $min and $max

#+ and divisible by $divisibleBy.

Gives a "reasonably random" distribution of return values.
#

Bill Gradwohl - Oct 1, 2003

syntax () {

Function embedded within function.
echo
echo "Syntax: randomBetween [min] [max] [multiple]"
echo
echo —n "Expects up to 3 passed parameters, "
echo "but all are completely optional."
echo "min is the minimum value"
echo "max is the maximum value"
echo -n "multiple specifies that the answer must be "
echo "a multiple of this value."
echo " i.e. answer must be evenly divisible by this number."
echo
echo "If any value is missing, defaults area supplied as: 0 32767
echo -n "Successful completion returns 0, "
echo "unsuccessful completion returns"
echo "function syntax and 1."
echo -n "The answer is returned in the global variable "
echo "randomBetweenAnswer"
echo -n "Negative values for any passed parameter are "
echo "handled correctly."

local min=${1:-0}

local max=${2:-32767}

local divisibleBy=${3:-1}

Default values assigned, in case parameters not passed to function.

local x
local spread

Let's make sure the divisibleBy value is positive.
[${divisibleBy} -1t 0] && divisibleBy=$((0-divisibleBy))

Sanity check.

if [$# -gt 3 -o ${divisibleBy} -eq 0 -o ${min} -eq ${max}]; then
syntax
return 1

fi

See if the min and max are reversed.
if [${min} -gt ${max}]; then

Swap them.

x=S${min}

min=${max}

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

max=${x}
fi
If min is itself not evenly divisible by $divisibleBy,
#+ then fix the min to be within range.
if [$((min/divisibleBy*divisibleBy)) -ne ${min}]; then
if [${min} -1t O]; then
min=$ ((min/divisibleBy*divisibleBy))
else
min=$ ((((min/divisibleBy)+1)*divisibleBy))
fi
fi
If max is itself not evenly divisible by $divisibleBy,
#+ then fix the max to be within range.
if [$((max/divisibleBy*divisibleBy)) -ne ${max}]; then
if [${max} -1t 0]; then
max=$ ((((max/divisibleBy)-1)*divisibleBy))
else
max=$ ((max/divisibleBy*divisibleBy))
fi
fi

Now, to do the real work.
Note that to get a proper distribution for the end points,
#+ the range of random values has to be allowed to go between
#+ 0 and abs (max-min)+divisibleBy, not Jjust abs (max-min)+1.
The slight increase will produce the proper distribution for the
#+ end points.
Changing the formula to use abs (max-min)+1 will still produce
#+ correct answers, but the randomness of those answers is faulty in
#+ that the number of times the end points ($min and S$max) are returned
#+ 1s considerably lower than when the correct formula is used.

spread=$ ((max-min))
Omair Eshkenazi points out that this test is unnecessary,
#+ since max and min have already been switched around.
[${spread} -1t 0] && spread=$((0-spread))
let spread+=divisibleBy
randomBetweenAnswer=$ (((RANDOMS$spread) /divisibleBy*divisibleBy+min))
return 0
However, Paulo Marcel Coelho Aragao points out that
#+ when $max and $min are not divisible by $divisibleBy,
#+ the formula fails.
#
He suggests instead the following formula:
rnumber = $(((RANDOMS% (max-min+1)+min)/divisibleBy*divisibleBy))
}
Let's test the function.
min=-14
max=20
divisibleBy=3

Generate an array of expected answers and check to make sure we get

#+ at

least one of each answer if we loop long enough.

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193

declare —a answer
minimum=${min}
maximum=$ {max}
if [$((minimum/divisibleBy*divisibleBy)) -ne ${minimum}]; then
if [${minimum} -1t O]; then
minimum=$ ((minimum/divisibleBy*divisibleBy))
else
minimum=$ ((((minimum/divisibleBy)+1) *divisibleBy))
fi

If max is itself not evenly divisible by $divisibleBy,
#+ then fix the max to be within range.

if [$((maximum/divisibleBy*divisibleBy)) -ne ${maximum}]; then
if [${maximum} -1t O]; then
maximum=$ ((((maximum/divisibleBy)-1) *divisibleBy))
else
maximum=$ ((maximum/divisibleBy*divisibleBy))
fi
fi

We need to generate only positive array subscripts,
#+ so we need a displacement that that will guarantee
#+ positive results.

disp=$ ((0-minimum))

for ((i=${minimum}; i<=${maximum}; i+=divisibleBy)); do
answer [i+disp]=0

done

Now loop a large number of times to see what we get.
loopIt=1000 # The script author suggests 100000,
#+ but that takes a good long while.

for ((i=0; i<${loopIt}; ++i)); do

Note that we are specifying min and max in reversed order here to
#+ make the function correct for this case.

randomBetween ${max} ${min} ${divisibleBy}

Report an error if an answer is unexpected.

[${randomBetweenAnswer} -1t ${min} -o ${randomBetweenAnswer} —-gt ${max}
&& echo MIN or MAX error - ${randomBetweenAnswer}!

[$((randomBetweenAnswer$%$${divisibleBy})) -ne 0] \

&& echo DIVISIBLE BY error - ${randomBetweenAnswer}!

Store the answer away statistically.
answer [randomBetweenAnswer+disp]=$ ((answer [randomBetweenAnswer+disp]+1))
done

Let's check the results

for ((i=${minimum}; i<=${maximum}; i+=divisibleBy)); do
[${answer[i+disp]} -eq 0] \
&& echo "We never got an answer of $i." \
|| echo "${i} occurred ${answer[i+disp]} times."
done

]

\

194 exit O

Just how random is SRANDOM? The best way to test this is to write a script that tracks the distribution of
"random" numbers generated by SRANDOM. Let's roll a SRANDOM die a few times . . .

Example 9-15. Rolling a single die with RANDOM

1 #!/bin/bash

2 # How random is RANDOM?

3

4 RANDOM=$$ # Reseed the random number generator using script process ID.
5

6 PIPS=6 # A die has 6 pips.

7 MAXTHROWS=600 # Increase this if you have nothing better to do with your time.
8 throw=0 # Number of times the dice have been cast.
9

10 ones=0 # Must initialize counts to zero,
11 twos=0 #+ since an uninitialized variable is null, NOT zero.
12 threes=0

13 fours=0

14 fives=0

15 sixes=0

16

17 print_result ()

18 {

19 echo
20 echo "ones = Sones"
21 echo "twos = Stwos"
22 echo "threes = S$threes"
23 echo "fours = S$fours"
24 echo "fives = S$fives"
25 echo "sixes = $sixes"
26 echo
27 '}

28

29 update_count ()

30 {

31 case "S$1" in

32 0) ((ones++));; # Since a die has no "zero", this corresponds to 1.
33 1) ((twos++));; # And this to 2.

J4 2) ((threes++));; # And so forth.

35 3) ((fours++));;

36 4) ((fives++));;

37 5) ((sixes++));;

38 esac

39 }

40

41 echo

42

43

44 while ["Sthrow" -1t "SMAXTHROWS"]

45 do

46 let "diel = RANDOM % S$SPIPS"

47 update_count $diel

48 let "throw += 1"

49 done

50

51 print_result

52

53 exit $?

54

55 # The scores should distribute evenly, assuming RANDOM is random.
56 # With SMAXTHROWS at 600, all should cluster around 100,

57 #+ plus—or-minus 20 or so.

58 #

59 # Keep in mind that RANDOM is a ***pseudorandom*** generator,
60 #+ and not a spectacularly good one at that.

61

62 # Randomness is a deep and complex subject.

63 # Sufficiently long "random" sequences may exhibit
64 #+ chaotic and other "non-random" behavior.

65

66 # Exercise (easy):

67 # —————————————

68 # Rewrite this script to flip a coin 1000 times.

69 # Choices are "HEADS" and "TAILS."

As we have seen in the last example, it is best to reseed the RANDOM generator each time it is invoked. Using
the same seed for RANDOM repeats the same series of numbers. [2] (This mirrors the behavior of the
random () function in C.)

Example 9-16. Reseeding RANDOM

1 #!/bin/bash
2 # seeding-random.sh: Seeding the RANDOM variable.
3 # v 1.1, reldate 09 Feb 2013
4
5 MAXCOUNT=25 # How many numbers to generate.
6 SEED=
-
8 random_numbers ()
9 {
10 local count=0
11 local number
12
13 while ["Scount" -1t "SMAXCOUNT"]
14 do
15 number=$RANDOM
16 echo -n "S$number "
17 let "count++"
18 done
19 }
20
21 echo; echo
22
23 SEED=1
24 RANDOM=S$SEED # Setting RANDOM seeds the random number generator.
25 echo "Random seed = $SEED"
26 random_numbers
27
28
29 RANDOM=$SEED # Same seed for RANDOM
30 echo; echo "Again, with same random seed ..."
31 echo "Random seed = S$SEED"
32 random_numbers # reproduces the exact same number series.
33 #
34 # When is it useful to duplicate a "random" series?
35
36 echo; echo
37
38 SEED=2
39 RANDOM=$SEED # Trying again, but with a different seed
40 echo "Random seed = S$SEED"
41 random_numbers # gives a different number series.
42

sy
w

echo; echo

44

45 # RANDOM=S$$ seeds RANDOM from process id of script.

46 # It is also possible to seed RANDOM from 'time' or 'date' commands.
47

48 # Getting fancy...

49 SEED=$ (head -1 /dev/urandom | od -N 1 | awk '{ print $2 }'| sed s/"0%*//)
50 # Pseudo-random output fetched

51 #+ from /dev/urandom (system pseudo-random device-file),

52 #+ then converted to line of printable (octal) numbers by "od",

53 #+ then "awk" retrieves just one number for SEED,

54 #+ finally "sed" removes any leading zeros.

55 RANDOM=$SEED

56 echo "Random seed = S$SEED"

57 random_numbers

58

59 echo; echo

60

61 exit O

&) The /dev/urandom pseudo-device file provides a method of generating much more "random"
pseudorandom numbers than the $RANDOM variable. dd if=/dev/urandom of=targetfile
bs=1 count=XX creates a file of well-scattered pseudorandom numbers. However, assigning these
numbers to a variable in a script requires a workaround, such as filtering through od (as in above

example, Example 16-14, and Example A-36), or even piping to mdSsum (see Example 36-16).

There are also other ways to generate pseudorandom numbers in a script. Awk provides a convenient
means of doing this.

Example 9-17. Pseudorandom numbers, using awk

#!/bin/bash

random2.sh: Returns a pseudorandom number in the range 0 - 1,
#+ to 6 decimal places. For example: 0.822725

Uses the awk rand() function.

AWKSCRIPT=' { srand(); print rand() } '
Command (s) /parameters passed to awk
Note that srand() reseeds awk's random number generator.

0 J o U b W

]

10

11 echo —-n "Random number between 0 and 1 = "

12

13 echo | awk "SAWKSCRIPT"

14 # What happens if you leave out the 'echo'?

15

16 exit O

17

18

19 # Exercises:

20 # —————————

21

22 # 1) Using a loop construct, print out 10 different random numbers.

23 # (Hint: you must reseed the srand() function with a different seed
24 #+ in each pass through the loop. What happens if you omit this?)

25

26 # 2) Using an integer multiplier as a scaling factor, generate random numbers
27 #+ in the range of 10 to 100.

28

29 # 3) Same as exercise #2, above, but generate random integers this time.

The date command also lends itself to generating pseudorandom integer sequences.
Notes

[1] True "randomness," insofar as it exists at all, can only be found in certain incompletely understood
natural phenomena, such as radioactive decay. Computers only simulate randomness, and
computer-generated sequences of "random" numbers are therefore referred to as pseudorandom.

[2] The seed of a computer-generated pseudorandom number series can be considered an identification
label. For example, think of the pseudorandom series with a seed of 23 as Series #23.

A property of a pseurandom number series is the length of the cycle before it starts repeating itself. A
good pseurandom generator will produce series with very long cycles.

Prev Home Next
Typing variables: declare or Up Manipulating Variables
typeset

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting

Z
D
<
—

Prev

Chapter 10. Manipulating Variables

10.1. Manipulating Strings

Bash supports a surprising number of string manipulation operations. Unfortunately, these tools lack a unified
focus. Some are a subset of parameter substitution, and others fall under the functionality of the UNIX expr
command. This results in inconsistent command syntax and overlap of functionality, not to mention
confusion.

String Length

${#string }
expr length $string

These are the equivalent of strlen() in C.
expr "$string" : " *'

1 stringZ=abcABC1l23ABCabc

2

3 echo ${#stringZ} # 15
4 echo "expr length $stringZ’ # 15
5 echo "expr "S$stringzZ" : '.*'°" # 15

Example 10-1. Inserting a blank line between paragraphs in a text file

1 #!/bin/bash

2 # paragraph-space.sh

3 # Ver. 2.1, Reldate 29Jull2 [fixup]

4

5 # Inserts a blank line between paragraphs of a single-spaced text file.
6 # Usage: $0 <FILENAME

9

8 MINLEN=60 # Change this value? It's a judgment call.

9 # Assume lines shorter than SMINLEN characters ending in a period
10 #+ terminate a paragraph. See exercises below.
11
12 while read line # For as many lines as the input file has
13 do
14 echo "$line" # Output the line itself.
15
16 len=${#line}
17 if [["$len" -1t "SMINLEN" && "$line" =~ [*{\.}1S5 1]
18 # if [["$len" -1t "SMINLEN" && "$line" =~ \[*\.\] 1]

19 # An update to Bash broke the previous version of this script. Ouch!
20 # Thank you, Halim Srama, for pointing this out and suggesting a fix.

21 then echo # Add a blank line immediately

22 fi #+ after a short line terminated by a period.
23 done

24

25 exit

26

27 # Exercises:

28 # —————————

29 # 1) The script usually inserts a blank line at the end

30 #+ of the target file. Fix this.

31 # 2) Line 17 only considers periods as sentence terminators.
32 # Modify this to include other common end-of-sentence characters,
33 #+ such as 2, !, and ".

Length of Matching Substring at Beginning of String

"o

expr match "$string" '$substring'
Ssubstringis aregular expression.
expr "$string" : '$substring'
$substringis aregular expression.

1 stringZ=abcABC1l23ABCabc

2 # | === |

3 # 12345678

4

5 echo "expr match "S$stringz" 'abc[A-Z]*.2'" # 8
6 echo “expr "S$stringz" : 'abc[A-Z]*.2'" # 8

Index

expr index $string $substring
Numerical position in $string of first character in $substring that matches.

stringZ=abcABCl23ABCabc

123456

echo “expr index "$stringz" C12° 6

C position.

echo "expr index "S$stringzZ" 1lc’ # 3

1
2
3
4
5
6
7 # 'c' (in #3 position) matches before '1'.

This is the near equivalent of strchr() in C.

Substring Extraction

${string:position }
Extracts substring from Sstringat Sposition.

If the $string parameter is "*" or "@", then this extracts the positional parameters, [1] starting at
Sposition.

${string:position:length }
Extracts S1ength characters of substring from $Sstringat Sposition.

1 stringZ=abcABC1l23ABCabc

2 # 0123456789.....

3 # 0-based indexing.

4

5 echo ${stringZ:0} # abcABC1l23ABCabc
6 echo ${stringz:1} # bcABC123ABCabc
7 echo ${stringZ:7} # 23ABCabc

8

9 echo ${stringZ:7:3} # 23A

10 # Three characters of substring.
11

12

13

14 # Is it possible to index from the right end of the string?

15

16 echo ${stringZ:-4} # abcABC1l23ABCabc
17 # Defaults to full string, as in ${parameter:-default}.

18 # However

19
20 echo ${stringZz: (-4)} # Cabc
21 echo ${stringz: -4} # Cabc

22 # Now, it works.

23 # Parentheses or added space "escape" the position parameter.

24

25 # Thank you, Dan Jacobson, for pointing this out.
The position and length arguments can be "parameterized," that is, represented as a variable, rather
than as a numerical constant.

Example 10-2. Generating an 8-character ''random" string

1 #!/bin/bash

2 # rand-string.sh

3 # Generating an 8-character "random" string.

4

5 if [-n "S1"] # If command-line argument present,
6 then #+ then set start-string to it.

7 str0="s1"

8 else # Else use PID of script as start-string.
9 str0="ss"
10 fi
11
12 POS=2 # Starting from position 2 in the string.
13 LEN=8 # Extract eight characters.
14

=
(€]

strl=$(echo "S$str0" | md5sum | md5sum)
Doubly scramble AANNAA Annnnn

=
(&)

17 #+ by piping and repiping to md5sum.
18

19 randstring="${strl:$POS:SLEN}"

20 # Can parameterize ~"""" AnMAA

21

22 echo "S$randstring"

23

24 exit $7

25

26 # bozo$./rand-string.sh my-password
27 # 1lbdd88c4

28

29 # No, this is is not recommended

w
o

#+ as a method of generating hack-proof passwords.

If the $string parameter is "*" or "@", then this extracts a maximum of $1ength positional
parameters, starting at Sposition.

1 echo ${*:2} # Echoes second and following positional parameters.

2 echo ${Q@:2} # Same as above.

3

4 echo ${*:2:3} # Echoes three positional parameters, starting at second.

expr substr $string $position $length
Extracts S1ength characters from $string starting at Sposition.

1 stringZ=abcABCl23ABCabc

2 # 123456789......

3 # l-based indexing.

4

5 echo "expr substr $stringz 1 2° # ab
6 echo “expr substr $stringz 4 3° # ABC

expr match "$string" "\($substring\)’
Extracts Ssubstring at beginning of Sstring, where Ssubstringis a regular expression.
expr "$string" : "\($substring\)’

Extracts $substring at beginning of Sstring, where Ssubstringis aregular expression.

1 stringZ=abcABC1l23ABCabc

2 # =======

3

4 echo “expr match "$stringZ" '\ (.[b-c]*[A-Z]..[0-9]\)"'" # abcABC1l
5 echo “expr "S$stringz" : '\ (.[b-cl*[A-Z]..[0-9]\)"" # abcABC1l
6 echo “expr "S$stringZ" : "\(....... \) " # abcABC1l

7 # All of the above forms give an identical result.
expr match "$string" '.*\($substring\)’
Extracts Ssubstringatend of Sstring, where Ssubstringis aregular expression.
expr "$string” : . *\($substring\)’
Extracts Ssubstringatend of Sstring, where Ssubstringis aregular expression.

1 stringZ=abcABCl23ABCabc

2 # ======

3

4 echo ‘expr match "S$stringz" '.*\([A-C][A-C][A-C][a-c]*\)"" # ABCabc
5 echo “expr "Sstringz" : ".*\(...... \) 7 # ABCabc

Substring Removal

${string#substring }

Deletes shortest match of Ssubstring from front of $Sstring.
${string##substring }

Deletes longest match of Ssubstring from front of Sstring.

1 stringZ=abcABC1l23ABCabc

2 # | ————| shortest

3 # | ——— | longest

4

5 echo ${stringZ#a*C} # 123ABCabc

6 # Strip out shortest match between 'a' and 'C'.
7

8 echo ${stringZ##a*C} # abc

9 # Strip out longest match between 'a' and 'C'.
10

11

12

13 # You can parameterize the substrings.

14

15 X='a*C'
16
17 echo ${stringZ#$X} # 123ABCabc
18 echo ${stringz##sX} # abc
19 # As above.

${string%substring }

Deletes shortest match of Ssubstring from back of Sstring.

For example:

1 # Rename all filenames in S$PWD with "TXT" suffix to a "txt" suffix.
2 # For example, "filel.TXT" becomes "filel.txt"

3

4 SUFF=TXT

5 suff=txt

6

7 for i1 in $(1ls *.S$SUFF)

8 do

9 mv —f $i ${1%.SSUFF}.S$suff
10 # Leave unchanged everything *except* the shortest pattern match

11
12
13
14

#+ starting from the right-hand-side of the variable $i
done ### This could be condensed into a "one-liner" if desired.

Thank you, Rory Winston.

${string% %substring }
Deletes longest match of Ssubstring from back of Sstring.

1
2
3
4
5
6
7
8
9

stringZ=abcABCl23ABCabc

|| shortest
[=== | longest
echo ${stringZ%b*c} # abcABC1l23ABCa

Strip out shortest match between 'b' and 'c', from back of $stringZ.

echo ${stringz%%b*c} #+ a
Strip out longest match between 'b' and 'c', from back of $stringZ.

This operator is useful for generating filenames.

Example 10-3. Converting graphic file formats, with filename change

W J oy U b W N

WWWWWWwWwWwhhNNRODNNONNDNNDNNDR PR B R R R R
©Jd T WNRFR,OW®OWJOU®WNROW®UIoU & WN R~ O W

39
40
41
42
43

#!/bin/bash
cvt.sh:
Converts all the MacPaint image files in a directory to "pbm" format.

Uses the "macptopbm" binary from the "netpbm" package,
#+ which is maintained by Brian Henderson (bryanh@giraffe-data.com).

Netpbm is a standard part of most Linux distros.

OPERATION=macptopbm
SUFF IX=pbm # New filename suffix.

if [-n ngqm]

then
directory=$1 # If directory name given as a script argument...
elise
directory=S$PWD # Otherwise use current working directory.
fi
Assumes all files in the target directory are MacPaint image files,

#+ with a ".mac" filename suffix.

for file in $directory/* # Filename globbing.
do
filename=${file%.*c} # Strip ".mac" suffix off filename
#+ ('.*c' matches everything
#+ between '.' and 'c', inclusive).
SOPERATION S$file > "Sfilename.SSUFFIX"
Redirect conversion to new filename.
rm —f S$file # Delete original files after converting.
echo "$filename.S$SUFFIX" # Log what is happening to stdout.
done

exit 0
Exercise:
As it stands, this script converts *all* the files in the current

#+ working directory.
Modify it to work *only* on files with a ".mac" suffix.

*** And here's another way to do it. ***

44

45 #!/bin/bash

46 # Batch convert into different graphic formats.

47 # Assumes imagemagick installed (standard in most Linux distros) .
48

49 INFMT=png # Can be tif, jpg, gif, etc.

50 OUTFMT=pdf # Can be tif, Jjpg, gif, pdf, etc.

51

52 for pic in *"S$INEMT"

53 do

54 p2=S$(ls "$pic" | sed —e s/\.SINFMT//)
55 # echo $p2

56 convert "$pic" $p2.S$SOUTFMT

57 done

58

59 exit $7?

Example 10-4. Converting streaming audio files to ogg

#!/bin/bash
ra2ogg.sh: Convert streaming audio files (*.ra) to ogg.

Uses the "mplayer" media player program:
http://www.mplayerhqg.hu/homepage

Uses the "ogg" library and "oggenc":
http://www.xiph.org/

0 J o U W

e}

This script may need appropriate codecs installed, such as sipr.so
Possibly also the compat-libstdc++ package.

HH= H= FH H H =

=
W N P o

OFILEPREF=S${1%%ra} # Strip off the "ra" suffix.
OFILESUFF=wav # Suffix for wav file.
OUTFILE="SOFILEPREF""SOFILESUFFE"

=
(GRS

16 E_NOARGS=85

17

18 if [-z "S$1"] # Must specify a filename to convert.

19 then

20 echo "Usage: "basename $0° [filename]"

21 exit S$E_NOARGS

22 fi

23

24

25 HeHHHHHAHHHAF AR
26 mplayer "$1" -ao pcm:file=SOUTFILE

27 oggenc "SOUTFILE" # Correct file extension automatically added by oggenc.
28 HEHHHHHAF A A AR
29

30 rm "SOUTFILE" # Delete intermediate *.wav file.

31 # If you want to keep it, comment out above line.

32

33 exit $?

34

35 # Note

36 # ——

37 # On a Website, simply clicking on a *.ram streaming audio file

38 #+ usually only downloads the URL of the actual *.ra audio file.

39 # You can then use "wget" or something similar

40 #+ to download the *.ra file itself.

41

42

S
w
4=

Exercises:

44 ¥ ———

45 # As is, this script converts only *.ra filenames.

46 # Add flexibility by permitting use of *.ram and other filenames.

47 #

48 # 1If you're really ambitious, expand the script

49 #+ to do automatic downloads and conversions of streaming audio files.
50 # Given a URL, batch download streaming audio files (using "wget")

51 #+ and convert them on the fly.

A simple emulation of getopt using substring-extraction constructs.

Example 10-5. Emulating getopt

1 #!/bin/bash

2 # getopt-simple.sh

3 # Author: Chris Morgan

4 # Used in the ABS Guide with permission.

5

6

7 getopt_simple ()

8 {

9 echo "getopt_simple()"
10 echo "Parameters are 'S$*'"
11 until [-z "S$1"]
12 do
13 echo "Processing parameter of: 's1'"
14 if [${1:0:1} = '"/" 1]
15 then

16 tmp=${1:1} # Strip off leading '/'
17 parameter=S${tmp%%=*} # Extract name.
18 value=${tmp#H#*=} # Extract value.
19 echo "Parameter: 'Sparameter', value: 'Svalue'"
20 eval S$Sparameter=S$value
21 fi
22 shift
23 done
24 '}
25
26 # Pass all options to getopt_simple().
27 getopt_simple $*
28
29 echo "test is 'Stest!'"

30 echo "test2 is 'Stest2'"

31

32 exit 0 # See also, UseGetOpt.sh, a modified version of this script.
33

4 ===

35

36 sh getopt_example.sh /test=valuel /test2=value2
37

38 Parameters are '/test=valuel /test2=valuel'

39 Processing parameter of: '/test=valuel'

40 Parameter: 'test', wvalue: 'valuel'

41 Processing parameter of: '/test2=value2'

42 Parameter: 'test2', wvalue: 'value2'

[Isy
w

test is 'valuel'
test2 is 'value2'

IS
ar b

Substring Replacement

${string/substring/replacement }

Replace first match of $substring with Sreplacement. [2]
${string//substring/replacement }

Replace all matches of Ssubstring with Sreplacement.

1 stringZ=abcABC1l23ABCabc

2

3 echo ${stringZ/abc/xyz} # xyzABCl23ABCabc

4 # Replaces first match of 'abc' with 'xyz'.
5

6 echo ${stringz//abc/xyz} # xyzABC123ABCxyz

7 # Replaces all matches of 'abc' with # 'xyz'.
8

9 aEhe S

10 echo "$stringz" # abcABCl23ABCabc

11 echo -—f———————————

12 # The string itself is not altered!

13

14 # Can the match and replacement strings be parameterized?
15 match=abc

16 repl=000

17 echo ${stringZ/$match/$repl} # O000ABC1l23ABCabc
18 # ~ ~ ann

19 echo ${stringZz//Smatch/Srepl} # O000ABC123ABCO000
20 # Yes! A ~ AN AN
21

22 echo

23

24 # What happens if no S$replacement string is supplied?
25 echo ${stringZ/abc} # ABC123ABCabc

26 echo ${stringz//abc} # ABC123ABC

27 # A simple deletion takes place.
${string/#substring/replacement }
If Ssubstring matches front end of Sstring, substitute Sreplacement for Ssubstring.
${string/%substring/replacement }
If $substring matches back end of Sstring, substitute Sreplacement for Ssubstring.

1 stringZ=abcABC1l23ABCabc

2

3 echo ${stringz/#abc/XYZ} # XYZABC123ABCabc

4 # Replaces front-end match of 'abc' with 'XYZ'.
5

6 echo ${stringZ/%abc/XYZ} # abcABC123ABCXYZ

7 # Replaces back-end match of 'abc' with 'XYZ'.

10.1.1. Manipulating strings using awk

A Bash script may invoke the string manipulation facilities of awk as an alternative to using its built-in
operations.

Example 10-6. Alternate ways of extracting and locating substrings

#!/bin/bash
substring-extraction.sh

012345678 Bash

1

2

3

4 String=23skidool

5

6 # 123456789 awk

7 # Note different string indexing system:
8 # Bash numbers first character of string as 0.
9 # Awk numbers first character of string as 1.

10

11 echo ${String:2:4} # position 3 (0-1-2), 4 characters long
12 # skid

13

14 # The awk equivalent of ${string:pos:length} is substr(string,pos,length).
15 echo | awk '

16 { print substr("'"${String}"'",3,4) # skid

17 }

18

19 # Piping an empty "echo" to awk gives it dummy input,

20 #+ and thus makes it unnecessary to supply a filename.

21

22 eche Y====U

23

24 # And likewise:

25

26 echo | awk '

27 { print index("'"${String}"'", "skid") # 3

28 } # (skid starts at position 3)
29 ' # The awk equivalent of "expr index"

30

31 exit O

10.1.2. Further Reference

For more on string manipulation in scripts, refer to Section 10.2 and the relevant section of the expr command
listing.

Script examples:

1. Example 16-9
2. Example 10-9
3. Example 10-10
4. Example 10-11
5. Example 10-13
6. Example A-36
7. Example A-41

Notes

[1] This applies to either command-line arguments or parameters passed to a function.

[2] Note that Ssubstringand Sreplacement may refer to either literal strings or variables,
depending on context. See the first usage example.

Prev Home Next
$RANDOM: generate random Up Parameter Substitution
integer

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Chapter 10. Manipulating Variables Next

10.2. Parameter Substitution

Manipulating and/or expanding variables

${parameter}
Same as Sparameter, i.e., value of the variable parameter. In certain contexts, only the less
ambiguous ${parameter} form works.

May be used for concatenating variables with strings.

your_id=${USER}-on-${HOSTNAME }

echo "S$your_id"

#

echo "Old \$PATH = S$PATH"

PATH=${PATH}:/opt/bin # Add /opt/bin to $PATH for duration of script.
6 echo "New \S$PATH = $PATH"

${parameter—-default}, ${parameter:-default}
If parameter not set, use default.

a b w N

1 varl=l

2 var2=2

3 # var3 is unset.

4

5 echo ${varl-$var2} # 1

6 echo ${var3-Svar2} # 2

7T # A Note the $ prefix.
8

9
10

11 echo ${username- whoami’ }
12 # Echoes the result of ‘whoami', if variable S$Susername is still unset.

& S{parameter—-default} and ${parameter:—-default } are almost
equivalent. The extra : makes a difference only when parameter has been declared,

but is null.
1 #!/bin/bash
2 # param-sub.sh
3
4 # Whether a variable has been declared
5 #+ affects triggering of the default option
6 #+ even if the variable is null.
7
8 usernamel=
9 echo "usernameO has been declared, but is set to null."
10 echo "usernameO = ${usernameO- whoami }"
11 # Will not echo.
12
13 echo
14
15 echo usernamel has not been declared.
16 echo "usernamel = ${usernamel- whoami }"
17 # Will echo.
18
19 username2=
20 echo "username2 has been declared, but is set to null."
21 echo "username2 = ${username2:- whoami’ }"
22 # ~
23 # Will echo because of :- rather than just - in condition test.

24 # Compare to first instance, above.

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

#
Once again:

variable=
variable has been declared, but is set to null.

echo "S${variable-0}" # (no output)
echo "S${variable:-1}" # 1
N

unset variable

echo "${variable-2}"

2
echo "S${variable:-3}" # 3

exit O

The default parameter construct finds use in providing "missing" command-line arguments in scripts.

O J oy U b W N

e

10
11
12
13
14
15
16

DEFAULT_FILENAME=generic.data

filename=S${1:-$DEFAULT_FILENAME }

If not otherwise specified, the following command block operates
#+ on the file "generic.data".

Begin-Command-Block

#

#

¥ ...
End-Command-Block

From "hanoi2.bash" example:

DISKS=${1:-E_NOPARAM} # Must specify how many disks.
Set S$DISKS to $1 command-line-parameter,

#+ or to $SE_NOPARAM if that is unset.

See also Example 3-4, Example 31-2, and Example A-6.

Compare this method with using an and list to supply a default command-line argument.
${parameter=default}, ${parameter:=default}

If parameter not set, set it to default.

Both forms nearly equivalent. The : makes a difference only when Sparameter has been declared
and is null, [1] as above.

1
2
3

echo ${var=abc} # abc
echo ${var=xyz} # abc
Svar had already been set to abc, so it did not change.

${parameter+alt_value}, ${parameter:+alt_value}
If parameter set, use alt_wvalue, else use null string.

Both forms nearly equivalent. The : makes a difference only when parameter has been declared
and is null, see below.

g w N

echo "###### \S{parameter+alt_value} ###H#####"
echo

a=${paraml+xyz}
echo "a = $a" # a =

@ I o

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

param2=

a=${param2+xyz}

echo "a = $a" # a = xyz

param3=123

a=${param3+xyz}

echo "a = $a" # a = xyz

echo

echo "###### \S{parameter:+alt_value} ###H###H##"
echo

a=${paraméd:+xyz}

echo "a = sa" # a =

paramb=

a=${param5:+xyz}

echo "a = sa" # a =

Different result from a=$ {paramb5+xyz}
param6=123

a=${paramb6:+xyz}

echo "a = $a" # a = xyz

${parameter?err_msg}, ${parameter:?err_msg}
If parameter set, use it, else print err_msg and abort the script with an exit status of 1.

Both forms nearly equivalent. The : makes a difference only when parameter has been declared
and is null, as above.

Example 10-7. Using parameter substitution and error messages

O ~J o U W

WWNNNNDNDNDNNNDNR R R B PP
B O WWw-Jo U d WNRE O WO U Wl P oW

#!/bin/bash

If,
+ the

EEE

Check some of the system's environmental variables.
This is good preventative maintenance.

for example, SUSER, the name of the person at the console, is not set,
machine will not recognize you.

${HOSTNAME?} S${USER?} ${HOME?} S${MAIL?}

echo
echo
echo
echo
echo
echo
echo
echo
echo
echo

"Name of the machine is S$HOSTNAME."
"You are SUSER."

"Your home directory is SHOME."

"Your mail INBOX is located in S$MAIL."

"If you are reading this message,"
"critical environmental variables have been set."

S{variablename?} construction can also check
variables set within the script.

ThisVariable=Value-of-ThisVariable

©Note, by the way, that string variables may be set

#+ to characters disallowed in their names.
S{ThisVariable?}

echo "Value of ThisVariable is $ThisVariable".

echo;

echo

32

33

34 : ${ZZXy23AB?"ZZXy23AB has not been set."}

35 # Since ZZXy23AB has not been set,

36 #+ then the script terminates with an error message.
37

38 # You can specify the error message.

39 # : S{variablename?"ERROR MESSAGE"}

40
41
42
43
44
45
46
47 # Compare these methods of checking whether a variable has been set

48 #+ with "set -u"

49

50

51

52 echo "You will not see this message, because script already terminated."
53

54 HERE=0

55 exit S$HERE # Will NOT exit here.

56

57 # In fact, this script will return an exit status (echo $?) of 1.

Same result with: dummy_variable=${ZZXy23AB?}

#
dummy_variable=${ZZXy23AB?"ZXy23AB has not been set."}
#

echo ${7ZXy23AB?} >/dev/null

Example 10-8. Parameter substitution and "usage'' messages

#!/bin/bash
usage-message.sh

1
2
3
4 ${1?"Usage: $O0 ARGUMENT"}

5 # Script exits here if command-line parameter absent,

6 #+ with following error message.

T # usage-message.sh: 1: Usage: usage-message.sh ARGUMENT
8

9 echo "These two lines echo only if command-line parameter given."
10 echo "command-line parameter = \"S$1\""
11
12 exit 0 # Will exit here only if command-line parameter present.
13
14 # Check the exit status, both with and without command-line parameter.
15 # If command-line parameter present, then "$?" is 0.
16 # If not, then "$?" is 1.

Parameter substitution and/or expansion. The following expressions are the complement to the match in
expr string operations (see Example 16-9). These particular ones are used mostly in parsing file path names.

Variable length / Substring removal

${#var}
String length (number of characters in $var). For an array, ${#array} is the length of the first
element in the array.

=& Exceptions:

¢
${#*} and ${#@} give the number of positional parameters.

¢ For an array, ${#array[*]} and ${#array[@]} give the number of
elements in the array.

Example 10-9. Length of a variable

#!/bin/bash
length.sh

E_NO_ARGS=65

if [$# -eq 0 1 # Must have command-line args to demo script.

then
echo "Please invoke this script with one or more command-line arguments."
exit S$SE_NO_ARGS

O ~J o U W

eJ

10 fi

11

12 varOl=abcdEFGH281i7j

13 echo "var0l = S$S{varOQl}™"

14 echo "Length of var0l = ${#var0l}"
15 # Now, let's try embedding a space.
16 var02="abcd EFGH28ij"

17 echo "var02 = S$S{var02}"

18 echo "Length of var02 = ${#var02}"
19

20 echo "Number of command-line arguments passed to script = S${#Q}"
21 echo "Number of command-line arguments passed to script = S${#*}"
22

23 exit O

${var#Pattern}, ${var#i#Pattern}
${var#Pattern} Remove from $Svar the shortest part of SPattern that matches the front end
of Svar.
${var##Pattern} Remove from S$var the longest part of SPattern that matches the front end

of Svar.

A usage illustration from Example A-7:

1 # Function from "days-between.sh" example.

2 # Strips leading zero(s) from argument passed.

3

4 strip_leading_zero () # Strip possible leading zero(s)

5 { #+ from argument passed.

6 return=S${1#0} # The "1" refers to "$1" —- passed arg.

7} # The "0" is what to remove from "$1" —-- strips zeros.

Manfred Schwarb's more elaborate variation of the above:

1 strip_leading_zero2 () # Strip possible leading zero(s), since otherwise

2 A # Bash will interpret such numbers as octal values.

3 shopt —-s extglob # Turn on extended globbing.

4 local val=${1l##+(0)} # Use local variable, longest matching series of 0's.
5 shopt -u extglob # Turn off extended globbing.

6 _strip_leading_zero2=${val:-0}

7 # If input was 0, return 0 instead of "".

8 }
Another usage illustration:

1 echo "basename S$PWD® # Basename of current working directory.
2 echo "S{PWD##*/}1" # Basename of current working directory.
3 echo

4 echo "basename $0° # Name of script.

5 echo $0 # Name of script.

6 echo "S{O##*x/}" # Name of script.

7 echo

8 filename=test.data

9 echo "S$S{filename##*.}" # data

10 # Extension of filename.

${var%Pattern}, ${varssPattern}
${var %Pattern} Remove from Svar the shortest part of SPattern that matches the back end
of Svar.
${var % %Pattern} Remove from Svar the longest part of $Pattern that matches the back end

of Svar.

Version 2 of Bash added additional options.

Example 10-10. Pattern matching in parameter substitution

1 #!/bin/bash

2 # patt-matching.sh

3

4 # Pattern matching wusing the # ## % %% parameter substitution operators.
5

6 varl=abcdl2345abc6789

7 patternl=a*c # * (wild card) matches everything between a - c.

8

9 echo

10 echo "varl = S$varl" # abcdl2345abc6789

11 echo "varl = ${varl}" # abcdl2345abc6789

12 # (alternate form)

13 echo "Number of characters in ${varl} = S${#varl}"

14 echo

15

16 echo "patternl = S$patternl" # a*c (everything between 'a' and 'c')

L7 Qe Yomemo——oa————s "

18 echo '${varl#S$Spatternl} =' "S${varlfS$Spatternl}" # dl12345abc6789
19 # Shortest possible match, strips out first 3 characters abcdl2345abc6789
20 # ananns [=
21 echo 'S${varl##Spatternl} =' "S{varl##Spatternl}" # 6789
22 # Longest possible match, strips out first 12 characters abcdl2345abc6789
23 # AnAnn |——————— |
24
25 echo; echo; echo
26
27 pattern2=b*9 # everything between 'b' and '9'
28 echo "varl = S$varl" # Still abcdl2345abc6789
29 echo

30 echo "pattern2 = S$pattern2"

il Qe Yoo "

32 echo '${varl%pattern2} =' "S${varl%Spattern2}i" # abcdl2345a

33 # Shortest possible match, strips out last 6 characters abcdl2345abc6789
34 # AARXK |—
35 echo '${varl%%pattern2} =' "S${varl%SSpattern2}" # a

36 # Longest possible match, strips out last 12 characters abcdl2345abc6789
37 # annn |- |
38

39 # Remember, # and ## work from the left end (beginning) of string,

40 # % and %% work from the right end.
41

42 echo

43

44 exit 0

Example 10-11. Renaming file extensions:

1 #!/bin/bash

2 # rfe.sh: Renaming file extensions.

3 #

4 # rfe old_extension new_extension

5 #

6 # Example:

7 # To rename all *.gif files in working directory to *.jpg,

8 # rfe gif jpg

9
10

11 E_BADARGS=65

12

13 case $# in

14 0]1) # The vertical bar means "or" in this context.
15 echo "Usage: "basename $0° old_file suffix new_file suffix"
16 exit SE_BADARGS # If 0 or 1 arg, then bail out.

17 i

18 esac

19
20

21 for filename in *.$1

22 # Traverse list of files ending with 1st argument.

23 do

24 mv $filename ${filename%$$1}S$2

25 # Strip off part of filename matching lst argument,
26 #+ then append 2nd argument.

27 done

28

29 exit O

Variable expansion / Substring replacement
These constructs have been adopted from ksh.
${var:pos}
Variable var expanded, starting from offset pos.
${var:pos:len}
Expansion to a max of 1en characters of variable var, from offset pos. See Example A-13 for an
example of the creative use of this operator.
${var/Pattern/Replacement}
First match of Pattern, within var replaced with Replacement.

If Replacement is omitted, then the first match of Pattern is replaced by nothing, that is,
deleted.

${var//Pattern/Replacement}
Global replacement. All matches of Pattern, within var replaced with Replacement.

As above, if Replacement is omitted, then all occurrences of Pattern are replaced by nothing,
that is, deleted.

Example 10-12. Using pattern matching to parse arbitrary strings

O J o o W N

e

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

#!/bin/bash

varl=abcd-1234-defg
echo "varl = S$varl"

t=${varl#*—*}

echo "varl (with everything, up to and including first - stripped out) =
t=${varl#*-} works just the same,

#+ since # matches the shortest string,

#+ and * matches everything preceding, including an empty string.

(Thanks, Stephane Chazelas, for pointing this out.)

t=S{varl##*—*}

echo "If varl contains a \"-\", returns empty string... varl = st"

t=${varls*-*}
echo "varl (with everything from the last - on stripped out) = $t"

echo

path_name=/home/bozo/ideas/thoughts. for.today

echo "path_name = $path_name"

t=S${path_name##/*/}

echo "path_name, stripped of prefixes = $t"

Same effect as t="basename $path_name® in this particular case.
t=S${path_name%/}; t=S{t##*/} is a more general solution,

#+ but still fails sometimes.

If Spath_name ends with a newline, then 'basename S$path_name’ will not
#+ but the above expression will.

(Thanks, S.C.)

t=${path_name%/*.*}

$t"

work,

Same effect as t="dirname $path_name’

echo "path_name, stripped of suffixes = $t"

These will fail in some cases, such as "../", "/foo////", # "foo/", "/".
Removing suffixes, especially when the basename has no suffix,

#+ but the dirname does, also complicates matters.
(Thanks, S.C.)

echo

t=${path_name:11}

echo "$path_name, with first 11 chars stripped off = $t"
t=${path_name:11:5}

echo "$path_name, with first 11 chars stripped off, length 5 = $t"

echo

t=${path_name/bozo/clown}

echo "$path_name with \"bozo\" replaced by \"clown\" = s$t"
t=S${path_name/today/}

echo "$path_name with \"today\" deleted = $t"
t=${path_name//0/0}

echo "$path_name with all o's capitalized = st"
t=${path_name//o/}

echo "$path_name with all o's deleted = $t"

exit O

${var/#Pattern/Replacement}

If prefix of var matches Pattern, then substitute Replacement for Pattern.
${var/%Pattern/Replacement}
If suffix of var matches Pattern, then substitute Replacement for Pattern.

Example 10-13. Matching patterns at prefix or suffix of string

1 #!/bin/bash

2 # var-match.sh:

3 # Demo of pattern replacement at prefix / suffix of string.
4

5 v0=abcl234zipl234abc # Original variable.

6 echo "v0 = $vO" # abcl234zipl234abc

7 echo

8

9 # Match at prefix (beginning) of string.

10 v1=${v0/#abc/ABCDEF } # abcl234zipl234abc

11 # 11

12 echo "vl = $v1" # ABCDEF1234zipl234abc
13 i ===

14

15 # Match at suffix (end) of string.

16 v2=${v0/%abc/ABCDEF} # abcl234zipl23abc

17 # [=1

18 echo "v2 = $v2" # abcl234zipl234ABCDEF
19 # [————|
20
21 echo
22
23 i —emmem—e——mss—ssesse s e e e s s

24 # Must match at beginning / end of string,
25 #+ otherwise no replacement results.
26 ff S e e e e e e e e e

27 v3=${v0/#123/000} # Matches, but not at beginning.
28 echo "v3 = $v3" # abcl234zipl234abc

29 # NO REPLACEMENT.

30 v4=${v0/%123/000} # Matches, but not at end.

31 echo "v4 = $v4" # abcl234zipl234abc

32 # NO REPLACEMENT.

33

34 exit 0

${!varprefix*}, ${!varprefix@}
Matches names of all previously declared variables beginning with varprefix.

This is a variation on indirect reference, but with a * or Q.
Bash, version 2.04, adds this feature.

1
2
3
4 xyz23=whatever
5 xyz24=
6
7
8

a=${!xyz*} # Expands to *names* of declared variables
1~ n A + beginning with "xyz".
9 echo "a = $a" # a = xyz23 xyz24

10 a=${!'xyz@} # Same as above.

11 echo "a = sa" # a = xyz23 xyz24

12

13 echo "——-"

14

15 abc23=something_else
16 b=S${'!'abc*}

17 echo "b = S$Sb"
18 c=${!b}

b = abc23
Now, the more familiar type of indirect reference.

19 echo $c # something_ else

Notes

[1]1 If $parameter is null in a non-interactive script, it will terminate with a 127 exit status (the Bash error
code for "command not found").

Prev Home Next
Manipulating Variables Up Loops and Branches
Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Next

Chapter 11. Loops and Branches

What needs this iteration, woman?
--Shakespeare, Othello

Operations on code blocks are the key to structured and organized shell scripts. Looping and branching
constructs provide the tools for accomplishing this.

11.1. Loops

A loop is a block of code that iterates [1] a list of commands as long as the loop control condition is true.
for loops
for argin [1list]

This is the basic looping construct. It differs significantly from its C counterpart.

for argin[1ist]
do

command (s) ...
done

& During each pass through the loop, arg takes on the value of each successive variable

inthe 1ist.

1 for arg in "S$varl" "Svar2" "Svar3" ... "SvarN"

2 # In pass 1 of the loop, arg = $varl

3 # In pass 2 of the loop, arg = $var2

4 # In pass 3 of the loop, arg = $var3

5 # ...

6 # In pass N of the loop, arg = $varN

7

8 # Arguments in [list] quoted to prevent possible word splitting.

The argument 11 st may contain wild cards.

If do is on same line as for, there needs to be a semicolon after list.

for argin[list];do

Example 11-1. Simple for loops

1 #!/bin/bash

2 # Listing the planets.

3

4 for planet in Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune Pluto
5 do

6 echo $planet # Each planet on a separate line.

7 done

8

9 echo; echo
10

11 for planet in "Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune Pluto"
12 # All planets on same line.

13 # Entire 'list' enclosed in quotes creates a single variable.

14 # Why? Whitespace incorporated into the variable.

15 do

16 echo $planet

17 done

18

19 echo; echo "Whoops! Pluto is no longer a planet!"

N
(@]

exit O

N
=

Each [1ist] element may contain multiple parameters. This is useful when processing parameters
in groups. In such cases, use the set command (see Example 15-16) to force parsing of each [1ist]
element and assignment of each component to the positional parameters.

Example 11-2. for loop with two parameters in each [list] element

1 #!/bin/bash
2 # Planets revisited.

3

4 # Associate the name of each planet with its distance from the sun.
5

6 for planet in "Mercury 36" "Venus 67" "Earth 93" "Mars 142" "Jupiter 483"
7 do

8 set —-— $planet # Parses variable "planet"

9 #+ and sets positional parameters.
10 # The "--" prevents nasty surprises if $planet is null or
11 #+ begins with a dash.
12
13 # May need to save original positional parameters,

14 #+ since they get overwritten.

15 # One way of doing this is to use an array,

16 # original_params=("$@")

17

18 echo "$1 $2,000,000 miles from the sun"

19 - two tabs---concatenate zeroes onto parameter $2
20 done
21
22 # (Thanks, S.C., for additional clarification.)
23
24 exit O

A variable may supply the [1ist] in a for loop.

Example 11-3. Fileinfo: operating on a file list contained in a variable

#!/bin/bash
fileinfo.sh

FILES="/usr/sbin/accept
/usr/sbin/pwck
/usr/sbin/chroot
/usr/bin/fakefile
/sbin/badblocks
/sbin/ypbind" # List of files you are curious about.
Threw in a dummy file, /usr/bin/fakefile.

O J o oW

o e
N P O W

echo

o
N

for file in SFILES
do

o e
~J o U1

if [! —e "S$Sfile"] # Check if file exists.
then

echo "S$file does not exist."; echo

continue # On to next.

fi

NN
w N P O W

ls -1 $file | awk '{ print $8 " file size: " $5 }! # Print 2 fields.
whatis ‘basename $file’ # File info.

N
fIsy

25 # Note that the whatis database needs to have been set up for this to work.
26 # To do this, as root run /usr/bin/makewhatis.

27 echo

28 done

29

30 exit O

The [1ist] in a for loop may be parameterized.

Example 11-4. Operating on a parameterized file list

#!/bin/bash
filename="*txt"

for file in $filename
do

echo "Contents of $file"
echo "——-"

cat "S$file"

echo
done

H O W 0 Jo Ul Wb

=

If the [1ist] in a for loop contains wild cards (* and ?) used in filename expansion, then globbing
takes place.

Example 11-5. Operating on files with a for loop

1 #!/bin/bash

2 # list-glob.sh: Generating [list] in a for-loop, using "globbing"
3 # Globbing = filename expansion.

4

5 echo

6

7 for file in *

8 # ~ Bash performs filename expansion

9 #+ on expressions that globbing recognizes.
10 do
11 ls -1 "$file" # Lists all files in S$PWD (current directory).
12 # Recall that the wild card character "*" matches every filename,
13 #+ however, in "globbing," it doesn't match dot-files.
14
15 # If the pattern matches no file, it is expanded to itself.

16 # To prevent this, set the nullglob option

17 #+ (shopt -s nullglob) .

18 # Thanks, S.C.

19 done
20
21 echo; echo
22
23 for file in [jx]*
24 do
25 rm —f S$file # Removes only files beginning with "j" or "x" in S$PWD.
26 echo "Removed file \"$file\"".
27 done
28
29 echo

30
31 exit O

Omitting the in [1list] part of a for loop causes the loop to operate on $@ -- the positional
parameters. A particularly clever illustration of this is Example A-15. See also Example 15-17.

Example 11-6. Missing in [list] in a for loop

#!/bin/bash

1Invoke this script both with and without arguments,
#+ and see what happens.

for a

do

echo —n "$a "
done

0 J o U b W

=
= o ©

The 'in list' missing, therefore the loop operates on '$Q@'
#+ (command-line argument list, including whitespace) .

B e
Sw N

echo

=
o U

exit O

It is possible to use command substitution to generate the [1ist] in a for loop. See also Example
16-54, Example 11-11 and Example 16-48.

Example 11-7. Generating the [1ist] in a for loop with command substitution

1 #!/bin/bash

2 # for-loopcmd.sh: for-loop with [list]
3 #+ generated by command substitution.

4

5 NUMBERS="9 7 3 8 37.53"

6

7 for number in "“echo $NUMBERS' # for number in 9 7 3 8 37.53
8 do

9 echo -n "S$number "
10 done
11
12 echo
13 exit O

Here is a somewhat more complex example of using command substitution to create the [1ist].

Example 11-8. A grep replacement for binary files

#!/bin/bash
bin-grep.sh: Locates matching strings in a binary file.

A "grep" replacement for binary files.
Similar effect to "grep -a"

o U1 b W N

7
8
9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

E_BADARGS=65
E_NOFILE=66

if [$# -ne 2]
then
echo "Usage: “basename $0° search_string filename"

exit $E_BADARGS
fi
if [! —-f "s2"]
then
echo "File \"$2\" does not exist."
exit $E_NOFILE
fi
IFS=5$'\012" # Per suggestion of Anton Filippov.
was: IFS="\n"
for word in $(strings "$2" | grep "$1")
The "strings" command lists strings in binary files.

Output then piped to "grep", which tests for desired string.
do

echo S$word
done
As S.C. points out, lines 23 - 30 could be replaced with the

strings "$2" | grep "$1" | tr —-s "SIFS" '[\n*]'
Try something like "./bin-grep.sh mem /bin/1ls"
#+ to exercise this script.

exit 0

simpler

More of the same.

Example 11-9. Listing all users on the system

0 J o U W

S I I N N R R e e el e e e
O™ WNRF OWWUIoU s WN R O W

#!/bin/bash
userlist.sh

PASSWORD_FILE=/etc/passwd
n=1 # User number

for name in $(awk 'BEGIN{FS=":"}{print $1}' < "$PASSWORD_FILE"
Field separator = AANNAA
Print first field AANANNNANN
Get input from password file /etc/passwd
do

echo "USER #$n = Sname"

let "n += 1"
done

AAAAAAAAAAAAAAAAA

USER #1 = root

USER #2 bin

USER #3 daemon
#

#

USER #33 = bozo
exit $°?

Discussion:

26 # ——————————

27 # How is it that an ordinary user, or a script run by same,

28 #+ can read /etc/passwd? (Hint: Check the /etc/passwd file permissions.)
29 # 1Is this a security hole? Why or why not?

Yet another example of the [1ist] resulting from command substitution.

Example 11-10. Checking all the binaries in a directory for authorship

1 #!/bin/bash

2 # findstring.sh:

3 # Find a particular string in the binaries in a specified directory.
4

5 directory=/usr/bin/

6 fstring="Free Software Foundation" # See which files come from the FSF.
-

8 for file in $(find Sdirectory -type f -name '*' | sort)

9 do
10 strings —-f $file | grep "Sfstring" | sed -e "s$$directory%$s"

11 # In the "sed" expression,

12 #+ it is necessary to substitute for the normal "/" delimiter

13 #+ because "/" happens to be one of the characters filtered out.
14 # Failure to do so gives an error message. (Try it.)

15 done

16

17 exit $7?

18

19 # Exercise (easy):
20 # @ ———————————

21 # Convert this script to take command-line parameters
22 #+ for $directory and S$fstring.

A final example of [1ist] / command substitution, but this time the "command" is a function.

1 generate_list ()

2 |

3 echo "one two three"
4 }

5

6 for word in $(generate_list) # Let "word" grab output of function.
7 do

8 echo "Sword"

9 done
10
11 # one
12 # two
13 # three

The output of a for loop may be piped to a command or commands.

Example 11-11. Listing the symbolic links in a directory

1 #!/bin/bash

2 # symlinks.sh: Lists symbolic links in a directory.
3

4

5 directory=${1-"pwd }

6 # Defaults to current working directory,

7 #+ if not otherwise specified.

8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

%=

Equivalent to code block below.

__
ARGS=1 # Expect one command-line argument.
#
if [S# —-ne "SARGS"] # If not 1 arg...
then
directory=" pwd’ # current working directory
else
directory=$1
fi
__
echo "symbolic links in directory \"Sdirectory\""
for file in "$(find $directory -type 1)" # —type 1 = symbolic links
do
echo "$file"
done | sort # Otherwise file list is unsorted.

Strictly speaking, a loop isn't really necessary here,
#+ since the output of the "find" command is expanded into a single word.
However, it's easy to understand and illustrative this way.

As Dominik 'Aeneas' Schnitzer points out,

#+ failing to quote $(find $directory -type 1)

#+ will choke on filenames with embedded whitespace.
containing whitespace.

exit O

Jean Helou proposes the following alternative:

echo "symbolic links in directory \"Sdirectory\""

Backup of the current IFS. One can never be too cautious.
OLDIFS=$IFS

IFS=:

for file in $(find $directory -type 1 —-printf "$pSIFS")
do # AAAAAAAAAAAAAAAAN
echo "S$file"
done | sort

And, James "Mike" Conley suggests modifying Helou's code thusly:

OLDIFS=S$IFS
IFS='' # Null IFS means no word breaks
for file in $(find $directory -type 1)
do

echo S$file

done | sort

This works in the "pathological" case of a directory name having

#+ an embedded colon.

"This also fixes the pathological case of the directory name having
#+ a colon (or space in earlier example) as well."

The stdout of a loop may be redirected to a file, as this slight modification to the previous example
shows.

Example 11-12. Symbolic links in a directory, saved to a file

1 #!/bin/bash

2 # symlinks.sh: Lists symbolic links in a directory.

3

4 OUTFILE=symlinks.list # save-file

5

6 directory=${1- pwd }

7 # Defaults to current working directory,

8 #+ if not otherwise specified.

9
10
11 echo "symbolic links in directory \"$directory\"" > "SOUTFILE"
12 eehe Y=———————mcm=scmm—ammcosss=s " >> "SOUTFILE"

13

14 for file in "$(find $directory -type 1)" # —type 1 = symbolic links
15 do

16 echo "$file"

17 done | sort >> "SOUTFILE" # stdout of loop
18 # AANNAANNNANAN redirected to save file.
19
20 # echo "Output file = S$OUTFILE"
21
22 exit $7

There is an alternative syntax to a for loop that will look very familiar to C programmers. This
requires double parentheses.

Example 11-13. A C-style for loop

#!/bin/bash
Multiple ways to count up to 10.

echo

Standard syntax.
for a in 1 2 3 45 6 7 8 9 10
do
echo -n "S$a "
done

0 J o U b W

e e
N P O

echo; echo

=
w

=
IS

+ +

=
o U

Using "seq" ...
for a in “seq 10°
do

echo —-n "S$a "
done

NN PP
N P O O o J

echo; echo

N
w

N
IS

+ +

NN
o U1

Using brace expansion
Bash, version 3+.
for a in {1..10}
do
echo -n "S$a "
done

W wwwbh NN
w N P O W o J

echo; echo

w
IS

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

#+ +

4L

Now, let's do
LIMIT=10
for ((a=1l; a <=
do

echo -n "$a "

done

echo; echo

the same, using C-like syntax.

LIMIT ; a++))

Double parentheses, and naked "LIMIT"

A construct borrowed from ksh93.

#+ +

Let's use the

for ((a=1l, b=1;

4=

C "comma operator" to increment two variables simultaneously.

a <= LIMIT ;

at+, b++))

do # The comma concatenates operations.

echo -n "$a-$b
done
echo; echo

exit O

n

See also Example 27-16, Example 27-17, and Example A-6.

Now, a for loop used in a "real-life" context.

Example 11-14. Using efax in batch mode

0 J o U b W

NN NNDNNR R PR PR
W J U WNE OWOW-UJo U WwhEFE O W

#!/bin/bash

Faxing (must have 'efax' package installed).

EXPECTED_ARGS=2
E_BADARGS=85

MODEM_PORT="/dev/ttyS2"

#

May be different on your machine.

ANNNA PCMCIA modem card default port.

if [$# -ne SEXPECTED_ARGS]
Check for proper number of command-line args.

then
echo "Usage:

"basename $0°

exit S$E_BADARGS

fi

if [! —f "s2"
then

]

phone# text-file"

echo "File $2 is not a text file."
File is not a regular file, or does not exist.
exit S$E_BADARGS

fi

fax make $2

Create fax—-formatted files from text files.

for file in $(ls $2.0%*) # Concatenate the converted files.
Uses wild card (filename "globbing")

while

29 #+ in variable list.

30 do

31 fil="S5fil S$file"

32 done

33

34 efax —-d "SMODEM_PORT" -t "TS$S1" Sfil # Finally, do the work.
35 # Trying adding -0l if above line fails.

36

37

38 # As S.C. points out, the for-loop can be eliminated with
39 # efax -d /dev/ttyS2 -ol -t "TS$1" $2.0%*

40 #+ but it's not quite as instructive [grin].

41

42 exit $7? # Also, efax sends diagnostic messages to stdout.

=) The keywords do and done delineate the for-loop command block. However, these
may, in certain contexts, be omitted by framing the command block within curly
brackets

for((n=1; n<=10; n++))
No do!
{

echo -n "k $Tl *n

No done!

O J o U WwN
H

e
=

Outputs:

lO * 1 * x 2 * % 3 * x 4 * % 5 * x 6 * % 7 * x 8 * % 9 * x lO *

11 # And, echo $? returns 0, so Bash does not register an error.
12

13

14 echo

15

16

17 # But, note that in a classic for-loop: for n in [list]
18 #+ a terminal semicolon is required.

19

20 for n in 1 2 3

21 { echo -n "$n "; }

22 # ~

23

24

25 # Thank you, YongYe, for pointing this out.

=

This construct tests for a condition at the top of a loop, and keeps looping as long as that condition is
true (returns a 0 exit status). In contrast to a for loop, a while loop finds use in situations where the
number of loop repetitions is not known beforehand.

while [condition]
do

command (s) ...
done

The bracket construct in a while loop is nothing more than our old friend, the test brackets used in an

if/then test. In fact, a while loop can legally use the more versatile double-brackets construct (while [[
condition]]).

As is the case with for loops, placing the do on the same line as the condition test requires a

semicolon.
while [condition];do

Note that the fest brackets are not mandatory in a while loop. See, for example, the getopts construct.

Example 11-15. Simple while loop

#!/bin/bash

var0=0
LIMIT=10

while ["$varO" -1t "SLIMIT"]
A A
Spaces, because these are "test-brackets"
do
echo -n "$var0 " # —-n suppresses newline.
A Space, to separate printed out numbers.

QO ~J oy U WN

=
w N P oW

var0=$ ((Svar0+1)) also works.
var0=$ ((var0 + 1)) also works.
let "var0Q += 1" also works.
Various other methods also work.

var0="expr S$var0 + 1°

N
o U1

done

=
o

echo

N B
[@2ANe]

exit O

Example 11-16. Another while loop

1 #!/bin/bash

2

3 echo

4 # Equivalent to:

5 while ["$varl" != "end"] # while test "S$varl" != "end"
6 do

7 echo "Input variable #1 (end to exit) "

8 read varl # Not 'read S$Svarl' (why?).

9 echo "variable #1 = S$varl" # Need quotes because of "#"
10 # If input is 'end', echoes it here.
11 # Does not test for termination condition until top of loop.
12 echo
13 done
14
15 exit O

A while loop may have multiple conditions. Only the final condition determines when the loop
terminates. This necessitates a slightly different loop syntax, however.

Example 11-17. while loop with multiple conditions

1 #!/bin/bash
2
3 varl=unset

4 previous=S$varl

5

6 while echo "previous-variable = $previous"

7 echo

8 previous=$varl

9 ["Svarl" != end] # Keeps track of what S$varl was previously.
10 # Four conditions on *while*, but only the final one controls loop.
11 # The *last* exit status is the one that counts.
12 do
13 echo "Input variable #1 (end to exit) "
14 read varl
15 echo "variable #1 = Svarl"
16 done
17

18 # Try to figure out how this all works.
19 # It's a wee bit tricky.

20

21 exit O

As with a for loop, a while loop may employ C-style syntax by using the double-parentheses construct
(see also Example 8-5).

Example 11-18. C-style syntax in a while loop

#!/bin/bash
wh-loopc.sh: Count to 10 in a "while" loop.

LIMIT=10 # 10 iterations.
a=1

while ["$a" -le SLIMIT]
do
echo -n "S$a "
let "at+=1"
done # No surprises, so far.

0 J o U b W

=
W N~ oW

echo; echo

=
IS

=
a1

+ +

=
< o

Now, we'll repeat with C-like syntax.

=
© ©

((a = 1)) # a=1
Double parentheses permit space when setting a variable, as in C.

N NN
N O

while ((a <= LIMIT)) # Double parentheses,
do #+ and no "$" preceding variables.

echo -n "$a "

((a += 1)) # let "a+=1"

Yes, indeed.

Double parentheses permit incrementing a variable with C-like syntax.
done

WNDNDDNDDNDDNDDNDDN
O W 0 J o Ul b W

echo

w W
N -

C and Java programmers can feel right at home in Bash.

w W
DSw

exit O

Inside its test brackets, a while loop can call a function.

1 t=0

2

3 condition ()

4 {

3 ((t++))

6

7 if [$t -1t 5]

8 then

9 return 0 # true
10 else

11 return 1 # false
12 fi

13 }
14
15 while condition
16 # AANAARAAA
17 # Function call —-- four loop iterations.
18 do
19 echo "Still going: t = $t"
20 done
21
22 # Still going: t =1
23 # Still going: t = 2
24 # Still going: t = 3
25 # Still going: t = 4

Similar to the if-test construct, a while loop can omit the test brackets.

1 while condition
2 do

3 command (s)

4 done

By coupling the power of the read command with a while loop, we get the handy while read construct,
useful for reading and parsing files.

cat S$filename | # Supply input from a file.
while read line # As long as there is another line to read
do

© J oUW
Q.
O
5]
(0}

=========== Snippet from "sd.sh" example script ==========
9 while read value # Read one data point at a time.
10 do
11 rt=$ (echo "scale=$SC; S$rt + S$Svalue" | bc)
12 ((ct+t+))
13 done
14
15 am=$ (echo "scale=$SC; rt / SSct" | bc)
16
17 echo $am; return S$Sct # This function "returns" TWO values!
18 # Caution: This little trick will not work if $ct > 255!
19 # To handle a larger number of data points,
20 #+ simply comment out the "return $ct" above.
21 } <"Sdatafile" # Feed in data file.

;' A while loop may have its stdin redirected to a file by a < at its end.

A while loop may have its stdin _supplied by a pipe.

until
This construct tests for a condition at the top of a loop, and keeps looping as long as that condition is
false (opposite of while loop).

until [condition—-is-true]
do

command (s) ...
done

Note that an until loop tests for the terminating condition at the top of the loop, differing from a
similar construct in some programming languages.

As is the case with for loops, placing the do on the same line as the condition test requires a
semicolon.

until [condition—-is-true];do

Example 11-19. until loop

1 #!/bin/bash

2

3 END_CONDITION=end

4

5 until ["$varl" = "SEND_CONDITION"]

6 # Tests condition here, at top of loop.
7 do

8 echo "Input variable #1 "

9 echo " (SEND_CONDITION to exit)"
10 read varl
11 echo "variable #1 = Svarl"
12 echo
13 done
14
15 # S #
16

17 # As with "for" and "while" loops,
18 #+ an "until" loop permits C-like test constructs.

20 LIMIT=10
21 var=0

23 until ((var > LIMIT))

24 do # " 7 ~ an No brackets, no $ prefixing variables.
25 echo -n "S$var "

26 ((var++))

27 done # 012 345%6 78910

30 exit O

How to choose between a for loop or a while loop or until loop? In C, you would typically use a for loop
when the number of loop iterations is known beforehand. With Bash, however, the situation is fuzzier. The
Bash for loop is more loosely structured and more flexible than its equivalent in other languages. Therefore,
feel free to use whatever type of loop gets the job done in the simplest way.

Notes

1 [Iteration: Repeated execution of a command or group of commands, usually -- but not always, while a
1Y group y y
given condition holds, or until a given condition is met.

Prev Home Next
Parameter Substitution Up Nested Loops
Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Chapter 11. Loops and Branches Next

11.2. Nested Loops

A nested loop is a loop within a loop, an inner loop within the body of an outer one. How this works is that
the first pass of the outer loop triggers the inner loop, which executes to completion. Then the second pass of
the outer loop triggers the inner loop again. This repeats until the outer loop finishes. Of course, a break
within either the inner or outer loop would interrupt this process.

Example 11-20. Nested Loop

1 #!/bin/bash

2 # nested-loop.sh: Nested "for" loops.

3

4 outer=1l # Set outer loop counter.
5

6 # Beginning of outer loop.

7 for a in 1 2 3 4 5

8 do
9 echo "Pass Souter in outer loop."
10 QERE Yoo "
11 inner=1 # Reset inner loop counter.
12
13 # ===
14 # Beginning of inner loop.
15 for b in 1 2 3 4 5
16 do
17 echo "Pass $inner in inner loop."
18 let "inner+=1" # Increment inner loop counter.
19 done
20 # End of inner loop.
21 # ===
22
23 let "outer+=1" # Increment outer loop counter.
24 echo # Space between output blocks in pass of outer loop.
25 done
26 # End of outer loop.
27
28 exit O

See Example 27-11 for an illustration of nested while loops, and Example 27-13 to see a while loop nested
inside an until loop.

Prev Home Next
Loops and Branches Up Loop Control
Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Chapter 11. Loops and Branches Next

11.3. Loop Control

Commands affecting loop behavior

break, continue
The break and continue loop control commands [1] correspond exactly to their counterparts in other
programming languages. The break command terminates the loop (breaks out of it), while continue
causes a jump to the next iteration of the loop, skipping all the remaining commands in that particular
loop cycle.

Tournez cent tours, tournez mille tours,
Tournez souvent et tournez toujours . . .

--Verlaine, "Chevaux de bois"

Example 11-21. Effects of break and continue in a loop

QO ~J oy U WN

e

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

#!/bin/bash

LIMIT=19

echo

echo "Printing Numbers 1 through 20

a=0
while [$a —-le
do

a=$((sa+l))

if [
then

continue
fi

"$a" -eq

echo -n "$a "

done

Exercise:
Why does the

echo; echo

echo Printing Numbers 1 through 20,

Upper limit

"SLIMIT"]

"$a"

31 0 I

Skip rest

This will

loop print up

(but not 3 and 11)."

-eq 11] # Excludes 3 and 11.

of this particular loop iteration.

not execute for 3 and 11.

to 207

but something happens after 2.

FHE AR A A A A R R A R R R R A

Same loop,

a=0
while ["Sa"
do
a=$((sa+l))
lf [v|$a" *gt
then

break
fi

-le

but substituting

"SLIMIT"]

21

'break' for 'continue'.

Skip entire rest of loop.

44 echo -n "Sa "
45 done

46

47 echo; echo; echo
48

49 exit 0

The break command may optionally take a parameter. A plain break terminates only the innermost
loop in which it is embedded, but a break N breaks out of N levels of loop.

Example 11-22. Breaking out of multiple loop levels

1 #!/bin/bash

2 # break-levels.sh: Breaking out of loops.

3

4 # "break N" breaks out of N level loops.

5

6 for outerloop in 1 2 3 4 5

7 do

8 echo -n "Group Souterloop: "

9

10 fif =emmmmmmsmemessesssesssesssssssessssssoess e e e sae=
11 for innerloop in 1 2 3 4 5

12 do

13 echo -n "S$innerloop "

14

15 if ["Sinnerloop" -eqg 3]

16 then

17 break # Try break 2 to see what happens.

18 # ("Breaks" out of both inner and outer loops.)
19 fi
20 done
21 e e e e e e e e e e e e e e e e e D D S
22

23 echo

24 done

25

26 echo

27

28 exit O

The continue command, similar to break, optionally takes a parameter. A plain continue cuts short
the current iteration within its loop and begins the next. A continue N terminates all remaining
iterations at its loop level and continues with the next iteration at the loop, N levels above.

Example 11-23. Continuing at a higher loop level

1 #!/bin/bash
2 # The "continue N" command, continuing at the Nth level loop.

3

4 for outer in I II III IV V # outer loop

5 do

6 echo; echo -n "Group $outer: "

9
e
9 for inner in 1 2 3 45 6 7 8 9 10 # inner loop
10 do
11

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

if [["$inner" -eq 7 && "Souter" = "III"]]
then
continue 2 # Continue at loop on 2nd level, that is "outer loop".
Replace above line with a simple "continue"
to see normal loop behavior.
fi
echo -n "$inner " # 7 8 9 10 will not echo on "Group III."
done
__
done
echo; echo

Exercise:
Come up with a meaningful use for "continue N" in a script.

exit O

Example 11-24. Using continue N in an actual task

Albert Reiner gives an example of how to use "continue N":

Suppose I have a large number of Jjobs that need to be run, with
#+ any data that is to be treated in files of a given name pattern
#+ in a directory. There are several machines that access

#+ this directory, and I want to distribute the work over these

#+ different boxen.

Then I usually nohup something like the following on every box:

while true

do
for n in .iso.*
do
["Sn" = ".iso.opts"] && continue
beta=${n#.1iso0.}
[—-r .Iso.Sbeta] && continue
[—r .lock.Sbeta] && sleep 10 && continue
lockfile —-r0 .lock.Sbeta || continue
echo -n "Sbeta: " “date’
run—-isotherm S$beta
date
ls —alF .Iso.Sbeta
[-r .Iso.Sbeta] && rm —-f .lock.S$Sbeta
continue 2
done
break
done
exit O
The details, in particular the sleep N, are particular to my

#+ application, but the general pattern is:

while true

do
for job in {pattern}
do
{job already done or running} && continue
{mark job as running, do job, mark job as done}

41 continue 2

42 done

43 break # Or something like “sleep 600' to avoid termination.
44 done

45

46 # This way the script will stop only when there are no more jobs to do
47 #+ (including Jjobs that were added during runtime). Through the use

48 #+ of appropriate lockfiles it can be run on several machines

49 #+ concurrently without duplication of calculations [which run a couple
50 #+ of hours in my case, so I really want to avoid this]. Also, as search
51 #+ always starts again from the beginning, one can encode priorities in
52 #+ the file names. Of course, one could also do this without ‘continue 2°',
53 #+ but then one would have to actually check whether or not some job

54 #+ was done (so that we should immediately look for the next job) or not
55 #+ (in which case we terminate or sleep for a long time before checking
56 #+ for a new job) .

<1 The continue N construct is difficult to understand and tricky to use in any
meaningful context. It is probably best avoided.

Notes

[1] These are shell builtins, whereas other loop commands, such as while and case, are keywords.

Prev Home Next
Nested Loops Up Testing and Branching
Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Chapter 11. Loops and Branches Next

11.4. Testing and Branching

The case and select constructs are technically not loops, since they do not iterate the execution of a code
block. Like loops, however, they direct program flow according to conditions at the top or bottom of the
block.

Controlling program flow in a code block

case (in) / esac
The case construct is the shell scripting analog to switch in C/C++. It permits branching to one of a
number of code blocks, depending on condition tests. It serves as a kind of shorthand for multiple
if/then/else statements and is an appropriate tool for creating menus.

case "$variable" in

"$conditionl")
command...

ER]

"$condition2")
command...

5
esac

¢ Quoting the variables is not mandatory, since word splitting does not take
place.

O Each test line ends with a right paren). [1]

¢ Each condition block ends with a double semicolon ;;.

O If a condition tests true, then the associated commands execute and the case
block terminates.

O The entire case block ends with an esac (case spelled backwards).

Example 11-25. Using case

#!/bin/bash
Testing ranges of characters.

echo; echo "Hit a key, then hit return."
read Keypress

case "SKeypress" in
[[:1lower:]]) echo "Lowercase letter";;
[[:upper:]]) echo "Uppercase letter";;
[0-9]) echo "Digit";;
*) echo "Punctuation, whitespace, or other";;
esac # Allows ranges of characters in [square brackets],
#+ or POSIX ranges in [[double square brackets.

O ~J o U W

e e T e
O WN P oo

In the first version of this example,

#+ the tests for lowercase and uppercase characters were

#+ [a-z] and [A-Z].

18 # This no longer works in certain locales and/or Linux distros.

=
< o

19
20
21
22
23
24
25
26
27
28
29

%=

ex

POSIX is more portable.

Thanks to Frank Wang for pointing this out.

Exercise:

As the script stands, it accepts a single keystroke,
Change the script so it accepts repeated input,

then terminates.

reports on each keystroke, and terminates only when "X" is hit.

Hint: enclose everything in a "while" loop.

it 0

Example 11-26. Creating menus using case

0 J o U W

e

10
11
12
13
14
15
16
17
18
19

#!

#

cl

E@
E@
E@
@C
@C
@C
@C
@C
@C

e

ca

/bin/bash

Crude address database

ear # Clear the screen.

ho " Contact List"

e v E=mmse= ==== "

ho "Choose one of the following persons:
ho

ho "[E]vans, Roland"

ho "[J]ones, Mildred"

ho "[S]mith, Julie"

ho "[Z]ane, Morris"

ho

ad person

se "Sperson" in

20 # Note variable is quoted.

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

#

#

"E" | "e")

Accept upper or lowercase input.
echo

echo "Roland Evans"

echo "4321 Flash Dr."

echo "Hardscrabble, CO 80753"

echo " (303) 734-9874"

echo " (303) 734-9892 fax"

echo "revans@zzy.net"

echo "Business partner & old friend"

rr

Note double semicolon to terminate each option.

VA B R

echo

echo "Mildred Jones"

echo "249 E. 7th St., Apt. 19"
echo "New York, NY 10009"

echo " (212) 533-2814"

echo " (212) 533-9972 fax"

echo "milliej@loisaida.com"
echo "Ex—girlfriend"

echo "Birthday: Feb. 11"

rr

Add info for Smith & Zane later.

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

)

g RETURN) fits here, too.

Default option.
Empty input (hittin
echo
echo "Not yet in database."
i
esac
echo
Exercise:

Change the script so
#+ instead of terminatin

exit O

it accepts multiple inputs,
g after displaying just one address.

An exceptionally clever use of case involves testing for command-line parameters.

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17

#! /bin/bash

case "$1" in
"") echo "Usage: ${0##

*/} <filename>"; exit S$E_PARAM; ;

No command-line parameters,

#
Note that S{O0##*/} is

or first parameter empty.
S{varf#pattern} param substitution.

Net result is $0.

—-*) FILENAME=./S$1;;
#+
#+
#+
#+

*) FILENAME=S1;;
esac

If filename passed as argument ($1)
starts with a dash,

replace it with ./$1

so further commands don't interpret it
as an option.

Otherwise, $1.

Here is a more straightforward example of command-line parameter handling:

1
2
3
4
5
6
9
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

#! /bin/bash
while [$# -gt 0]; do # Until you run out of parameters
case "$1" in
—d|——debug)
"-d" or "--debug" parameter?
DEBUG=1
I
—c|——conf)
CONFFILE="S2"
shift
if [! —f SCONFFILE]; then
echo "Error: Supplied file doesn't exist!"
exit SE_CONFFILE # File not found error.
fi
I
esac
shift # Check next set of parameters.
done
From Stefano Falsetto's "Log2Rot" script,

#+ part of his "rottlog"
Used with permission.

package.

Example 11-27. Using command substitution to generate the case variable

1 #!/bin/bash

2 # case-cmd.sh: Using command substitution to generate a "case" variable.
3

4 case $(arch) in # $(arch) returns machine architecture.
5 # Equivalent to 'uname -m'

6 1386) echo "80386-based machine";;

7 1486) echo "80486-based machine";;

8 1586) echo "Pentium-based machine";;

9 1686) echo "Pentium2+-based machine";;
10 &) echo "Other type of machine";;
11 esac
12
13 exit O

A case construct can filter strings for globbing patterns.

Example 11-28. Simple string matching

#!/bin/bash
match-string.sh: Simple string matching
using a 'case' construct.

match_string ()
{ # Exact string match.
MATCH=0
E_NOMATCH=90
PARAMS=2 # Function requires 2 arguments.
E_BAD_PARAMS=91

O J o U W N

o e
N P O W

[S# —eq SPARAMS] || return SE_BAD_PARAMS

o
N

case "$1" in

"$2") return SMATCH; ;

*) return S$E_NOMATCH; ;
esac

NN R R R e
NP O W oo Ul
—

a=one
b=two
c=three
d=two

NN DN DN DN DN
O J o U B> W

match_string $a # wrong number of parameters
echo $7? # 91

w w N
= O w0

match_string $a $b # no match
echo $? # 90

w w W
Sw N

match_string $b $d # match
echo $? # 0

w w w w
0 J o U

exit O

Example 11-29. Checking for alphabetic input

#!/bin/bash
isalpha.sh: Using a "case" structure to filter a string.

SUCCESS=0
FAILURE=1 # Was FAILURE=-1,
#+ but Bash no longer allows negative return value.

0 J o U W

isalpha () # Tests whether *first character* of input string is alphabetic.
{

10 if [-z "s$1"] # No argument passed?

11 then

12 return S$SFAILURE

13 fi

14

15 case "$1" in

16 [a—zA-Z]*) return S$SUCCESS;; # Begins with a letter?

17 &) return SFAILURE;;

18 esac

19 } # Compare this with "isalpha ()" function in C.
20

21

22 isalphaz () # Tests whether *entire string* is alphabetic.
23 {

24 [$# —eg 1] || return SFAILURE

25

26 case $1 in

27 *[la-zA-Z]*|"") return SFAILURE;;

28 *) return S$SUCCESS;;

29 esac

30 }

31

32 isdigit () # Tests whether *entire string* is numerical.
33 { # In other words, tests for integer variable.
34 [$# —eg 1] || return SFAILURE

35

36 case $1 in

37 *[10-9]1*|"") return SFAILURE;;

38 *) return S$SSUCCESS;;

39 esac

40 }

41

42

43

44 check_var () # Front-end to isalpha ().

45 {

46 if isalpha "s@"

47 then

48 echo "\"$*\" begins with an alpha character."

49 if isalpha2 "$@"

]

50 then # No point in testing if first char is non-alpha.
51 echo "\"$*\" contains only alpha characters."

52 else

53 echo "\"$*\" contains at least one non-alpha character."

54 fi

55 else

56 echo "\"$*\" begins with a non-alpha character."

57 # Also "non-alpha" if no argument passed.

58 fi

59

60 echo

select

61

62 }

63

64 digit_check () # Front-end to isdigit ().

65 {

66 if isdigit "S$@"

67 then

68 echo "\"$*\" contains only digits [0 - 9]."
69 else

70 echo "\"$*\" has at least one non-digit character."
71 fi

72

73 echo

74

75 }

76

77 a=23skidoo

78 b=H31llo

79 c=-What?

80 d=What?

81 e=$ (echo $b) # Command substitution.

82 f=AbcDef

83 g=27234

84 h=27a34

85 1i=27.34

86

87 check_var Sa

88 check_var S$b

89 check_var Sc

90 check_var $d

91 check_var Se

92 check_var S$f

93 check_var # No argument passed, so what happens?
94 #

95 digit_check $g

96 digit_check $h

97 digit_check $i

98

99
100 exit O # Script improved by S.C.
101
102 # Exercise:
103 # ———————~
104 # Write an 'isfloat ()' function that tests for floating point numbers.
105 # Hint: The function duplicates 'isdigit () ',
106 #+ but adds a test for a mandatory decimal point.

The select construct, adopted from the Korn Shell, is yet another tool for building menus.

select variable [in 11ist]
do

command...

break
done

This prompts the user to enter one of the choices presented in the variable list. Note that select uses
the $PS3 prompt (4 ?) by default, but this may be changed.

Example 11-30. Creating menus using select

O J oy U W

SIS I S R R e T e e e e
DWW N R O WL do 0l d Wl O W

#!/bin/bash
PS3='Choose your favorite vegetable: ' # Sets the prompt string.
Otherwise it defaults to #7?

echo
select vegetable in "beans" "carrots" "potatoes" "onions" "rutabagas"
do

echo

echo "Your favorite veggie is $vegetable."

echo "Yuck!"

echo

break # What happens if there is no 'break' here?
done
exit

Exercise:

Fix this script to accept user input not specified in

#+ the "select" statement.

For example, if the user inputs "peas,"

#+ the script would respond "Sorry. That is not on the menu."

If in

list is omitted, then select uses the list of command line arguments ($@) passed to the script

or the function containing the select construct.

Compare this to the behavior of a

for variable[in 1ist]

construct with the in 1ist omitted.

Example 11-31. Creating menus using select in a function

0 J o U W

N NN R R R R
DWW R O W -Jdo b Wl P oW

#!/bin/bash
PS3="'Choose your favorite vegetable: '
echo

choice_of ()
{
select vegetable
[in list] omitted, so 'select' uses arguments passed to function.
do
echo

echo "Your favorite veggie 1is Svegetable."
echo "Yuck!"
echo
break
done
}
choice_of beans rice carrots radishes rutabaga spinach

Sl 512 S3 $4 S5 $6
passed to choice_of () function
exit O

See also Example 37-3.

Notes

[1] Pattern-match lines may also start with a (left paren to give the layout a more structured appearance.

1 case $(arch) in # $(arch) returns machine architecture.

2 (1386) echo "80386-based machine";;

3% 7 ~

4 (1486) echo "80486-based machine";;

5 (1586) echo "Pentium-based machine";;

6 (1686) echo "Pentium2+-based machine";;

7 (*) echo "Other type of machine";;

8 esac
Prev Home Next
Loop Control Up Command Substitution

Prev

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting

Z

€X

Chapter 12. Command Substitution

Command substitution reassigns the output of a command [1] or even multiple commands; it literally plugs
the command output into another context. [2]

The classic form of command substitution uses backquotes ("..."). Commands within backquotes (backticks)
generate command-line text.

1
2

script_name="basename $0°
echo "The name of this script is $script_name."

The output of commands can be used as arguments to another command, to set a variable, and even for
generating the argument list in a for loop.

O J o U WwN

e

10
11
12
13
14
15
16
17
18
19
20
21
22

rm "“cat filename® # "filename" contains a list of files to delete.
#

S. C. points out that "arg list too long" error might result.

Better is xargs rm —— < filename

(—— covers those cases where "filename" begins with a "-")

textfile_listing="1ls *.txt'
Variable contains names of all *.txt files in current working directory.
echo S$textfile_listing

textfile_listing2=$(ls *.txt) # The alternative form of command substitution.
echo S$textfile_listing2
Same result.

A possible problem with putting a list of files into a single string

is that a newline may creep in.

shopt -s nullglob # If no match, filename expands to nothing.

#
#
#
A safer way to assign a list of files to a parameter is with an array.
#
textfile_listing=(*.txt)

#

Thanks, S.C.

&) Command substitution invokes a subshell.

<1 Command substitution may result in word splitting.

1 COMMAND "“echo a b # 2 args: a and b
2

3 COMMAND "'echo a b™" # 1 arg: "a b"

4

5 COMMAND " echo’ # no arg

6

7 COMMAND "“echo™ " # one empty arg

8

9
10 # Thanks, S.C.

Even when there is no word splitting, command substitution can remove trailing newlines.

cd "'pwd' " # This should always work.
However...

mkdir 'dir with trailing newline
|l

cd 'dir with trailing newline
|l

O 0 J o U b W

10 cd ""pwd " # Error message:
11 # bash: cd: /tmp/file with trailing newline: No such file or directory

12

13 cd "SPWD" # Works fine.

14

15

16

17

18

19 old_tty_setting=$(stty —qg) # Save old terminal setting.

20 echo "Hit a key "

21 stty —-icanon -echo # Disable "canonical" mode for terminal.
22 # Also, disable *local* echo.

23 key=$(dd bs=1 count=1 2> /dev/null) # Using 'dd' to get a keypress.
24 stty "$old_tty_setting" # Restore old setting.

25 echo "You hit ${#key} key." # S${#variable} = number of characters in $variable
26 #

27 # Hit any key except RETURN, and the output is "You hit 1 key."
28 # Hit RETURN, and it's "You hit 0 key."

29 # The newline gets eaten in the command substitution.

30

31 #Code snippet by Stéphane Chazelas.

<1> Using echo to output an unquoted variable set with command substitution removes trailing newlines
characters from the output of the reassigned command(s). This can cause unpleasant surprises.

1 dir_listing="1s -1°

2 echo $dir_listing # unquoted

3

4 # Expecting a nicely ordered directory listing.

5

6 # However, what you get is:

7 # total 3 -rw-rw-r—— 1 bozo bozo 30 May 13 17:15 1.txt —-rw-rw-r—-—- 1 bozo
8 # bozo 51 May 15 20:57 t2.sh —-rwxr-xr-x 1 bozo bozo 217 Mar 5 21:13 wi.sh
9
10 # The newlines disappeared.
11
12
13 echo "$dir_listing" # quoted
14 # -rw-rw-r—— 1 bozo 30 May 13 17:15 1.txt
15 # —rw-rw-r—— 1 bozo 51 May 15 20:57 t2.sh
16 # —rwxr—-xr—-x 1 bozo 217 Mar 5 21:13 wi.sh

Command substitution even permits setting a variable to the contents of a file, using either redirection or the
cat command.

1 variablel="<filel" # Set "variablel" to contents of "filel".

2 variable2="cat file2" # Set "variable2" to contents of "file2".

3 # This, however, forks a new process,

4 #+ so the line of code executes slower than the above version.
5

6 # Note that the variables may contain embedded whitespace,

7 #+ or even (horrors), control characters.

8

9 # It i1s not necessary to explicitly assign a variable.
10 echo "° <SSO " # Echoes the script itself to stdout.

Excerpts from system file, /etc/rc.d/rc.sysinit
#+ (on a Red Hat Linux installation)

if [—-f /fsckoptions]; then
fsckoptions="cat /fsckoptions"’

0 J o U W

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

#
#
if

fi

-

fi

-

fi

[—e "/proc/ide/${disk[Sdevice] }/media"] ; then
hdmedia="cat /proc/ide/${disk[S$device]}/media’

[! =n "‘uname -r | grep —— "-"""]; then
ktag=""cat /proc/version'"

[Susb = "1"]; then

sleep 5

mouseoutput="cat /proc/bus/usb/devices 2>/dev/null|grep -E ""~I.*Cls=03.*Prot=02""
kbdoutput="cat /proc/bus/usb/devices 2>/dev/null|grep -E ""~I.*Cls=03.*Prot=01""

<1 Do not set a variable to the contents of a long text file unless you have a very good reason for doing so.
Do not set a variable to the contents of a binary file, even as a joke.

Example 12-1. Stupid script tricks

O J oUW N

NeJ

10
11
12
13
14
15
16
17
18
19
20
21

#!/bin/bash
stupid-script-tricks.sh: Don't try this at home, folks.
From "Stupid Script Tricks," Volume I.

exit 99 ### Comment out this line if you dare.

dangerous_variable="cat /boot/vmlinuz’ # The compressed Linux kernel itself.
echo "string-length of \$dangerous_variable = ${#dangerous_variable}"

string-length of $dangerous_variable = 794151

(Newer kernels are bigger.)

Does not give same count as 'wc -c /boot/vmlinuz'.

echo "$dangerous_variable"

Don't try this! It would hang the script.

The document author is aware of no useful applications for

#+ setting a variable to the contents of a binary file.

exit O

Notice that a buffer overrun does not occur. This is one instance where an interpreted language, such as
Bash, provides more protection from programmer mistakes than a compiled language.

Command substitution permits setting a variable to the output of a loop. The key to this is grabbing the output
of an echo command within the loop.

Example 12-2. Generating a variable from a loop

1
2
3

#!/bin/bash
csubloop.sh: Setting a variable to the output of a loop.

variablel="for i in 1 2 3 4 5

5 do
6 echo -n "$i" # The 'echo' command is critical
7 done’ #+ to command substitution here.
8
9 echo "variablel = S$variablel" # variablel = 12345
10
11
12 i=0
13 variable2="while ["$i" -1t 10]
14 do
15 echo -n "$i" # Again, the necessary 'echo'.
16 let "i += 1" # Increment.
17 done’
18
19 echo "variable2 = S$variable2" # variable2 = 0123456789
20

21 # Demonstrates that it's possible to embed a loop
22 #+ inside a variable declaration.

23

24 exit 0

Command substitution makes it possible to extend the toolset available to Bash. It is simply a matter of
writing a program or script that outputs to st dout (like a well-behaved UNIX tool should) and assigning
that output to a variable.

1 #include <stdio.h>

2

3 /* "Hello, world." C program */
4

5 int main ()

6 {

7 printf("Hello, world.\n");

8 return (0);

9 }

bash$ gcec —-o hello hello.c

1 #!/bin/bash

2 # hello.sh

3

4 greeting="./hello"
5 echo $greeting

bash$ sh hello.sh
Hello, world.

&) The $(...) form has superseded backticks for command substitution.

output=$(sed —-n /"S$1"/p S$file) # From "grp.sh" example.

File_contentsl=$(cat S$filel)

1

2

3 # Setting a variable to the contents of a text file.

4

5 File_contents2=$ (<$file2) # Bash permits this also.

The $(...) form of command substitution treats a double backslash in a different way than "...".

bash$ echo “echo \\°

bash$ echo $(echo \\)
\

The $(...) form of command substitution permits nesting. [3]

1 word_count=$(wc -w $(echo * | awk '{print $8}'))

Or, for something a bit more elaborate . . .

Example 12-3. Finding anagrams

1 #!/bin/bash
2 # agram2.sh
3 # Example of nested command substitution.
4
5 # Uses "anagram" utility
6 #+ that is part of the author's "yawl" word list package.
7 # http://ibiblio.org/pub/Linux/libs/yawl-0.3.2.tar.gz
8 # http://bash.deta.in/yawl-0.3.2.tar.gz
9
10 E_NOARGS=86
11 E_BADARG=87
12 MINLEN=7
13
14 if [-z "$1"]
15 then
16 echo "Usage $0 LETTERSET"
17 exit S$E_NOARGS # Script needs a command-line argument.
18 elif [${#1} -1t SMINLEN]
19 then
20 echo "Argument must have at least S$MINLEN letters."
21 exit S$E_BADARG
22 fi
23
24
25
26 FILTER="....... ! # Must have at least 7 letters.
27 # 1234567
28 Anagrams=($(echo $(anagram $1 | grep SFILTER)))
29 # S ($(nested command sub.))
30 # (array assignment)
31
32 echo
33 echo "S${#Anagrams[*]} 7+ letter anagrams found"
34 echo
35 echo ${Anagrams[0]} # First anagram.
36 echo ${Anagrams[1]} # Second anagram.
37 # Etc.
38
39 # echo "S${Anagrams[*]}" # To list all the anagrams in a single line
40
41 # Look ahead to the Arrays chapter for enlightenment on
42 #+ what's going on here.
43
44 # See also the agram.sh script for an exercise in anagram finding.
45
46 exit $°?

Examples of command substitution in shell scripts:

1. Example 11-8
2. Example 11-27
3. Example 9-16

. Example 16-3
. Example 16-22
. Example 16-17
. Example 16-54
.Example 11-14
9. Example 11-11
10. Example 16-32
11. Example 20-8
12. Example A-16
13. Example 29-3
14. Example 16-47
15. Example 16-48
16. Example 16-49

[e BN e U, I S

Notes

[1] For purposes of command substitution, a command may be an external system command, an internal
scripting builtin, or even a script function.

[2] In a more technically correct sense, command substitution extracts the st dout of a command, then
assigns it to a variable using the = operator.

[3] In fact, nesting with backticks is also possible, but only by escaping the inner backticks, as John Default

points out.
1 word_count=" wc -w \'echo * | awk '{print $8}'\" °
Prev Home Next
Testing and Branching Up Arithmetic Expansion

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting

Z

Prev ex

Chapter 13. Arithmetic Expansion

Arithmetic expansion provides a powerful tool for performing (integer) arithmetic operations in scripts.
Translating a string into a numerical expression is relatively straightforward using backticks, double
parentheses, or let.

Variations

Arithmetic expansion with backticks (often used in conjunction with expr)

1

z="expr $z + 3° # The 'expr' command performs the expansion.

Arithmetic expansion with double parentheses, and using let
The use of backticks (backquotes) in arithmetic expansion has been superseded by double parentheses

- ((

0 J o U W

e

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

...))and $((...)) -- and also by the very convenient let construction.

z=5((Sz+3))

z=5((z+3)) # Also correct.
Within double parentheses,
#+ parameter dereferencing
#+ is optional.

S ((EXPRESSION)) is arithmetic expansion. # Not to be confused with
#+ command substitution.

You may also use operations within double parentheses without assignment.

n=0
echo "n = $n" # n =20
((n += 1)) # Increment.
((Sn += 1)) is incorrect!
echo "n = $n" #n =1
let z=z+3
let "z += 3" # Quotes permit the use of spaces in variable assignment.
The 'let' operator actually performs arithmetic evaluation,
#+ rather than expansion.

Examples of arithmetic expansion in scripts:

1. Example 16-9
2. Example 11-15
3. Example 27-1
4. Example 27-11
5. Example A-16

Prev Home Next
Command Substitution Up Recess Time
Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Next

Chapter 14. Recess Time

This bizarre little intermission gives the reader a chance to relax and maybe laugh a bit.

Fellow Linux user, greetings! You are reading something which
will bring you luck and good fortune. Just e-mail a copy of

this document to 10 of your friends. Before making the copies,
send a 100-line Bash script to the first person on the list

at the bottom of this letter. Then delete their name and add
yours to the bottom of the list.

Don't break the chain! Make the copies within 48 hours.
Wilfred P. of Brooklyn failed to send out his ten copies and
woke the next morning to find his job description changed

to "COBOL programmer." Howard L. of Newport News sent
out his ten copies and within a month had enough hardware
to build a 100-node Beowulf cluster dedicated to playing
Tuxracer. Amelia V. of Chicago laughed at this letter

and broke the chain. Shortly thereafter, a fire broke out

in her terminal and she now spends her days writing
documentation for MS Windows.

Don't break the chain! Send out your ten copies today!

Courtesy 'NIX "fortune cookies", with some alterations and many apologies

Prev Home Next
Arithmetic Expansion Up Commands
Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Next

Part 4. Commands

Mastering the commands on your Linux machine is an indispensable prelude to writing effective shell scripts.
This section covers the following commands:

¢ . (See also source)

® ac

e adduser

® aoett

® agre

®ar

e arch

® at

® autoload

¢ awk (See also Using awk for math operations)
® badblocks

® banner

® basename

® batch

® be

[}
* bind

* bison
® builtin
® bzore
® bzip2
e cal

e caller
cat

cd
chattr
chfn

5

3

¢

chkconfi
chmod
chown
chroot
cksum
clear
clock

|

E

col

e colrm

® column

e comm

e command
e compgen
e complete
e compress
® coproc

*cp

* cpio

® cron

* crypt

e csplit

®cu

¢ cut

® date

e dc

e dd

¢ debugfs

® declare

¢ depmod

o df

e dialog

o diff

o diff3

e diffstat

 dig

e dirname

e dirs

e disown

¢ dmesg
doexec

® dos2unix
*du

° du_mp

¢ dumpe?fs
e e2fsck

® echo

e egre

® enable

® enscript
e env
®cqn

® eval

® exec

¢ exit (Related topic: exit status)
e expand
e export

° expr

® factor

* false

e fdformat
® fdisk
*ig

* fgrep

o file

e find

e finger

® flex

® flock

® fmt

e fold

® free

® fsck

“ fip

* fuser

e oetfacl

® octopt

e getopts

® octtext

® ocft

® gnome-mount
e ore

e oroff

e oroupmod
e groups (Related topic: the SGROUPS variable)
*gs

LR VA

® halt

® hash

¢ hdparm

® head
 help

¢ hexdump
® host

® hostid

® hostname (Related topic: the SHOSTNAME variable)
® hwclock
® iconv

e id (Related topic: the $UID variable)
e ifconfi

® info

e infocm

® init

e insmod

e install
eip

® ipcalc

e iptables

e iwconfi

® jobs

® join

 jot

® kill

® killall

® last

e Jastcomm

¢ Jastlog

® Jogger

¢ Jogname
® logout

® Jogrotate
® look

® Josetup
*lp

°ls

® Isdev

e Ismod

® Isof

® Ispci

® lsusb

e Jtrace
[

—
Ié
>

—

)
=3

zca
ZIn.
*m4
* mail

® mailstats

® mailto

* make

e MAKEDEV
® man

e mapfile

® mcookie

e mdSsum

® merge

® mes

® mimencode
e mkbootdisk
e mkdir

e mkdosfs

® mke2fs

* mkfifo

® mkisofs

® mknod

® mkswa

® mktem

® mmencode
* modinfo

e modprobe

® more

e mount

® msgfmt
*mv

®nc

® netconfi

e petstat

® new

® nice

*nl

¢ nm

® nma

—
o

¢ nohu

® nslooku
® objdum
*od

® openssl
® passwd
® paste

¢ patch (Related topic: diff)
e pathchk
® pax

® pgrep

¢ pidof

® ping

e pkill

® popd

® pr

® printenv
e printf

® procinfo
®ps

® pstree

* pix

e pushd

¢ pwd (Related topic: the $PWD variable)
® quota

® 1Sync

e runlevel
® run-parts
®Ix

1z

® sar

® scp

° w

® sdiff
®sed

® seq

® service
® set

e setfacl

® setquota
® setserial
® setterm
e shalsum
® shar

® shopt

® shred

e shutdown
® size

® skill

® slee

® slocate

® snice

¢ tmpwatch
[] m

® touch

* tput

o fr

e traceroute
® frue

® tset

® tsort

o ity

® tune2fs

* type

® typeset

e ulimit

® umask

® umount

® uname

® unarc

° m

® uncompress
® unexpand
° m

® units

® unlzma

® unrar

® unset

CE
=
2

nzi
uptime
usbmodules
useradd
userdel

<
=
2
jab}
=3

<
S
—

<
jab}
=
(@
=

e 6 6 o o o o o o o o o o o o ©o ©o ©o ©o oo o o o
{
{
D
=
(]
o
(=N
(¢

=
g

e whatis
e whereis

® xargs
e xrandr
*xz

® yacc
¢ yes

® zcat
® zdiff
e zdum
® zegre
e zfore
® zore

* Zip

Table of Contents

15. Internal Commands and Builtins

16. External Filters. Programs and Commands
17. System and Administrative Commands

Prev Home Next
Recess Time Internal Commands and Builtins
Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Next

Chapter 15. Internal Commands and Builtins

A builtin is a command contained within the Bash tool set, literally built in. This is either for performance
reasons -- builtins execute faster than external commands, which usually require forking off [1] a separate
process -- or because a particular builtin needs direct access to the shell internals.

When a command or the shell itself initiates (or spawns) a new subprocess to carry out a task, this is called
forking. This new process is the child, and the process that forked it off is the parent. While the child
process is doing its work, the parent process is still executing.

Note that while a parent process gets the process ID of the child process, and can thus pass arguments to it,
the reverse is not true. This can create problems that are subtle and hard to track down.

Example 15-1. A script that spawns multiple instances of itself

1 #!/bin/bash
2 # spawn.sh
3
4
5 PIDS=$ (pidof sh $0) # Process IDs of the various instances of this script.
6 P_array=(SPIDS) # Put them in an array (why?).
7 echo $PIDS # Show process IDs of parent and child processes.
8 let "instances = ${#P_array[*]} - 1" # Count elements, less 1.
9 # Why subtract 172
10 echo "S$instances instance(s) of this script running."
11 echo "[Hit Ctl-C to exit.]"; echo
12
13
14 sleep 1 # Wait.
15 sh $0 # Play it again, Sam.
16
17 exit O # Not necessary; script will never get to here.
18 # Why not?
19
20 # After exiting with a Ctl-C,

N
=

#+ do all the spawned instances of the script die?

22 # If so, why?

23

24 # Note:

25 # ———-

26 # Be careful not to run this script too long.

27 # It will eventually eat up too many system resources.
28

29 # 1Is having a script spawn multiple instances of itself

(O8]
o

#+ an advisable scripting technique.
31 # Why or why not?

Generally, a Bash builtin does not fork a subprocess when it executes within a script. An external system
command or filter in a script usually will fork a subprocess.

A builtin may be a synonym to a system command of the same name, but Bash reimplements it internally. For
example, the Bash echo command is not the same as /bin/echo, although their behavior is almost
identical.

1 #!/bin/bash

2

3 echo "This line uses the \"echo\" builtin."
4 /bin/echo "This line uses the /bin/echo system command."

A keyword is a reserved word, token or operator. Keywords have a special meaning to the shell, and indeed
are the building blocks of the shell's syntax. As examples, for, while, do, and ! are keywords. Similar to a
builtin, a keyword is hard-coded into Bash, but unlike a builtin, a keyword is not in itself a command, but a

subunit of a command construct. [2]

I/0

echo

prints (to stdout) an expression or variable (see Example 4-1).

1 echo Hello
2 echo $a

An echo requires the —e option to print escaped characters. See Example 5-2.

Normally, each echo command prints a terminal newline, but the —n option suppresses this.

& An echo can be used to feed a sequence of commands down a pipe.

1 if echo "SVAR" | grep —-g txt # if [[SVAR = *txt*]]
2 then

3 echo "S$VAR contains the substring sequence \"txt\""
4 fi

&) An echo, in combination with command substitution can set a variable.

a="echo "HELLO" | tr A-Z a-z’

See also Example 16-22, Example 16-3, Example 16-47, and Example 16-48.
Be aware that echo “command” deletes any linefeeds that the output of command generates.

The $IES (internal field separator) variable normally contains \n (linefeed) as one of its set of

whitespace characters. Bash therefore splits the output of command at linefeeds into arguments to

echo. Then echo outputs these arguments, separated by spaces.

bash$ 1ls -1 /usr/share/apps/kjezz/sounds
—rW—r——r—— 1 root root 1407 Nov 7 2000 reflect.au
—rW—r——r—— 1 root root 362 Nov 7 2000 seconds.au

bash$ echo ‘1ls -1 /usr/share/apps/kjezz/sounds’

total 40 -rw-r—-—-r—-- 1 root root 716 Nov 7 2000 reflect.au -rw-r—--r—-— 1 root root

So, how can we embed a linefeed within an echoed character string?

Embedding a linefeed?
echo "Why doesn't this string \n split on two lines?"
Doesn't split.

Let's try something else.

echo

printf

8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

echo $"A line of text containing

a linefeed."

Prints as two distinct lines (embedded linefeed).
But, is the "$" variable prefix really necessary?
echo

echo "This string splits

on two lines."

No, the "$" is not needed.

echo

echo w_ A\l

echo

echo -n $"Another line of text containing

a linefeed."
Prints as two distinct lines (embedded linefeed) .
Even the -n option fails to suppress the linefeed here.

echo
echo
echo w_ A\l
echo
echo

However, the following doesn't work as expected.
Why not? Hint: Assignment to a variable.
stringl=$"Yet another line of text containing

a linefeed (maybe) ."

echo $stringl

Yet another line of text containing a linefeed (maybe).
A

Linefeed becomes a space.

Thanks, Steve Parker, for pointing this out.

& This command is a shell builtin, and not the same as /bin/echo, although its
behavior is similar.

bash$ type —-a echo
echo is a shell builtin
echo is /bin/echo

The printf, formatted print, command is an enhanced echo. It is a limited variant of the C language
printf () library function, and its syntax is somewhat different.

printf format-string... parameter...

This is the Bash builtin version of the /bin/printf or /usr/bin/printf command. See the
printf manpage (of the system command) for in-depth coverage.

<1 Older versions of Bash may not support printf.

Example 15-2. printf in action

O J oy U W

e

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

#!/bin/bash
printf demo

declare -r PI=3.14159265358979 # Read-only variable, i.e., a constant.
declare -r DecimalConstant=31373

Messagel="Greetings,"
Message2="Earthling."

echo
printf "Pi to 2 decimal places = $1.2f" S$SPI

echo
printf "Pi to 9 decimal places = $1.9f" $PI # It even rounds off correctly.

S

printf "\n" Prints a line feed,

Equivalent to 'echo'
printf "Constant = \t%d\n" $DecimalConstant # Inserts tab (\t).
printf "%s %s \n" $Messagel $Message?2

echo

#
Simulation of C function, sprintf().
Loading a variable with a formatted string.

echo

Pil2=$ (printf "%1.12f" SPI)

echo "Pi to 12 decimal places = $Pil2" # Roundoff error!
Msg="printf "%s %$s \n" S$Messagel S$Message2’

echo $Msg; echo $Msg
As it happens, the 'sprintf' function can now be accessed
#+ as a loadable module to Bash,

#+ but this is not portable.

exit O

Formatting error messages is a useful application of printf

12
13
14
15

E_BADDIR=85
var=nonexistent_directory
error ()
{
printf "$@" >&2
Formats positional params passed, and sends them to stderr.
echo
exit $E_BADDIR
}
cd Svar || error $"Can't cd to %s." "Svar"
Thanks, S.C.

See also Example 36-17.

read

"Reads" the value of a variable from stdin, that is, interactively fetches input from the keyboard.
The —a option lets read get array variables (see Example 27-6).

Example 15-3. Variable assignment, using read

O ~J oy U W

e

10
11
12
13
14
15
16
17
18
19
20
21
22
23

#!/bin/bash
"Reading" variables.

echo -n "Enter the value of variable 'varl': "
The —n option to echo suppresses newline.

read varl
Note no '$' in front of varl, since it is being set.

echo "varl = $varl"

echo

A single 'read' statement can set multiple variables.
echo -n "Enter the values of variables 'var2' and 'var3' "
echo =n " (separated by a space or tab): "
read var2 var3

echo "var2 = $var?2 var3 = S$Svar3"

If you input only one value,

#+ the other variable(s) will remain unset (null).

exit O

A read without an associated variable assigns its input to the dedicated variable SREPLY.

Example 15-4. What happens when read has no variable

0 J o U W N

e

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

#!/bin/bash
read-novar.sh

echo

echo -n "Enter a value: "
read var

echo "\"Var\" = "$Var" n

Everything as expected here.

$ - #

echo

__

echo -n "Enter another value: "

read # No variable supplied for 'read', therefore...

#+ Input to 'read' assigned to default variable,
var="SREPLY"
echo "\"var\" = "Svar""
This is equivalent to the first code block.

This example is similar to the "reply.sh" script.
However, this one shows that SREPLY is available

SREPLY.

#

31 #+ even after a 'read' to a variable in the conventional way.
32

33

34 #

35

36 # In some instances, you might wish to discard the first value read.
37 # In such cases, simply ignore the S$REPLY variable.

38

39 { # Code block.

40 read # Line 1, to be discarded.

41 read line2 # Line 2, saved in variable.

42 } <$0

43 echo "Line 2 of this script is:"

44 echo "S$line2" # # read-novar.sh

45 echo # #!/bin/bash 1line discarded.

46

47 # See also the soundcard-on.sh script.

48

49 exit O

Normally, inputting a \ suppresses a newline during input to a read. The —r option causes an
inputted \ to be interpreted literally.

Example 15-5. Multi-line input to

"Enter a string terminated by a \\,
second string

read

suppresses the newline,

first line \
second line

second line

1 #!/bin/bash

2

3 echo

4

5 echo

6 echo "Then, enter a

-

8 read varl # The "\"
9 #

10 #

11

12 echo "varl = $varl"

13 # varl = first line
14

15 # For each line terminated by a "\"
16

17

18 echo; echo

19
20

N
=

read —-r var2

N NN
Sw N

Svar2"
first line

echo "varz =
var2 =

N NN
~ o U

Data entry

NN
O

echo

w W
= O

exit O

echo "Enter another string terminated by a \\ ,

\

terminates with the first <ENTER>.

then press <ENTER>."
(no \\ this time),

and again press <ENTER>."

when reading Svarl.

#+ you get a prompt on the next line to continue feeding characters into varl.

then press <ENTER>."

The -r option causes the "\" to be read literally.
first line \

The read command has some interesting options that permit echoing a prompt and even reading

keystrokes without hitting ENTER.

The —

Read a keypress without hitting ENTER.

read -s -nl -p "Hit a key " keypress
echo; echo "Keypress was "\"Skeypress\""."

-s option means do not echo input.
-n N option means accept only N characters of input.

-p option means echo the following prompt before reading input.

Using these options is tricky, since they need to be in the correct order.

n option to read also allows detection of the arrow keys and certain of the other unusual keys.

Example 15-6. Detecting the arrow keys

O ~J o U W

SO R R D D DR D DN WWWWWWWWWWNNNNOMNNNMNNONNNOMNNRE R R R R PR R
W dOOU WNKHFEOWOWUL00U D WNRE O W00 ™ WNRE OWwWw-Uo0o ™ WN P O W

#!/bin/bash
arrow-detect.sh: Detects the arrow keys, and a few more.
Thank you, Sandro Magi, for showing me how.

Character codes generated by the keypresses.
arrowup="\[A"

arrowdown="\[B'

arrowrt="\[C'

arrowleft="\[D"

insert="\[2"

delete="\[3"

SUCCESS=0

OTHER=65

echo —n "Press a key... "

May need to also press ENTER if a key not listed above pressed.

read -n3 key # Read 3 characters.
echo -n "S$key" | grep "Sarrowup" #Check if character code detected.
if ["$?" -eq SSUCCESS]
then
echo "Up-arrow key pressed."
exit $SUCCESS
fi
echo -n "S$key" | grep "Sarrowdown"
if ["$?" -eq S$SUCCESS]
then
echo "Down-arrow key pressed."
exit $SUCCESS
fi
echo -n "S$key" | grep "Sarrowrt"
if ["$?" -eqg $SUCCESS |
then
echo "Right-arrow key pressed."
exit $SUCCESS
fi
echo -n "S$key" | grep "Sarrowleft"
if ["$?" -eq S$SUCCESS]
then
echo "Left-arrow key pressed."
exit $SUCCESS

fi

49

50 echo -n "S$key" | grep "$insert"
51 if ["$?" -eqg $SUCCESS]
52 then

53 echo "\"Insert\" key pressed."
54 exit S$SUCCESS

55 fi

56

57 echo -n "S$key" | grep "$Sdelete"
58 1f ["$?" -eq $SUCCESS]

59 then

60 echo "\"Delete\" key pressed."
61 exit S$SUCCESS

62 fi

63

64

65 echo " Some other key pressed."
66

67 exit SOTHER

68
69 #
70
71 # Mark Alexander came up with a simplified
72 #+ version of the above script (Thank you!) .
73 # It eliminates the need for grep.

74

75 #!/bin/bash

76

77 uparrow=S$"'\x1b[A'

78 downarrow=$"'\x1b[B'

79 leftarrow=S$"'\x1lb[D'

80 rightarrow=$'\x1lb[C'

81

82 read -s —n3 -p "Hit an arrow key: " x
83

84 case "$x" in

85 Suparrow)

86 echo "You pressed up-arrow"
87 X

88 Sdownarrow)

89 echo "You pressed down-arrow"
90 X

91 Sleftarrow)

92 echo "You pressed left-arrow"
93 X

94 Srightarrow)

95 echo "You pressed right-arrow"
96 X

97 esac

98

99 exit $°?
100
101 #
102

103 # Antonio Macchi has a simpler alternative.
104
105 #!/bin/bash

106

107 while true

108 do

109 read -snl a

110 test "$a" == ‘echo -en "\e"' || continue
111 read -snl a

112 test "S$Sa" == "[" || continue

113 read -snl a
114 case "$a" in

115
116
117
118
119
120
121
122
123
124
125
126

A) echo "up";;

B) echo "down";;
C) echo "right";;
D) echo "left";;
esac
done
#
Exercise:

1) Add detection of the "Home," "End," "PgUp," and "PgDn" keys.

=) The —n option to read will not detect the ENTER (newline) key.

The —t option to read permits timed input (see Example 9-4 and Example A-41).

The —u option takes the file descriptor of the target file.

The read command may also "read" its variable value from a file redirected to stdin. If the file
contains more than one line, only the first line is assigned to the variable. If read has more than one
parameter, then each of these variables gets assigned a successive whitespace-delineated string.
Caution!

Example 15-7. Using read with file redirection

O ~J o oW

W wwwdhdhdhdDNDNMDNMDNMDNMDNMDNMDNRERERRPRPRERERRERPR R RPRBPE
WNEREP O WOWw-JoUul b WNRE O WOW-Joy uld WN PP O

#!/bin/bash

read varl <data-file
echo "varl = $varl"
varl set to the entire first line of the input file "data-file"

read var2 var3 <data-file

echo "var2 = S$var2 var3 = Svar3"

Note non—-intuitive behavior of "read" here.

1) Rewinds back to the beginning of input file.

2) Each variable is now set to a corresponding string,

separated by whitespace, rather than to an entire line of text.

3) The final variable gets the remainder of the line.

4) If there are more variables to be set than whitespace-terminated strings
on the first line of the file, then the excess variables remain empty.

How to resolve the above problem with a loop:
while read line
do
echo "$line"
done <data-file
Thanks, Heiner Steven for pointing this out.

Use SIFS (Internal Field Separator variable) to split a line of input to
"read", if you do not want the default to be whitespace.

echo "List of all users:"
OIFS=$IFS; IFS=: # /etc/passwd uses ":" for field separator.
while read name passwd uid gid fullname ignore

34 do

35 echo "Sname ($fullname)"

36 done </etc/passwd # I/0 redirection.

37 IFS=S$0IFS # Restore original $IFS.
38 # This code snippet also by Heiner Steven.

39

40

41

42 # Setting the $IFS variable within the loop itself
43 #+ eliminates the need for storing the original S$IFS
44 #+ in a temporary variable.

45 # Thanks, Dim Segebart, for pointing this out.

46 eEE Yo "
47 echo "List of all users:"

48

49 while IFS=: read name passwd uid gid fullname ignore
50 do

51 echo "Sname ($fullname)"

52 done </etc/passwd # I/0 redirection.

53

54 echo

55 echo "\SIFS still SIFS"

56

57 exit 0

F
Piping output to a read, using echo to set variables will fail.

Yet, piping the output of cat seems to work.

cat filel file2 |
while read line
do

echo $line

done

However, as Bjon Eriksson shows:

o W N

Example 15-8. Problems reading from a pipe

#!/bin/sh
readpipe.sh
This example contributed by Bjon Eriksson.

shopt —-s lastpipe

last=" (null)"
cat $0 |

while read line
do

0 J o U b W

=
= o ©

echo "{S$line}"
last=$1line
done

e
g W N

echo

echo "++++++++++++++++++++++"

printf "\nAll done, last: $last\n" # The output of this line
#+ changes if you uncomment line 5.
(Bash, version —-ge 4.2 required.)

NN R e e
B O W oW Jo

exit 0 # End of code.

22 # (Partial) output of script follows.

23 # The 'echo' supplies extra brackets.
24

25 #EHHHHHHAHEHAEAAAEREE A SR A SRS A
26

27 ./readpipe.sh

28

29 {#!/bin/sh}

30 {last="(null)"}

31 {cat $0 |}

32 {while read line}

33 {do}

34 {echo "{S$line}"}

35 {last=$1line}

36 {done}

37 {printf "nAll done, last: S$lastn"}

38

39

40 All done, last: (null)

41

42 The variable (last) is set within the loop/subshell
43 but its value does not persist outside the loop.

The gendiff script, usually found in /usr/bin on many Linux distros, pipes the output of
find to a while read construct.

1 find $1 \(—name "*$2" -0 -name ".*$2" \) -print |
2 while read f; do

3
i) It is possible to paste text into the input field of a read (but not multiple lines!). See
Example A-38.
Filesystem
cd

The familiar c¢d change directory command finds use in scripts where execution of a command
requires being in a specified directory.

1 (cd /source/directory && tar cf - .) | (cd /dest/directory && tar xpvf -)
[from the previously cited example by Alan Cox]

The —P (physical) option to ed causes it to ignore symbolic links.

cd - changes to SOLLDPWD, the previous working directory.

<1 The c¢d command does not function as expected when presented with two forward
slashes.

bash$ ed //
bash$ pwd
//

The output should, of course, be /. This is a problem both from the command-line and
in a script.
pwd
Print Working Directory. This gives the user's (or script's) current directory (see Example 15-9). The
effect is identical to reading the value of the builtin variable $PWD.

pushd, popd, dirs

This command set is a mechanism for bookmarking working directories, a means of moving back and
forth through directories in an orderly manner. A pushdown stack is used to keep track of directory
names. Options allow various manipulations of the directory stack.

pushd dir-name pushes the path dir-name onto the directory stack (to the fop of the stack) and
simultaneously changes the current working directory to dir—-name

popd removes (pops) the top directory path name off the directory stack and simultaneously changes
the current working directory to the directory now at the fop of the stack.

dirs lists the contents of the directory stack (compare this with the $DIRSTACK variable). A
successful pushd or popd will automatically invoke dirs.

Scripts that require various changes to the current working directory without hard-coding the
directory name changes can make good use of these commands. Note that the implicit SDIRSTACK
array variable, accessible from within a script, holds the contents of the directory stack.

Example 15-9. Changing the current working directory

#!/bin/bash

dirl=/usr/local
dir2=/var/spool

pushd $dirl
Will do an automatic 'dirs' (list directory stack to stdout).
echo "Now in directory "pwd ." # Uses back-quoted 'pwd'.

QO ~J oy U WN

o)

10 # Now, do some stuff in directory 'dirl'.

11 pushd $dir2

12 echo "Now in directory “pwd ."

13

14 # Now, do some stuff in directory 'dir2'.

15 echo "The top entry in the DIRSTACK array is S$DIRSTACK."
16 popd

17 echo "Now back in directory pwd ."

18

19 # Now, do some more stuff in directory 'dirl'.

20 popd

21 echo "Now back in original working directory “pwd ."

22

23 exit O

24

25 # What happens if you don't 'popd' -- then exit the script?
26 # Which directory do you end up in? Why?

Variables

The let command carries out arithmetic operations on variables. [3] In many cases, it functions as a
less complex version of expr.

Example 15-10. Letting let do arithmetic.

1 #!/bin/bash

2

3 echo

4

5 let a=11 # Same as 'a=11"'

6 let a=a+b # Equivalent to let "a = a + 5"
7 # (Double quotes and spaces make it more readable.)
8 echo "11 + 5 = $a" # 16

9

10 let "a <<= 3" # Equivalent to let "a = a << 3"
11 echo "\"\S$a\" (=16) left-shifted 3 places = $a"

12 # 128

13

14 let "a /= 4" # Equivalent to let "a = a / 4"
15 echo "128 / 4 = $a" # 32

16

17 let "a —-= 5" # Equivalent to let "a = a - 5"
18 echo "32 - 5 = $a" # 27

19
20 let "a *= 10" # Equivalent to let "a = a * 10"
21 echo "27 * 10 = $a" # 270
22
23 let "a %= 8" # Equivalent to let "a = a % 8"
24 echo "270 modulo 8 = $a (270 / 8 = 33, remainder S$a)"
25 # 6
26
27
28 # Does "let" permit C-style operators?
29 # Yes, Jjust as the ((...)) double-parentheses construct does.
30

31 let a++ # C-style (post) increment.

32 echo "6++ = Sa" # 6++ = 7

33 let a—— # C-style decrement.

34 echo "7-- = $a" # 7-— = 6

35 # Of course, ++a, etc., also allowed

36 echo

37

38

39 # Trinary operator.

40

41 # Note that S$a is 6, see above.

42 let "t = a<7?7:11" # True
43 echo $t # 7

44

45 let a++

46 let "t = a<7?7:11" # False
47 echo $t # 11

48

49 exit

<1 The let command can, in certain contexts, return a surprising exit status.

1 # Evgeniy Ivanov points out:
2

3 var=0

4 echo $? # 0

5 # As expected.

6

7 let var++

8 echo $? # 1

9 # The command was successful, so why isn't $?=0 2?7
0 # Anomaly!

1

12 let var++

13 echo $? # 0

14 # As expected.

15

16

17 # Likewise

18

19 let var=0

20 echo $? # 1

21 # The command was successful, so why isn't $?=0 2?7
22

23 # However, as Jeff Gorak points out,

24 #+ this i1s part of the design spec for 'let'

25 # "If the last ARG evaluates to 0, let returns 1;
26 # let returns 0 otherwise." ['help let']

eval
eval argl [arg2] ... [argN]

Combines the arguments in an expression or list of expressions and evaluates them. Any variables
within the expression are expanded. The net result is to convert a string into a command.

i) The eval command can be used for code generation from the command-line or
within a script.

bash$ command string="ps ax"
bash$ process='"ps ax"

bash$ eval "$command string" | grep "$process"
26973 pts/3 R+ 0:00 grep —--color ps ax
26974 pts/3 R+ 0:00 ps ax

Each invocation of eval forces a re-evaluation of its arguments.

1 a='$Sb'

2 b='Sc'

3 c=d

4

5 echo Sa # Sb

6 # First level.
7 eval echo $a # Sc

8 # Second level.
9 eval eval echo $a # d
10 # Third level.
11

12 # Thank you, E. Choroba.

Example 15-11. Showing the effect of eval

1 #!/bin/bash

2 # Exercising "eval"

3

4 y="eval 1s -1° # Similar to y="1ls -1°

5 echo $y #+ but linefeeds removed because "echoed" variable is unquoted.
6 echo

7 echo "Sy" # Linefeeds preserved when variable is quoted.
8

9 echo; echo

10

11 y="eval df" # Similar to y="df°

=
N

echo Sy #+ but linefeeds removed.

13

14 # When LF's not preserved, it may make it easier to parse output,
15 #+ using utilities such as "awk".

16

17 echo

18 echo " "
19 echo

20

21 eval "'seq 3 | sed -e 's/.*/echo var&=ABCDEFGHIJ/'""

22 # varl=ABCDEFGHIJ

23 # var2=ABCDEFGHIJ

24 # var3=ABCDEFGHIJ

25

26 echo

27 echo " "
28 echo

29

30

31 # Now, showing how to do something useful with "eval"

32 # (Thank you, E. Choroba!)

33

34 version=3.4 # Can we split the version into major and minor

35 #+ part in one command?

36 echo "version = $version"

37 eval major=${version/./;minor=} # Replaces '.' in version by ';minor='
38 # The substitution yields '3; minor=4'
39 #+ so eval does minor=4, major=3

40 echo Major: $major, minor: $minor # Major: 3, minor: 4

Example 15-12. Using eval to select among variables

1 #!/bin/bash

2 # arr-choice.sh

3

4 # Passing arguments to a function to select

5 #+ one particular variable out of a group.

6

7 arrO=(10 11 12 13 14 15)

8 arrl=(20 21 22 23 24 25)

9 arr2=(30 31 32 33 34 35)

10 # 0 1 2 3 4 5 Element number (zero—-indexed)
11

12

13 choose_array ()

14 {

15 eval array_member=\${arr${array_number} [element_number]}
16 # A AANAANNANNNN

17 # Using eval to construct the name of a variable,
18 #+ in this particular case, an array name.

19
20 echo "Element Selement_number of array Sarray_number is $array_member"
21 } # Function can be rewritten to take parameters.
22
23 array_number=0 # First array.
24 element_number=3
25 choose_array # 13
26
27 array_number=2 # Third array.
28 element_number=4
29 choose_array # 34

30

31 array_number=3 # Null array (arr3 not allocated).

32
33
34
35

element_number=4
choose_array # (null)

Thank you, Antonio Macchi, for pointing this out.

Example 15-13. Echoing the command-line parameters

0 J o U b W

W W wWwwwwwwwwbdhdhdhdDNhDNdDNMDNNDNMDNMdDNMdDNRERRPRPRERERRRERERERERE &
O 00 J o U WN P O WOoWw--Jo Ul b WNREFE O WO®W--Jo Ul WNBEFE O

#!/bin/bash
echo-params.sh
Call this script with a few command-line parameters.
For example:
sh echo-params.sh first second third fourth fifth
params=S$# # Number of command-line parameters.
param=1 # Start at first command-line param.
while ["S$Sparam" -le "Sparams"]
do
echo —n "Command-line parameter "
echo -n \Sparam # Gives only the *name* of variable.
Ann # S$1, $2, $3, etc.
Why?
\$ escapes the first "$"
#+ so it echoes literally,
#+ and $param dereferences "S$param"
#+ . . . as expected.
echo -n " ="
eval echo \$$param # Gives the *value* of variable.
Ao ann # The "eval" forces the *evaluation*
#+ of \s$$
#+ as an indirect variable reference.
((param ++)) # On to the next.
done
exit $°?
#

$ sh echo-params.sh first second third fourth fifth

Command-line parameter $1 = first
Command-line parameter $2 = second
Command-line parameter $3 = third
Command-line parameter $4 = fourth
Command-line parameter $5 = fifth

Example 15-14. Forcing a log-off

1
2
3
4
5
6
7
8

9

#!/bin/bash
Killing ppp to force a log-off.
For dialup connection, of course.

Script should be run as root user.

SERPORT=ttyS3

Depending on the hardware and even the kernel version,
#+ the modem port on your machine may be different --

#+ /dev/ttySl or /dev/ttyS2.

11

12

13 killppp="eval kill -9 "ps ax | awk '/ppp/ { print $1 }'""

4% ——m————= process ID of ppp ——————

15

16 s$killppp # This variable is now a command.

17

18

19 # The following operations must be done as root user.

20

21 chmod 666 /dev/S$SSERPORT # Restore r+w permissions, or else what?

22 # Since doing a SIGKILL on ppp changed the permissions on the serial port,
23 #+ we restore permissions to previous state.

24

25 rm /var/lock/LCK..S$SSERPORT # Remove the serial port lock file. Why?
26

27 exit $7

28

29 # Exercises:

30 # —————————

31 # 1) Have script check whether root user is invoking it.

32 # 2) Do a check on whether the process to be killed

33 #+ is actually running before attempting to kill it.

34 # 3) Write an alternate version of this script based on 'fuser':

35 #+ if [fuser -s /dev/modem]; then

Example 15-15. A version of rot13

1 #!/bin/bash

2 # A version of "rotl3" using 'eval'.

3 # Compare to "rotl3.sh" example.

4

5 setvar_rot_13() # "rotl3" scrambling

6 {

7 local varname=$1 varvalue=S$2

8 eval S$varname='$ (echo "$varvalue" | tr a-z n-za-m)'

9 1}
10
11
12 setvar_rot_13 var "foobar" # Run "foobar" through rotl3.
13 echo $var # sbbone
14
15 setvar_rot_13 var "Svar" # Run "sbbone" through rotl3.
16 # Back to original variable.
17 echo Svar # foobar
18

19 # This example by Stephane Chazelas.
20 # Modified by document author.

21

22 exit O

Here is another example of using eval to evaluate a complex expression, this one from an earlier
version of YongYe's Tetris game script.

1 eval S${1}+=\"${x} $S{y} \"
Example A-53 uses eval to convert array elements into a command list.

The eval command occurs in the older version of indirect referencing.

https://github.com/yongye/shell/blob/master/Tetris_Game.sh

set

1 eval var=\Svar

i) The eval command can be used to parameterize brace expansion.

<1> The eval command can be risky, and normally should be avoided when there exists a
reasonable alternative. An eval $COMMANDS executes the contents of COMMANDS,
which may contain such unpleasant surprises as rm -rf *. Running an eval on
unfamiliar code written by persons unknown is living dangerously.

The set command changes the value of internal script variables/options. One use for this is to toggle
option flags which help determine the behavior of the script. Another application for it is to reset the
positional parameters that a script sees as the result of a command (set ° command’). The script
can then parse the fields of the command output.

Example 15-16. Using set with positional parameters

1 #!/bin/bash

2 # ex34.sh

3 # Script "set-test"

4

5 # Invoke this script with three command-line parameters,
6 # for example, "sh ex34.sh one two three".

7

8 echo

9 echo "Positional parameters before set \ uname -a\® :"
10 echo "Command-line argument #1 = $1"

11 echo "Command-line argument #2 = $2"

12 echo "Command-line argument #3 = $3"

13

14

15 set ‘uname -a # Sets the positional parameters to the output
16 # of the command "“uname -a’

17

18 echo

19 echo +++++

20 echo $_ # 44+

21 # Flags set in script.

22 echo $- # hB

23 # Anomalous behavior?

24 echo

25

26 echo "Positional parameters after set \ uname -a\’
27 # $1, $2, $3, etc. reinitialized to result of 'uname -a°

28 echo "Field #1 of 'uname -a' = $1"
29 echo "Field #2 of 'uname -a' = $2"
30 echo "Field #3 of 'uname -a' = $3"
31 echo \#\#\#

32 echo $_ # #H44#

33 echo

34

35 exit O

More fun with positional parameters.

Example 15-17. Reversing the positional parameters

1 #!/bin/bash
2 # revposparams.sh: Reverse positional parameters.

Script by Dan Jacobson, with stylistic revisions by document

set a\ b c 4d\ e;

~ A Spaces escaped

~n Spaces not escaped

OIFS=$IFS; IFS=:;

~ Saving old IFS and setting new one.
echo

until [$# -eq 0 1

do # Step through positional parameters.
echo "### kO = "Sk"" # Before
k=$1:8k; # Append each pos param to loop variable.
A
echo "### k = "Sk"" # After
echo
shift;
done
set Sk # Set new positional parameters.

echo -
echo $# # Count of positional parameters.
echo -
echo
for i # Omitting the "in 1list" sets the variable -- i —-
#+ to the positional parameters.
do
echo $i # Display new positional parameters.
done
IFS=SOIFS # Restore IFS.

CQuestion:

Is it necessary to set an new IFS, internal field separator,
#+ in order for this script to work properly?

What happens if you don't? Try it.

And, why use the new IFS -- a colon —- in line 17,

#+ to append to the loop variable?

What is the purpose of this?

exit O
$./revposparams.sh

k0 =
k = a b

##+ k0 = a b
k = c ab

k0 = c a b
###+ k = de cab

author.

Invoking set without any options or arguments simply lists all the environmental and other variables
that have been initialized.

bash$ set

AUTHORCOPY=/home /bozo/posts
BASH=/bin/bash
BASH_VERSION=$'2.05.8(1)-release'

XAUTHORITY=/home/bozo/.Xauthority
_=/etc/bashrc

variable22=abc

variable23=xzy

Using set with the —— option explicitly assigns the contents of a variable to the positional parameters.
If no variable follows the —— it unsets the positional parameters.

Example 15-18. Reassigning the positional parameters

O ~J o U W

eJ

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

#!/bin/bash
variable="one two three four five"

set —- $variable
Sets positional parameters to the contents of "Svariable".

first_param=$1
second_param=5$2

shift; shift # Shift past first two positional params.

shift 2 also works.

remaining_params="S$*"

echo

echo "first parameter = $first_param" # one

echo "second parameter = $second_param" # two

echo "remaining parameters = S$remaining_params" # three four five
echo; echo

Again.

set —— S$variable
first_param=$1
second_param=5$2

echo "first parameter = $first_param" # one
echo "second parameter = $second_param" # two
#

set ——

Unsets positional parameters if no variable specified.

first_param=$1
second_param=5$2

echo "first parameter = $first_param" # (null value)
echo "second parameter = $second_param" # (null value)
exit O

See also Example 11-2 and Example 16-56.

unset

The unset command deletes a shell variable, effectively setting it to null. Note that this command
does not affect positional parameters.

export

bash$ unset PATH
bash$ echo $PATH

bash$

Example 15-19. "Unsetting'' a variable

1 #!/bin/bash

2 # unset.sh: Unsetting a variable.

3

4 variable=hello # Initialized.

5 echo "variable = $variable"

6

7 unset variable # Unset.

8 # In this particular context,
9 #+ same effect as: variable=
10 echo " (unset) variable = S$variable" # Svariable is null.
11
12 if [-z "S$Svariable"] # Try a string-length test.
13 then
14 echo "\$variable has zero length."
15 fi
16
17 exit O

=& In most contexts, an undeclared variable and one that has been unset are equivalent.
However, the _${parameter:-default} parameter substitution construct can distinguish
between the two.

The export [4] command makes available variables to all child processes of the running script or
shell. One important use of the export command is in startup files, to initialize and make accessible
environmental variables to subsequent user processes.

<1 Unfortunately, _there is no way to export variables back to the parent process, to the
process that called or invoked the script or shell.

Example 15-20. Using export to pass a variable to an embedded awk script

1 #!/bin/bash

2

3 # Yet another version of the "column totaler" script (col-totaler.sh)
4 #+ that adds up a specified column (of numbers) in the target file.

5 # This uses the environment to pass a script variable to 'awk'

6 #+ and places the awk script in a variable.

-

8

9 ARGS=2

10 E_WRONGARGS=85

11

12 if [$# —-ne "SARGS"] # Check for proper number of command-line args.
13 then

14 echo "Usage: "basename $0° filename column-number"

15 exit S$SE_WRONGARGS

16 fi

17

=
e¢]

filename=$1

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

column_number=S$2
#===== Same as original script, up to this point =====#

export column_number
Export column number to environment, so it's available for retrieval.

awkscript='{ total += S$ENVIRON["column_number"] }
END { print total }'
Yes, a variable can hold an awk script.

Now, run the awk script.
awk "Sawkscript" "S$filename"
Thanks, Stephane Chazelas.

exit O

i) It is possible to initialize and export variables in the same operation, as in export
varl=xxx.

However, as Greg Keraunen points out, in certain situations this may have a different
effect than setting a variable, then exporting it.

bash$ export var=(a b); echo ${var[0]}

(a b)

bash$ var=(a b); export var; echo ${var[0]}
a

<& A variable to be exported may require special treatment. See Example M-2.

declare, typeset
The declare and typeset commands specify and/or restrict properties of variables.

readonly

Same as declare -r, sets a variable as read-only, or, in effect, as a constant. Attempts to change the
variable fail with an error message. This is the shell analog of the C language const type qualifier.

getopts

This powerful tool parses command-line arguments passed to the script. This is the Bash analog of the
getopt external command and the getopt library function familiar to C programmers. It permits
passing and concatenating multiple options [5] and associated arguments to a script (for example
scriptname -abc -e /usr/local).

The getopts construct uses two implicit variables. SOPTIND is the argument pointer (OPTion INDex)
and $SOPTARG (OPTion ARGument) the (optional) argument attached to an option. A colon following
the option name in the declaration tags that option as having an associated argument.

A getopts construct usually comes packaged in a while loop, which processes the options and
arguments one at a time, then increments the implicit SOPTIND variable to point to the next.

L

1. The arguments passed from the command-line to the script must be preceded
by a dash (-). It is the prefixed — that lets getopts recognize command-line

arguments as options. In fact, getopts will not process arguments without the
prefixed —, and will terminate option processing at the first argument
encountered lacking them.

2. The getopts template differs slightly from the standard while loop, in that it
lacks condition brackets.

3. The getopts construct is a highly functional replacement for the traditional
getopt external command.

1 while getopts ":abcde:fg" Option

2 # Initial declaration.

3 #a, b, ¢, d, e, f, and g are the options (flags) expected.

4 # The : after option 'e' shows it will have an argument passed with it.
5 do

6 case $Option in

7 a) # Do something with variable 'a'.

8 b) # Do something with variable 'b'.

10 e) # Do something with 'e', and also with S$OPTARG,
11 # which is the associated argument passed with option 'e'.

13 g) # Do something with variable 'g'.

14 esac

15 done

16 shift $((SOPTIND - 1))

17 # Move argument pointer to next.

18

19 # All this is not nearly as complicated as it looks <grin>.

Example 15-21. Using getopts to read the options/arguments passed to a script

21
22
23
24 NO_ARGS=0

25 E_OPTERROR=85

If an option expects an argument ("flag:"), then it will grab
whatever is next on the command-line.

1 #!/bin/bash
2 # ex33.sh: Exercising getopts and OPTIND
3 # Script modified 10/09/03 at the suggestion of Bill Gradwohl.
4
5
6 # Here we observe how 'getopts' processes command-line arguments to script.
7 # The arguments are parsed as "options" (flags) and associated arguments.
8
9 # Try invoking this script with:
10 # 'scriptname -mn'
11 # 'scriptname -og gOption' (gOption can be some arbitrary string.)
12 # 'scriptname —gXXX -r'
13 #
14 # 'scriptname —qgr'
15 #+ — Unexpected result, takes "r" as the argument to option "g"
16 # 'scriptname -gq -r'
17 #+ — Unexpected result, same as above
18 # 'scriptname —mnop -mnop' - Unexpected result
19 # (OPTIND is unreliable at stating where an option came from.)
20 #
#
#+

26

27 if [$# —eqg "SNO_ARGS"] # Script invoked with no command-line args?
28 then

29 echo "Usage: “basename $0° options (-mnopgrs)"

30 exit S$E_OPTERROR # Exit and explain usage.

31 # Usage: scriptname -options

32 # Note: dash (-) necessary

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

fi

while getopts ":mnopg:rs" Option

do
case $Option in
m) echo "Scenario #1: option -m— [OPTIND=S${OPTIND}]"; ;
n | o) echo "Scenario #2: option -$Option- [OPTIND=S${OPTIND}]"; ;
o)) echo "Scenario #3: option -p-— [OPTIND=S${OPTIND}]"; ;
q) echo "Scenario #4: option —-g-\
with argument \"S$SOPTARG\" [OPTIND=S{OPTIND}]"; ;
Note that option 'g' must have an associated argument,
#+ otherwise it falls through to the default.
r | s) echo "Scenario #5: option —-$Option-";;
o) echo "Unimplemented option chosen.";; # Default.
esac
done

shift $((SOPTIND - 1))

Decrements the argument pointer so it points to next argument.

$1 now references the first non-option item supplied on the command-line
#+ if one exists.

exit $°?

As Bill Gradwohl states,

"The getopts mechanism allows one to specify: scriptname -mnop -mnop
#+ Dbut there is no reliable way to differentiate what came

#+ from where by using OPTIND."

There are, however, workarounds.

Script Behavior

source, . (dot command)
This command, when invoked from the command-line, executes a script. Within a script, a source
file—name loads the file £ile—-name. Sourcing a file (dot-command) imports code into the script,
appending to the script (same effect as the #include directive in a C program). The net result is the
same as if the "sourced" lines of code were physically present in the body of the script. This is useful
in situations when multiple scripts use a common data file or function library.

Example 15-22. "Including' a data file

0 J o U W

e T e = T = S S S
™ J U WN P O W

#!/bin/bash
Note that this example must be invoked with bash, i.e., bash ex38.sh
#+ not sh ex38.sh !

data-file # Load a data file.
Same effect as "source data-file", but more portable.

The file "data-file" must be present in current working directory,
#+ since it is referred to by its basename.

Now, let's reference some data from that file.

echo "variablel (from data-file) = S$variablel"
echo "variable3 (from data-file) = S$variable3"
let "sum = S$variable2 + Svariabled"

echo "Sum of variable2 + variable4 (from data-file) = S$Ssum"
echo "messagel (from data-file) is \"S$Smessagel\""

19 # Escaped quotes

20 echo "message2 (from data-file) is \"Smessage2\""

21

22 print_message This is the message-print function in the data-file.
23

24

25 exit $°?

File data—-file for Example 15-22, above. Must be present in same directory.

This is a data file loaded by a script.
Files of this type may contain variables, functions, etc.
It loads with a 'source' or '.' command from a shell script.

Let's initialize some variables.

variablel=23

variable2=474

variable3=5

10 variable4=97

11

12 messagel="Greetings from *** line SLINENO *** of the data file!"
13 message2="Enough for now. Goodbye."

O J o U W

e

14

15 print_message ()

16 { # Echoes any message passed to it.

17

18 if [-z "s1"]

19 then

20 return 1 # Error, if argument missing.

21 fi

22

23 echo

24

25 until [-z "S$1"]

26 do # Step through arguments passed to function.
27 echo -n "$1" # Echo args one at a time, suppressing line feeds.
28 echo -n " " # Insert spaces between words.
29 shift # Next one.

30 done

31

32 echo

33

34 return 0

35 }

If the sourced file is itself an executable script, then it will run, then return control to the script that
called it. A sourced executable script may use a return for this purpose.

Arguments may be (optionally) passed to the sourced file as positional parameters.

1 source $filename $argl arg2
It is even possible for a script to source itself, though this does not seem to have any practical
applications.

Example 15-23. A (useless) script that sources itself

1 #!/bin/bash

2 # self-source.sh: a script sourcing itself "recursively."
3 # From "Stupid Script Tricks," Volume II.

4

MAXPASSCNT=100 # Maximum number of execution passes.

echo -n "S$pass_count "

At first execution pass, this just echoes two blank spaces,
9 #+ since $pass_count still uninitialized.

10

11 let "pass_count += 1"

12 # Assumes the uninitialized variable $pass_count

13 #+ can be incremented the first time around.

14 # This works with Bash and pdksh, but

15 #+ it relies on non-portable (and possibly dangerous) behavior.

16 # Better would be to initialize $pass_count to 0 before incrementing.

17

18 while ["S$pass_count" -le SMAXPASSCNT]

19 do

20 . $0 # Script "sources" itself, rather than calling itself.

21 # ./$0 (which would be true recursion) doesn't work here. Why?

22 done

23

24 # What occurs here is not actually recursion,

25 #+ since the script effectively "expands" itself, i.e.,

26 #+ generates a new section of code

27 #+ with each pass through the 'while' loop',

28 # with each 'source' in line 20.

0 J o U

29 #

30 # Of course, the script interprets each newly 'sourced' "#!" line
31 #+ as a comment, and not as the start of a new script.
32

33 echo

34

35 exit O # The net effect is counting from 1 to 100.
36 # Very impressive.

37

38 # Exercise:

39 # ——————=

40 # Write a script that uses this trick to actually do something useful.

exit
Unconditionally terminates a script. [6] The exit command may optionally take an integer argument,
which is returned to the shell as the exit status of the script. It is good practice to end all but the
simplest scripts with an exit O, indicating a successful run.

& If a script terminates with an exit lacking an argument, the exit status of the script is
the exit status of the last command executed in the script, not counting the exit. This is
equivalent to an exit $?.

& An exit command may also be used to terminate a subshell.

exec
This shell builtin replaces the current process with a specified command. Normally, when the shell
encounters a command, it forks off a child process to actually execute the command. Using the exec
builtin, the shell does not fork, and the command exec'ed replaces the shell. When used in a script,
therefore, it forces an exit from the script when the exec'ed command terminates. [7]

Example 15-24. Effects of exec

#!/bin/bash

1
2
3 exec echo "Exiting \"$0\" at line SLINENO." # Exit from script here.
4 # SLINENO is an internal Bash variable set to the line number it's on.
5

6 if =—=—=—=—=——=========================
7 # The following lines never execute.

8
9 echo "This echo fails to echo."
10
11 exit 99 # This script will not exit here.
12 # Check exit value after script terminates
13 #+ with an 'echo $?'.
14 # It will *not* be 99.

Example 15-25. A script that exec's itself

1 #!/bin/bash

2 # self-exec.sh

3

4 # Note: Set permissions on this script to 555 or 755,

5 # then call it with ./self-exec.sh or sh ./self-exec.sh.
6

7 echo

8

9 echo "This line appears ONCE in the script, yet it keeps echoing."
10 echo "The PID of this instance of the script is still S."

11 # Demonstrates that a subshell is not forked off.

12

13 echo " Hit Ctl-C to exit "
14

15 sleep 1

16

17 exec $0 # Spawns another instance of this same script

18 #+ that replaces the previous one.

19

20 echo "This line will never echo!" # Why not?

21

22 exit 99 # Will not exit here!

23 # Exit code will not be 99!

An exec also serves to reassign file descriptors. For example, exec <zzz-file replaces stdin
with the file zzz-file.

- The —exec option to find is not the same as the exec shell builtin.

shopt
This command permits changing shell options on the fly (see Example 25-1 and Example 25-2). It
often appears in the Bash startup files, but also has its uses in scripts. Needs version 2 or later of Bash.
1 shopt -s cdspell
2 # Allows minor misspelling of directory names with 'cd'
3 # Option -s sets, —-u unsets.
4
5 cd /hpme # Oops! Mistyped '/home'.
6 pwd # /home
7 # The shell corrected the misspelling.
caller

Putting a caller command inside a function echoes to st dout information about the caller of that
function.

1 #!/bin/bash
2
3 functionl ()

Inside functionl ().
caller O # Tell me about it.

O J o U Wb

9 functionl # Line 9 of script.

10

11 # 9 main test.sh

12 # 7 Line number that the function was called from.
13 # Annn Invoked from "main" part of script.

14 # ANNANAN Name of calling script.

15

16 caller O # Has no effect because it's not inside a function.

A caller command can also return caller information from a script sourced within another script.
Analogous to a function, this is a "subroutine call."

You may find this command useful in debugging.
Commands

true
A command that returns a successful (zero) exit status, but does nothing else.

bash$ true
bash$ echo $?
0

1 # Endless loop

2 while true # alias for ":"
3 do

4 operation-1

operation-2

operation-n
Need a way to break out of loop or script will hang.
done

O 0 J o U

false
A command that returns an unsuccessful exit status, but does nothing else.

bash$ false
bash$ echo $?

1
1 # Testing "false"
2 if false
3 then
4 echo "false evaluates \"true\""
5 else
6 echo "false evaluates \"false\""
7 fi
8 # false evaluates "false"
)
10

11 # Looping while "false" (null loop)
12 while false

13 do

14 # The following code will not execute.
15 operation-1

16 operation-2

18 operation-n

19 # Nothing happens!
20 done
type [cmd]

Similar to the which external command, type cmd identifies "cmd." Unlike which, type is a Bash
builtin. The useful —a option to type identifies keywords and builtins, and also locates system
commands with identical names.

bash$ type '['
[is a shell builtin
bash$ type -a '['
[is a shell builtin
[is /usr/bin/ [

bash$ type type
type is a shell builtin

The type command can be useful for testing whether a certain command exists.

hash [cmds]
Records the path name of specified commands -- in the shell hash table [8] -- so the shell or script
will not need to search the $PATH on subsequent calls to those commands. When hash is called with
no arguments, it simply lists the commands that have been hashed. The —r option resets the hash
table.

bind
The bind builtin displays or modifies readline [9] key bindings.

help

Gets a short usage summary of a shell builtin. This is the counterpart to whatis, but for builtins. The
display of help information got a much-needed update in the version 4 release of Bash.

bash$ help exit
exit: exit [n]
Exit the shell with a status of N. If N is omitted, the exit status
is that of the last command executed.

15.1. Job Control Commands

Certain

chapter.

jobs

disown

fg, bg

wait

of the following job control commands take a job identifier as an argument. See the table at end of the

Lists the jobs running in the background, giving the job number. Not as useful as ps.

& It is all too easy to confuse jobs and processes. Certain builtins, such as kill, disown,
and wait accept either a job number or a process number as an argument. The fg, bg
and jobs commands accept only a job number.

bash$ sleep 100 &
[1] 1384

bash $ jobs
[1]+ Running sleep 100 &

"1" is the job number (jobs are maintained by the current shell). "1384" is the PID or
process ID number (processes are maintained by the system). To kill this job/process,
either a kill %1 or a kill 1384 works.

Thanks, S.C.

Remove job(s) from the shell's table of active jobs.

The fg command switches a job running in the background into the foreground. The bg command
restarts a suspended job, and runs it in the background. If no job number is specified, then the fg or bg
command acts upon the currently running job.

Suspend script execution until all jobs running in background have terminated, or until the job number
or process ID specified as an option terminates. Returns the exit status of waited-for command.

You may use the wait command to prevent a script from exiting before a background job finishes
executing (this would create a dreaded orphan process).

Example 15-26. Waiting for a process to finish before proceeding

#!/bin/bash

1

2

3 ROOT_UID=0 # Only users with S$UID 0 have root privileges.
4 E_NOTROOT=65

5 E_NOPARAMS=66
6
7
8

if ["$UID" -ne "SROOT_UID"]
then
9 echo "Must be root to run this script."
10 # "Run along kid, it's past your bedtime."
11 exit S$E_NOTROOT
12 fi

14 if [-z "$1"]

15 then

16 echo "Usage: “basename $0° find-string"
17 exit S$E_NOPARAMS

18 fi

20

21 echo "Updating 'locate' database..."

22 echo "This may take a while."

23 updatedb /usr & # Must be run as root.

24

25 wait

26 # Don't run the rest of the script until 'updatedb' finished.
27 # You want the the database updated before looking up the file name.
28

29 locate 51

30

31 # Without the 'wait' command, in the worse case scenario,

32 #+ the script would exit while 'updatedb' was still running,
33 #+ leaving it as an orphan process.

34

35 exit O

Optionally, wait can take a job identifier as an argument, for example, wait$1 or wait SPPID.
[10] See the job id table.

i) Within a script, running a command in the background with an ampersand (&) may
cause the script to hang until ENTER is hit. This seems to occur with commands that
write to stdout. It can be a major annoyance.

1 #!/bin/bash
2 # test.sh

3

4 1s -1 &

5 echo "Done."

bash$S ./test.sh

Done.
[bozo@localhost test-scripts]$ total 1
—ITWXYX—XI—X 1 bozo bozo 34 Oct 11 15:09 test.sh

As Walter Brameld IV explains it:

As far as I can tell, such scripts don't actually hang. It just

seems that they do because the background command writes text to
the console after the prompt. The user gets the impression that

the prompt was never displayed. Here's the sequence of events:

1. Script launches background command.

2. Script exits.

3. Shell displays the prompt.

4. Background command continues running and writing text to the
console.

5. Background command finishes.

6. User doesn't see a prompt at the bottom of the output, thinks script
is hanging.

Placing a wait after the background command seems to remedy this.

#!/bin/bash
test.sh

Sw N

1ls -1 &

suspend

This has a similar effect to Control-Z, but it suspends the shell (the shell's parent process should

5 echo "Done."

6 wait
bashS$./test.sh
Done.
[bozo@localhost test-scripts]$ total 1
—YWXYr—Xr—X 1 bozo bozo 34 Oct 11 15:09 test.sh

Redirecting the output of the command to a file or even to /dev/null also takes
care of this problem.

resume it at an appropriate time).

logout

Exit a login shell, optionally specifying an exit status.

times

Gives statistics on the system time elapsed when executing commands, in the following form:

Om0.020s Om0.020s
This capability is of relatively limited value, since it is not common to profile and benchmark shell

scripts.

kill

Forcibly terminate a process by sending it an appropriate terminate signal (see Example 17-6).

Example 15-27. A script that kills itself

QO J oy U b W N

=
(@]

S e e e e
O W do U WwN

#!/bin/bash
self-destruct.sh

kill $$ # Script kills its own process here.
Recall that "$$" is the script's PID.

echo "This line will not echo."
Instead, the shell sends a "Terminated" message to stdout.

o)

exit 0 # Normal exit? No!

=
=

After this script terminates prematurely,
#+ what exit status does it return?

#

sh self-destruct.sh

echo $?

143

143 = 128 + 15
TERM signal

EE T

killall

The killall command kills a running process by name, rather than by process ID. If there are multiple
instances of a particular command running, then doing a killall on that command will terminate them
all.

) kill -1 lists all the signals (as does the file /usr/include/asm/signal.h).

A kill -9is asure kill, which will usually terminate a process that stubbornly
refuses to die with a plain kill. Sometimes, a kill -15 works. A zombie process,
that is, a child process that has terminated, but that the parent process has not (yet)
killed, cannot be killed by a logged-on user -- you can't kill something that is already
dead -- but init will generally clean it up sooner or later.

&) This refers to the killall command in /usr/bin, not the killall script in
/etc/rc.d/init.d.

command

builtin

enable

The command directive disables aliases and functions for the command immediately following it.
bash$ command 1ls

&) This is one of three shell directives that effect script command processing. The
others are builtin and gnable.

Invoking builtin BUILTIN_COMMAND runs the command BUTLTIN_COMMAND as a shell
builtin, temporarily disabling both functions and external system commands with the same name.

This either enables or disables a shell builtin command. As an example, enable -n kill disables
the shell builtin kill, so that when Bash subsequently encounters kill, it invokes the external command
/bin/kill.

The —a option to enable lists all the shell builtins, indicating whether or not they are enabled. The — £
filename option lets enable load a builtin as a shared library (DLL) module from a properly
compiled object file. [11].

autoload

This is a port to Bash of the ksh autoloader. With autoload in place, a function with an autoload
declaration will load from an external file at its first invocation. [12] This saves system resources.

Note that autoload is not a part of the core Bash installation. It needs to be loaded in with enable

—1 (see above).

Table 15-1. Job identifiers

Notation [Meaning

SN Job number [N]
%S Invocation (command-line) of job begins with string S
%725 Invocation (command-line) of job contains within it string S

o\°
o\°

"current” job (last job stopped in foreground or started in background)

%+ "current” job (last job stopped in foreground or started in background)
% Last job

$! Last background process

Notes

[11 As Nathan Coulter points out, "while forking a process is a low-cost operation, executing a new
program in the newly-forked child process adds more overhead."

[2] An exception to this is the time command, listed in the official Bash documentation as a keyword
("reserved word").

[3] Note that /et cannot be used for setting string variables.

[4] To Export information is to make it available in a more general context. See also scope.

51

An option is an argument that acts as a flag, switching script behaviors on or off. The argument
associated with a particular option indicates the behavior that the option (flag) switches on or off.

[6] Technically, an exit only terminates the process (or shell) in which it is running, not the parent process.
[7] Unless the exec is used to reassign file descriptors.
81

Hashing is a method of creating lookup keys for data stored in a table. The data items themselves are
"scrambled" to create keys, using one of a number of simple mathematical algorithms (methods, or
recipes).

An advantage of hashing is that it is fast. A disadvantage is that collisions -- where a single key maps to
more than one data item -- are possible.

For examples of hashing see Example A-20 and Example A-21.
[9] The readline library is what Bash uses for reading input in an interactive shell.
[10] This only applies to child processes, of course.

[11] The C source for a number of loadable builtins is typically found in the
/usr/share/doc/bash-?.??/functions directory.

Note that the —f option to enable is not portable to all systems.
12] The same effect as autoload can be achieved with typeset -fu.

Prev Home Next
Commands Up External Filters, Programs and
Commands

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Next

Chapter 16. External Filters, Programs and
Commands

Standard UNIX commands make shell scripts more versatile. The power of scripts comes from coupling
system commands and shell directives with simple programming constructs.

16.1. Basic Commands

The first commands a novice learns

Is

The basic file "list" command. It is all too easy to underestimate the power of this humble command.
For example, using the —R, recursive option, Is provides a tree-like listing of a directory structure.
Other useful options are - S, sort listing by file size, —t, sort by file modification time, —v, sort by
(numerical) version numbers embedded in the filenames, [1] —~b, show escape characters, and -1,
show file inodes (see Example 16-4).

bash$ 1s -1

—-rw-rw-r—— 1 bozo bozo 0 Sep 14 18:44 chapterlO.txt
—-rw-rw-r—— 1 bozo bozo 0 Sep 14 18:44 chapterll.txt
—-rw-rw-r—— 1 bozo bozo 0 Sep 14 18:44 chapterl2.txt
—rw-rw-r—— 1 bozo bozo 0 Sep 14 18:44 chapterl.txt
—-rw-rw-r—— 1 bozo bozo 0 Sep 14 18:44 chapter2.txt
—rw-rw-r—— 1 bozo bozo 0 Sep 14 18:44 chapter3.txt
—-rw-rw-r—— 1 bozo bozo 0 Sep 14 18:49 Chapter_headings.txt
—rw-rw-r—— 1 bozo bozo 0 Sep 14 18:49 Preface.txt

bash$ 1s -1v
total O

—-rw-rw-r—— 1 bozo bozo 0 Sep 14 18:49 Chapter_headings.txt
—-rw-rw-r—— 1 bozo bozo 0 Sep 14 18:49 Preface.txt
—rw-rw-r—— 1 bozo bozo 0 Sep 14 18:44 chapterl.txt
—rw-rw-r—— 1 bozo bozo 0 Sep 14 18:44 chapter2.txt
—rw-rw-r—— 1 bozo bozo 0 Sep 14 18:44 chapter3.txt
—-rw-rw-r—— 1 bozo bozo 0 Sep 14 18:44 chapterlO.txt
—-rw-rw-r—— 1 bozo bozo 0 Sep 14 18:44 chapterll.txt
—-rw-rw-r—— 1 bozo bozo 0 Sep 14 18:44 chapterl2.txt

i) The /s command returns a non-zero exit status when attempting to list a non-existent
file.

bash$ 1s abc
ls: abc: No such file or directory

bash$ echo $?
2

Example 16-1. Using Is to create a table of contents for burning a CDR disk

O ~J o oW

e
B W N R oW

15

#!/bin/bash
ex40.sh (burn—-cd.sh)
Script to automate burning a CDR.

SPEED=10 # May use higher speed if your hardware supports it.

IMAGEFILE=cdimage.iso

CONTENTSFILE=contents

DEVICE=/dev/cdrom For older versions of cdrecord

DEVICE="1,0,0"

DEFAULTDIR=/opt # This is the directory containing the data to be burned.
Make sure it exists.
Exercise: Add a test for this.

Uses Joerg Schilling's "cdrecord" package:

16 # http://www.fokus.fhg.de/usr/schilling/cdrecord.html

17

18 # If this script invoked as an ordinary user, may need to suid cdrecord
19 #+ chmod u+s /usr/bin/cdrecord, as root.

20 # Of course, this creates a security hole, though a relatively minor one.
21

22 if [-z "S$S1"]

23 then

24 IMAGE_DIRECTORY=$DEFAULTDIR

25 # Default directory, if not specified on command-line.

26 else

27 IMAGE_DIRECTORY=$1

28 fi

29

30 # Create a "table of contents" file.

31 1s —-1RF $IMAGE_DIRECTORY > $IMAGE_DIRECTORY/S$CONTENTSFILE

32 # The "1" option gives a "long" file listing.

33 # The "R" option makes the listing recursive.

34 # The "F" option marks the file types (directories get a trailing /).
35 echo "Creating table of contents."

36

37 # Create an image file preparatory to burning it onto the CDR.
38 mkisofs -r -o $IMAGEFILE S$IMAGE_DIRECTORY

39 echo "Creating IS09660 file system image (SIMAGEFILE)."

40

41 # Burn the CDR.

42 echo "Burning the disk."

43 echo "Please be patient, this will take a while."

44 wodim -v -isosize dev=$DEVICE S$IMAGEFILE

45 # 1In newer Linux distros, the "wodim" utility assumes the

46 #+ functionality of "cdrecord."

47 exitcode=57?

48 echo "Exit code = Sexitcode"

49

50 exit $exitcode

cat, tac
cat, an acronym for concatenate, lists a file to stdout. When combined with redirection (> or >>), it
is commonly used to concatenate files.

1 # Uses of 'cat'

2 cat filename # Lists the file.

3

4 cat file.l file.2 file.3 > file.123 # Combines three files into one.

The —n option to cat inserts consecutive numbers before all lines of the target file(s). The —b option
numbers only the non-blank lines. The —v option echoes nonprintable characters, using " notation.
The —s option squeezes multiple consecutive blank lines into a single blank line.

See also Example 16-28 and Example 16-24.

&) In a pipe, it may be more efficient to redirect the st din to a file, rather than to cat the
file.

1 cat filename | tr a-z A-7Z

2
3 tr a-z A-Z < filename # Same effect, but starts one less process,
4 #+ and also dispenses with the pipe.

tac, is the inverse of cat, listing a file backwards from its end.

rev
reverses each line of a file, and outputs to st dout. This does not have the same effect as tac, as it
preserves the order of the lines, but flips each one around (mirror image).

bash$ cat filel.txt
This is line 1.
This is line 2.

bash$ tac filel.txt
This is line 2.
This is line 1.

bash$ rev filel.txt
.1 enil si sihT
.2 enil si sihT

cp
This is the file copy command. cp filel file2 copies filel to file?2, overwriting file2 if
it already exists (see Example 16-6).
j | Particularly useful are the —a archive flag (for copying an entire directory tree), the
—u update flag (which prevents overwriting identically-named newer files), and the
—-r and —R recursive flags.
1 cp —u source_dir/* dest_dir
2 # "Synchronize" dest_dir to source_dir
3 #+ Dby copying over all newer and not previously existing files.
my
This is the file move command. It is equivalent to a combination of ¢p and rm. It may be used to
move multiple files to a directory, or even to rename a directory. For some examples of using mv in a
script, see Example 10-11 and Example A-2.
&) When used in a non-interactive script, mv takes the —f (force) option to bypass user
input.
When a directory is moved to a preexisting directory, it becomes a subdirectory of the
destination directory.
bash$ mv source_directory target_directory
bash$ 1ls —-1F target_directory
total 1
drwXrwxr—x 2 bozo bozo 1024 May 28 19:20 source_directory/
rm

Delete (remove) a file or files. The —f option forces removal of even readonly files, and is useful for
bypassing user input in a script.

CF
The rm command will, by itself, fail to remove filenames beginning with a dash.
Why? Because rm sees a dash-prefixed filename as an option.

bash$ rm -badname

rm: invalid option -- b

Try "rm —--help' for more information.
One clever workaround is to precede the filename with a " -- " (the end-of-options
flag).

bash$ rm -- —-badname

Another method to is to preface the filename to be removed with a dot-slash.

bash$ rm ./-badname

When used with the recursive flag —r, this command removes files all the way down
the directory tree from the current directory. A careless rm -rf * can wipe out a big
chunk of a directory structure.
rmdir
Remove directory. The directory must be empty of all files -- including "invisible" dotfiles [2] -- for
this command to succeed.
mkdir
Make directory, creates a new directory. For example, mkdir -p
project/programs/December creates the named directory. The —p option automatically
creates any necessary parent directories.
chmod
Changes the attributes of an existing file or directory (see Example 15-14).

chmod +x filename
Makes "filename" executable for all users.

chmod u+s filename

Sets "suid" bit on "filename" permissions.

An ordinary user may execute "filename" with same privileges as the file's owner.
(This does not apply to shell scripts.)

~ o U W

chmod 644 filename
Makes "filename" readable/writable to owner, readable to others
#+ (octal mode) .

chmod 444 filename

Makes "filename" read-only for all.

Modifying the file (for example, with a text editor)

#+ not allowed for a user who does not own the file (except for root),
#+ and even the file owner must force a file-save

#+ if she modifies the file.

Same restrictions apply for deleting the file.

O W 0w Jo Ul Wb

=

chmod 1777 directory-name

Gives everyone read, write, and execute permission in directory,
#+ however also sets the "sticky bit".

This means that only the owner of the directory,

#+ owner of the file, and, of course, root

#+ can delete any particular file in that directory.

O J oy U b W

chmod 111 directory-name

Gives everyone execute-only permission in a directory.

This means that you can execute and READ the files in that directory

#+ (execute permission necessarily includes read permission

#+ because you can't execute a file without being able to read it).

But you can't list the files or search for them with the "find" command.
These restrictions do not apply to root.

T = T = S S S
oUW N O W

chmod 000 directory-name

©No permissions at all for that directory.

Can't read, write, or execute files in it.

Can't even list files in it or "cd" to it.

But, you can rename (mv) the directory

#+ or delete it (rmdir) if it is empty.

You can even symlink to files in the directory,

#+ but you can't read, write, or execute the symlinks.
These restrictions do not apply to root.

DD DNDDND R
B w D kO w o J

chattr

In

Change file attributes. This is analogous to chmod above, but with different options and a different
invocation syntax, and it works only on ext2/ext3 filesystems.

One particularly interesting chattr option is i. A chattr +i £ilename marks the file as immutable.
The file cannot be modified, linked to, or deleted, not even by root. This file attribute can be set or
removed only by root. In a similar fashion, the a option marks the file as append only.

root# chattr +i filel.txt

root# rm filel.txt

rm: remove write-protected regular file "filel.txt'? y
rm: cannot remove "~ filel.txt': Operation not permitted

If a file has the s (secure) attribute set, then when it is deleted its block is overwritten with binary
zeroes. [3]

If a file has the u (undelete) attribute set, then when it is deleted, its contents can still be retrieved
(undeleted).

If a file has the ¢ (compress) attribute set, then it will automatically be compressed on writes to disk,
and uncompressed on reads.

&) The file attributes set with chattr do not show in a file listing (Is -1).

Creates links to pre-existings files. A "link" is a reference to a file, an alternate name for it. The In
command permits referencing the linked file by more than one name and is a superior alternative to

aliasing (see Example 4-6).

The In creates only a reference, a pointer to the file only a few bytes in size.
The In command is most often used with the —s, symbolic or "soft" link flag. Advantages of using the
—s flag are that it permits linking across file systems or to directories.

The syntax of the command is a bit tricky. For example: 1n —s oldfile newfile links the
previously existing o1dfile to the newly created link, newfile.

<1 If a file named newfile has previously existed, an error message will result.

Which type of link to use?
As John Macdonald explains it:

Both of these [types of links] provide a certain measure of dual reference -- if you edit the contents
of the file using any name, your changes will affect both the original name and either a hard or soft
new name. The differences between them occurs when you work at a higher level. The advantage of
a hard link is that the new name is totally independent of the old name -- if you remove or rename
the old name, that does not affect the hard link, which continues to point to the data while it would
leave a soft link hanging pointing to the old name which is no longer there. The advantage of a soft
link is that it can refer to a different file system (since it is just a reference to a file name, not to
actual data). And, unlike a hard link, a symbolic link can refer to a directory.

Links give the ability to invoke a script (or any other type of executable) with multiple names, and
having that script behave according to how it was invoked.

Example 16-2. Hello or Good-bye

1 #!/bin/bash

2 # hello.sh: Saying "hello" or "goodbye"

3 #+ depending on how script is invoked.
4

5 # Make a link in current working directory (SPWD) to this script:
6 # In -s hello.sh goodbye

7 # Now, try invoking this script both ways:

8 # ./hello.sh

9 # ./goodbye
10
11
12 HELLO_CALL=65

13 GOODBYE_CALL=66

14

15 if [$0 = "./goodbye"]

16 then

17 echo "Good-bye!"

18 # Some other goodbye-type commands, as appropriate.
19 exit S$GOODBYE_CALL

20 fi

21

22 echo "Hello!"

23 # Some other hello-type commands, as appropriate.
24 exit S$HELLO_CALL

man, info
These commands access the manual and information pages on system commands and installed
utilities. When available, the info pages usually contain more detailed descriptions than do the man

pages.

There have been various attempts at "automating" the writing of man pages. For a script that makes a
tentative first step in that direction, see Example A-39.

Notes

[1] The —v option also orders the sort by upper- and lowercase prefixed filenames.

2]
Dotfiles are files whose names begin with a dot, such as ~/ . Xdefaults. Such filenames do not
appear in a normal Is listing (although an Is -a will show them), and they cannot be deleted by an
accidental rm -rf *. Dotfiles are generally used as setup and configuration files in a user's home
directory.

[3]1 This particular feature may not yet be implemented in the version of the ext2/ext3 filesystem installed
on your system. Check the documentation for your Linux distro.

Prev Home Next
Internal Commands and Builtins Up Complex Commands
Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Chapter 16. External Filters, Programs and Commands Next

16.2. Complex Commands

Commands for more advanced users
find
-exec COMMAND \;

Carries out COMMAND on each file that find matches. The command sequence terminates with ; (the

non

;" is escaped to make certain the shell passes it to find literally, without interpreting it as a special
character).

bash$ find ~/ —-name '*.txt'
/home/bozo/.kde/share/apps/karm/karmdata.txt
/home/bozo/misc/irmeyc.txt
/home/bozo/test-scripts/1l.txt

If COMMAND contains { }, then find substitutes the full path name of the selected file for "{}".

1 find ~/ -name 'core*' -exec rm {} \;
Removes all core dump files from user's home directory.

N

find /home/bozo/projects —-mtime -1

A Note minus sign!

Lists all files in /home/bozo/projects directory tree

#+ that were modified within the last day (current_day - 1).
#

find /home/bozo/projects —mtime 1

Same as above, but modified *exactly* one day ago.

O J o ol W

mtime = last modification time of the target file
ctime = last status change time (via 'chmod' or otherwise)
atime = last access time

o e e
W N oW
H H o

DIR=/home/bozo/junk_files

find "SDIR" -type f —-atime +5 —-exec rm {} \;

A AN

Curly brackets are placeholder for the path name output by "find."

#

Deletes all files in "/home/bozo/junk_files"

#+ that have not been accessed in *at least* 5 days (plus sign ... +5).

#

NN R R R e e
B O W o U

"-type filetype", where
f = regular file

d = directory

1 = symbolic link, etc.

NN DN DN
g W N

#
#
#
#
#
#

N
[e)}

(The 'find' manpage and info page have complete option listings.)

find /etc -exec grep '[0-9][0-9]*[.]1[0-9]1[0-9]1*[.]1[0-9]1[0-9]*[.]1[0-91[0-9]1*" {} \;

Finds all IP addresses (XxXx.XXX.XXxX.Xxx) 1in /etc directory files.
There a few extraneous hits. Can they be filtered out?

Possibly by:
find /etc -type f —-exec cat '"{}' \; | tr —c '.[:digit:]" '"\n' \

| gEem "AIP DM 1N e [P o] [P o] Ne [P a] [7a 1¥Na [P [#]*§"
#

O W 00 J o U W

[

11

[:digit:]

is one of the character classes

12 #+ introduced with the POSIX 1003.2 standard.

13
14

& The —exec option to find should not be confused with the exec shell builtin.

Thanks, Stéphane Chazelas.

Example 16-3. Badname, eliminate file names in current directory containing bad characters

and whitespace.

O J o o b W

WNNNDNNDNNDNNONNNNNRERERRRRRR R
O WWJO U WNHEOWOWUIO U D WNEFE O W

31

#!/bin/bash
badname.sh

Delete filenames in current directory containing bad characters.

for filename in *

do
badname="echo

badname="echo

"Sfilename"
"Sfilename"

sed

-n

I+ {G"\=2~ () <>&* [$]/p"

(

)

Deletes files containing these nasties: + {; "\ =72~
#
rm S$badname 2>/dev/null
ANNNNANNAAN Frror messages deep-sixed.
done
Now, take care of files containing all manner of whitespace.
find —name "* *" —exec rm -f {} \;
The path name of the file that _find_ finds replaces the "{}".

The '\'

exit O

ensures that the ';

is interpreted literally,

An alternative to the above script:

find —name
-exec rm —-f '"{}' \;
The "-maxdepth 0"

(Thanks, S.C.)

R[S () <>8 S T

-maxdepth 0 \

option ensures that _find will not search
#+ subdirectories below SPWD.

sed —n /[NANV{NA"ANANA=AZAN (V) NA>NG*\ [\S] /p”

also works.

< > & *

as end of command.

$

Example 16-4. Deleting a file by its inode number

W J o U b W

e = T = RS
o U WN P O W

#!/bin/bash

idelete.sh: Deleting a file by its inode number.

This is useful when a filename starts with an illegal character,

#+ such as ? or -.

ARGCOUNT=1
E_WRONGARGS=70
E_FILE_NOT_EXIST=71
E_CHANGED_MIND=72

if [$# -ne "SARGCOUNT"]

then
echo "Usage: “basename $0°
exit S$E_WRONGARGS

fi

Filename arg must be passed to script.

filename"

xargs

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

if [! —e "S1"]
then
echo "File \""$1"\" does not exist."
exit SE_FILE_NOT_EXIST
fi
inum="1ls -i | grep "$1" | awk '{print $1}'"
inum = inode (index node) number of file

Every file has an inode, a record that holds its physical address info.

echo; echo -n "Are you absolutely sure you want to delete \"S$I1\" (y/n)2 "
The '-v' option to 'rm' also asks this.

read answer

case "$answer" in

[nN]) echo "Changed your mind, huh?"
exit S$E_CHANGED_MIND
i
*) echo "Deleting file \"S$1\".";;
esac
find . —inum $inum -exec rm {} \;
AN
Curly brackets are placeholder
#+ for text output by "find."
echo "File "\"$1"\" deleted!"
exit O

The find command also works without the —exec option.

O ~J o U W

eJ

10
11
12
13
14

#!/bin/bash

Find suid root files.

A strange suid file might indicate a security hole,
#+ or even a system intrusion.

directory="/usr/sbin"
Might also try /sbin, /bin, /usr/bin, /usr/local/bin, etc.
permissions="+4000" # suid root (dangerous!)

for file in $(find "S$directory" -perm "S$permissions")
do

ls —-1tF —-author "S$file"
done

See Example 16-30, Example 3-4, and Example 11-10 for scripts using find. Its manpage provides
more detail on this complex and powerful command.

A filter for feeding arguments to a command, and also a tool for assembling the commands
themselves. It breaks a data stream into small enough chunks for filters and commands to process.
Consider it as a powerful replacement for backquotes. In situations where command substitution fails
with a too many arguments error, substituting xargs often works. [1] Normally, xargs reads from
stdin or from a pipe, but it can also be given the output of a file.

The default command for xargs is echo. This means that input piped to xargs may have linefeeds and
other whitespace characters stripped out.

bash$ 1s -1
total 0
—rW—IW—Tr—— 1 bozo bozo 0 Jan 29 23:58 filel

—IW—IrW—Ir—— 1 bozo bozo 0 Jan 29 23:58 file2

bash$ 1s -1 | xargs
total 0 —rw-rw-r—— 1 bozo bozo 0 Jan 29 23:58 filel -rw-rw-r—-—- 1 bozo bozo 0 Jan...

bash$ find ~/mail -type £ | xargs grep "Linux"

./misc:User-Agent: slrn/0.9.8.1 (Linux)

./sent-mail-jul-2005: hosted by the Linux Documentation Project.
./sent-mail-jul-2005: (Linux Documentation Project Site, rtf version)
./sent-mail-jul-2005: Subject: Criticism of Bozo's Windows/Linux article
./sent-mail-jul-2005: while mentioning that the Linux ext2/ext3 filesystem

1s | xargs —-p -1 gzip gzips every file in current directory, one at a time, prompting before
each operation.

&) Note that xargs processes the arguments passed to it sequentially, one at a time.

bash$ find /usr/bin | xargs file
/usr/bin: directory
/usr/bin/foomatic-ppd-options: perl script text executable

i) An interesting xargs option is —n NN, which limits to NN the number of arguments
passed.

1ls | xargs —n 8 echo lists the files in the current directory in 8 columns.

i) Another useful option is -0, in combination with £ind —printO0 or grep -12Z.
This allows handling arguments containing whitespace or quotes.

find / -type f -print0 | xargs -0 grep -liwZ GUI | xargs
-0 rm -f

grep -rliwZ GUI / | xargs -0 rm -f
Either of the above will remove any file containing "GUI". (Thanks, S.C.)
Or:

cat /proc/"$pid"/"SOPTION" | xargs -0 echo
From Han Holl's fixup of "get-commandline.sh"
#+ script in "/dev and /proc" chapter.

Sw N

The —P option to xargs permits running processes in parallel. This speeds up
execution in a machine with a multicore CPU.

#!/bin/bash

ls *gif | xargs -t —-nl -P2 gif2png
Converts all the gif images in current directory to png.

Sw NP

© 3 oy U
S
[©)
o
&+
b
O
=)
0

$ =======
-t Print command to stderr.

9 # -nl At most 1 argument per command line.

10 # -P2 Run up to 2 processes simultaneously.

11

12 # Thank you, Roberto Polli, for the inspiration.

Example 16-5. Logfile: Using xargs to monitor system log

O ~J oUW

WWWWWWWNNNNNONNLONNNDNNDNND R PR B R R PR e
N R WD P OW®OJONU s WNRE OW®DJo U s WN - O W

#!/bin/bash

Generates a log file in current directory
from the tail end of /var/log/messages.

Note: /var/log/messages must be world readable
if this script invoked by an ordinary user.
#root chmod 644 /var/log/messages

LINES=5

(date; uname -a) >>logfile

Time and machine name

QENE == e s s e e e e e e >>logfile
tail -n SLINES /var/log/messages | xargs | fmt -s >>logfile

echo >>logfile

echo >>logfile

exit O

Note:

As Frank Wang points out,

unmatched quotes (either single or double quotes) in the source file
may give xargs indigestion.

+ +

He suggests the following substitution for line 15:
tail -n $LINES /var/log/messages | tr -d "\"'" | xargs | fmt -s >>logfile

B T

Exercise:

Modify this script to track changes in /var/log/messages at intervals
#+ of 20 minutes.
Hint: Use the "watch" command.

As in find, a curly bracket pair serves as a placeholder for replacement text.

Example 16-6. Copying files in current directory to another

#!/bin/bash
copydir.sh

Copy (verbose) all files in current directory (SPWD)
#+ to directory specified on command-line.

E_NOARGS=85

9 if [-z "S1"] # Exit if no argument given.
10 then
11 echo "Usage: “basename $0° directory-to-copy-to"
12 exit $E_NOARGS
13 fi
14
15 1s | xargs -i -t cp ./{} S$1
16 # anoan an
17 # -t is "verbose" (output command-line to stderr) option.
18 # -i is "replace strings" option.
19 # {} is a placeholder for output text.
20 # This is similar to the use of a curly-bracket pair in "find."
21 #
22 # List the files in current directory (ls .),
23 #+ pass the output of "1ls" as arguments to "xargs" (-1 -t options),
24 #+ then copy (cp) these arguments ({}) to new directory ($1).
25 #

26 # The net result is the exact equivalent of

27 #+ g = $i1

28 #+ unless any of the filenames has embedded "whitespace" characters.
29

30 exit O

Example 16-7. Killing processes by name

1 #!/bin/bash
2 # kill-byname.sh: Killing processes by name.
3 # Compare this script with kill-process.sh.
4
5 # For instance,
6 #+ try "./kill-byname.sh xterm" —-—
7 #+ and watch all the xterms on your desktop disappear.
8
9 # Warning:
10 # ———————
11 # This is a fairly dangerous script.
12 # Running it carelessly (especially as root)
13 #+ can cause data loss and other undesirable effects.
14
15 E_BADARGS=66
16
17 if test -z "$1" # No command-line arg supplied?
18 then
19 echo "Usage: "basename $0° Process(es)_to_kill"
20 exit $E_BADARGS
21 fi
22
23
24 PROCESS_NAME="S1"
25 ps ax | grep "SPROCESS_NAME" | awk '{print $1}' | xargs —-i kill {} 2&>/dev/null
26 # an an
27
28 § ===—===—===—===—===—===—===—=======—===—===——==——======so======
29 # Notes:
30 # -1 is the "replace strings" option to xargs.
31 # The curly brackets are the placeholder for the replacement.
32 # 2&>/dev/null suppresses unwanted error messages.
33 #
34 # Can grep "SPROCESS_NAME" be replaced by pidof "S$SPROCESS_NAME"?
B e D e D e

w
o

37 exit $7

38

39 # The "killall" command has the same effect as this script,
40 #+ but using it is not quite as educational.

Example 16-8. Word frequency analysis using xargs

1 #!/bin/bash

2 # wf2.sh: Crude word frequency analysis on a text file.
3

4 # Uses 'xargs' to decompose lines of text into single words.
5 # Compare this example to the "wf.sh" script later on.
6

7

8 # Check for input file on command-line.

9 ARGS=1
10 E_BADARGS=85
11 E_NOFILE=86
12
13 if [S$S# —-ne "SARGS"]
14 # Correct number of arguments passed to script?
15 then
16 echo "Usage: "basename $0° filename"
17 exit $E_BADARGS
18 fi
19
20 1f [! —-f "s1"] # Does file exist?
21 then
22 echo "File \"$1\" does not exist."
23 exit SE_NOFILE
24 fi
25
26
27
28 #eH#HHA AR A A AR
29 cat "S$1" | xargs -nl | \

30 # List the file, one word per line.

31 tr A-Z a-z | \

32 # Shift characters to lowercase.

33 sed —-e 's/\.//g' -e 's/\,//g' —-e 's/ /\

34 /g' | \

35 # Filter out periods and commas, and

36 #+ change space between words to linefeed,

37 sort | unig -c | sort -nr

38 # Finally remove duplicates, prefix occurrence count
39 #+ and sort numerically.

ORI 3R Rk i i ki
41

42 # This does the same job as the "wf.sh" example,

43 #+ but a bit more ponderously, and it runs more slowly (why?).
44

45 exit $7?

expr
All-purpose expression evaluator: Concatenates and evaluates the arguments according to the
operation given (arguments must be separated by spaces). Operations may be arithmetic, comparison,
string, or logical.

expr 3 + 5
returns 8

expr 5 % 3
returns 2
expr 1 / O
returns the error message, expr: division by zero

Illegal arithmetic operations not allowed.
expr 5 * 3
returns 15

The multiplication operator must be escaped when used in an arithmetic expression with
expr.

y="expr Sy + 1°
Increment a variable, with the same effect as 1et y=y+1 and y=$ (($y+1)). This is an
example of arithmetic expansion.

z="expr substr $string $position $length’
Extract substring of $length characters, starting at $position.

Example 16-9. Using expr

1 #!/bin/bash
2
3 # Demonstrating some of the uses of 'expr'
4 # =======================================
5
6 echo
-
8 # Arithmetic Operators
DEETESSS i
10
11 echo "Arithmetic Operators"
12 echo
13 a="expr 5 + 3°
14 echo "5 + 3 = $a"
15
16 a="expr $a + 1°
17 echo
18 echo "a + 1 = $a"
19 echo " (incrementing a variable)"
20
21 a="expr 5 % 3°
22 # modulo
23 echo
24 echo "5 mod 3 = $a"
25
26 echo
27 echo
28
29 # Logical Operators
30 i =————== =mmm=m===
31
32 # Returns 1 if true, 0 if false,

w
w

#+ opposite of normal Bash convention.

w W
ar o

echo "Logical Operators"
echo

w W W
W I o

x=24

y=25

b="expr $x = Sy # Test equality.
echo "b = $b" # 0 ($x —ne Sy)

SO W
= O O

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

echo

a=3

b="expr $a \> 10°

echo 'b="expr $a \> 10°, therefore...'
echo "If a > 10, b = 0 (false)"

echo "b = Sb" # 0 (3 ! —gt 10)
echo
b="expr $a \< 10°

echo "If a < 10, b = 1 (true)"

echo "b = sb" #1 (3 -1t 10)
echo

Note escaping of operators.

b="expr $a \<= 3°
echo "If a <= 3, b =1 (true)"

echo "b = sb" #1 (3 -le 3)

There is also a "\>=" operator (greater than or equal to).
echo

echo

String Operators

echo "String Operators"
echo

a=1234zipper43231

echo "The string being operated upon is \"S$a\"."

length: length of string
b="expr length $a°
echo "Length of \"$a\" is $b."

index: position of first character in substring

that matches a character in string

b="expr index $a 23°

echo "Numerical position of first \"2\" in \"$a\" is \"$b\"."

substr: extract substring, starting position & length specified
b="expr substr $a 2 6°

echo "Substring of \"$a\", starting at position 2,\

and 6 chars long is \"Sb\"."

The default behavior of the 'match' operations is to
#+ search for the specified match at the BEGINNING of the string.
#

Using Regular Expressions

b="expr match "$a" '[0-9]*"'" # Numerical count.

echo Number of digits at the beginning of \"$a\" is $b.

b="expr match "$a" "\ ([0-9]*\)"'" # Note that escaped parentheses
== == #+ trigger substring match.

echo "The digits at the beginning of \"$a\" are \"Sb\"."

echo

exit O

The :_(null) operator can substitute for match. For example, b="expr $a : [0-9]*" isthe
exact equivalent of b="expr match $a [0-9]*" in the above listing.

43

#!/bin/bash

echo

echo "String operations using \"expr \$string : \" construct"
echo " "
echo

a=1234zipper5FLIPPER43231

echo "The string being operated upon is \" expr "$a" : "\ (.*\)'"\"."
Escaped parentheses grouping operator. = ==

khkhkkhkkhkhkhkhkkhkkhhkhrhkkhkkhkhkrhkkhkhkhhrhkhkkx

#+ Escaped parentheses

#+ match a substring

khkhkkhkkhkhkhkhkkhkkhhkhrkhkkhkkhkhkrhkkhkhhhrhkhkkx

If no escaped parentheses
#+ then 'expr' converts the string operand to an integer.

echo "Length of \"$a\" is “expr "S$a" : '.*'* " # Length of string

echo "Number of digits at the beginning of \"$a\" is “expr "$a" : '[0-9]*'"

echo

echo "The digits at the beginning of \"$a\" are “expr "$a" : "\ ([0-9]1*\)"'" .
== —
echo "The first 7 characters of \"$a\" are “expr "S$a" : "\(....... \) s,

= = =

Again, escaped parentheses force a substring match.

#

echo "The last 7 characters of \"$a\" are “expr "$a" : '".*\(.......) e W

==== end of string operator **

(In fact, means skip over one or more of any characters until specified
#+ substring found.)

echo

exit O

The above script illustrates how expr uses the escaped parentheses -- \(... \) -- grouping operator in tandem
with regular expression parsing to match a substring. Here is a another example, this time from "real life."

Strip the whitespace from the beginning and end.
LRFDATE="expr "SLRFDATE" : '[[:space:]]1*\(.*\)[[:space:]]*S$"'"

#+ for converting files to Sony Librie/PRS-50X format.

1
2
3
4 # From Peter Knowles' "booklistgen.sh" script
5
6

(http://booklistgensh.peterknowles.com)
Perl, sed, and awk have far superior string parsing facilities. A short sed or awk "subroutine" within a script
(see Section 36.2) is an attractive alternative to expr.

See Section 10.1 for more on using expr in string operations.

Notes

[1] And even when xargs is not strictly necessary, it can speed up execution of a command involving
batch-processing of multiple files.

Prev Home Next
External Filters, Programs and Up Time / Date Commands
Commands

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Chapter 16. External Filters, Programs and Commands

Z
o
>
=t

16.3. Time / Date Commands

Time/date and timing

date
Simply invoked, date prints the date and time to stdout. Where this command gets interesting is in
its formatting and parsing options.

Example 16-10. Using date

#!/bin/bash
Exercising the 'date' command

echo "The number of days since the year's beginning is “date +%3j ."
Needs a leading '+' to invoke formatting.
%J gives day of year.

O ~J oy U bW

echo "The number of seconds elapsed since 01/01/1970 is “date +%s ."
%s yields number of seconds since "UNIX epoch" began,

10 #+ but how is this useful?

11

12 prefix=temp

13 suffix=$ (date +%s) # The "+%s" option to 'date' is GNU-specific.
14 filename=S$prefix.S$suffix

15 echo "Temporary filename = $filename"

16 # 1It's great for creating "unique and random" temp filenames,

17 #+ even better than using $$.

18

19 # Read the 'date' man page for more formatting options.

20

21 exit O

e

The —u option gives the UTC (Universal Coordinated Time).

bash$ date
Fri Mar 29 21:07:39 MST 2002

bash$ date -u
Sat Mar 30 04:07:42 UTC 2002

This option facilitates calculating the time between different dates.

Example 16-11. Date calculations

1 #!/bin/bash

2 # date-calc.sh

3 # Author: Nathan Coulter

4 # Used in ABS Guide with permission (thanks!).
5

6

7

MPHR=60 # Minutes per hour.
HPD=24 # Hours per day.
8
9 diff () {
10 printf '$s' $(($(date -u -d"STARGET" +%s) -
11 $ (date -u —-d"SCURRENT" +%s)))
12 # %$d = day of month.

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CURRENT=$ (date -u -d '2007-09-01 17:30:24"' '"+%F %T.%N %z')
TARGET=S (date —-u -d'2007-12-25 12:30:00"' '"+%F %T.%N %z')
$F = full date, %T = %$H:%M:%S, %N = nanoseconds, %Z = time zone.

o°

printf '\nIn 2007, %s ' \

"$S (date —-d"SCURRENT +

$(($(diff) /SMPHR /$SMPHR /$HPD / 2)) days" '+%d %B')"
%$B = name of month ~ halfway
printf 'was halfway between $s ' "$(date —-d"SCURRENT" '+%d %B')"
printf 'and %$s\n' "$(date -d"STARGET" '+%d %B')"

printf '\nOn %s at %s, there were\n' \

$ (date —u —d"SCURRENT" +%F) $(date —-u —-d"SCURRENT" +%T)
DAYS=$ (($(diff) / SMPHR / SMPHR / S$HPD))
CURRENT=S (date -d"$CURRENT +$DAYS days" '+%F %T.3%N %Z')
HOURS=S (($(diff) / SMPHR / $SMPHR))
CURRENT=S$ (date —-d"S$SCURRENT +S$HOURS hours" '+3%F
MINUTES=S$ (($S(diff) / SMPHR))
CURRENT=S$ (date —-d"SCURRENT +S$MINUTES minutes" '+%F %T.%N $Z')

o°

T.3N SZ')

printf '$s days, %s hours, ' "SDAYS" "SHOURS"
printf '$s minutes, and %s seconds ' "SMINUTES" "$(diff)"
printf 'until Christmas Dinner!\n\n'

Exercise:

Rewrite the diff () function to accept passed parameters,
#+ rather than using global variables.

The date command has quite a number of output options. For example $N gives the nanosecond
portion of the current time. One interesting use for this is to generate random integers.

date +%N | sed -e 's/000$//' -e 's/"0//'

Strip off leading and trailing zeroes, if present.
Length of generated integer depends on

#+ how many zeroes stripped off.

115281032
63408725
394504284

There are many more options (try man date).

O J oy U b W

I T = S S S S S
d oUW N R O W

date +%j
Echoes day of the year (days elapsed since January 1).

date +%ksM
Echoes hour and minute in 24-hour format, as a single digit string.

The 'TZ' parameter permits overriding the default time zone.

date # Mon Mar 28 21:42:16 MST 2005
TZ=EST date # Mon Mar 28 23:42:16 EST 2005
Thanks, Frank Kannemann and Pete Sjoberg, for the tip.

SixDaysAgo=$ (date —-date='6 days ago')
OneMonthAgo=$ (date —--date='l month ago') # Four weeks back (not a month!)
OneYearAgo=$ (date —--date='1l year ago')

zdump

time

touch

at

batch

See also Example 3-4 and Example A-43.
Time zone dump: echoes the time in a specified time zone.

bash$ zdump EST
EST Tue Sep 18 22:09:22 2001 EST

Outputs verbose timing statistics for executing a command.

time 1ls -1 / gives something like this:

real O0m0.067s
user O0m0.004s
sys Om0.005s

See also the very similar times command in the previous section.

&) As of version 2.0 of Bash, time became a shell reserved word, with slightly altered
behavior in a pipeline.

Utility for updating access/modification times of a file to current system time or other specified time,
but also useful for creating a new file. The command touch zzz will create a new file of zero
length, named zz z, assuming that zz z did not previously exist. Time-stamping empty files in this
way is useful for storing date information, for example in keeping track of modification times on a
project.

<& The touch command is equivalentto : >> newfile or >> newfile (for
ordinary files).

i) Before doing a ¢cp -u (copy/update), use touch to update the time stamp of files you
don't wish overwritten.

As an example, if the directory /home /bozo/tax_audit contains the files
spreadsheet-051606.data, spreadsheet-051706.data, and
spreadsheet-051806.data, then doing a touch spreadsheet*.data will protect
these files from being overwritten by files with the same names during a cp -u
/home/bozo/financial_info/spreadsheet*data /home/bozo/tax_audit.

The at job control command executes a given set of commands at a specified time. Superficially, it
resembles cron, however, at is chiefly useful for one-time execution of a command set.

at 2pm January 15 prompts for a set of commands to execute at that time. These commands
should be shell-script compatible, since, for all practical purposes, the user is typing in an executable
shell script a line at a time. Input terminates with a Ctl-D.

Using either the — £ option or input redirection (<), at reads a command list from a file. This file is an
executable shell script, though it should, of course, be non-interactive. Particularly clever is including
the run-parts command in the file to execute a different set of scripts.

bash$ at 2:30 am Friday < at—-jobs.list
job 2 at 2000-10-27 02:30

The batch job control command is similar to at, but it runs a command list when the system load
drops below . 8. Like at, it can read commands from a file with the —f option.

The concept of batch processing dates back to the era of mainframe computers. It means running a
set of commands without user intervention.

cal
Prints a neatly formatted monthly calendar to stdout. Will do current year or a large range of past
and future years.
sleep
This is the shell equivalent of a wait loop. It pauses for a specified number of seconds, doing nothing.
It can be useful for timing or in processes running in the background, checking for a specific event
every so often (polling), as in Example 32-6.
1 sleep 3 # Pauses 3 seconds.
&) The sleep command defaults to seconds, but minute, hours, or days may also be
specified.
1 sleep 3 h # Pauses 3 hours!
&) The watch command may be a better choice than sleep for running commands at
timed intervals.
usleep

Microsleep (the u may be read as the Greek mu, or micro- prefix). This is the same as sleep, above,
but "sleeps" in microsecond intervals. It can be used for fine-grained timing, or for polling an ongoing
process at very frequent intervals.

1 usleep 30 # Pauses 30 microseconds.

This command is part of the Red Hat initscripts / rc-scripts package.

<1 The usleep command does not provide particularly accurate timing, and is therefore
unsuitable for critical timing loops.
hwclock, clock
The hwelock command accesses or adjusts the machine's hardware clock. Some options require root
privileges. The /etc/rc.d/rc.sysinit startup file uses hwclock to set the system time from
the hardware clock at bootup.

The clock command is a synonym for hwclock.

Prev Home Next
Complex Commands Up Text Processing Commands
Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Chapter 16. External Filters, Programs and Commands Next

16.4. Text Processing Commands

Commands affecting text and text files

sort

tsort

uniq

File sort utility, often used as a filter in a pipe. This command sorts a text stream or file forwards or
backwards, or according to various keys or character positions. Using the —m option, it merges
presorted input files. The info page lists its many capabilities and options. See Example 11-10,

Example 11-11, and Example A-8.

Topological sort, reading in pairs of whitespace-separated strings and sorting according to input
patterns. The original purpose of tsort was to sort a list of dependencies for an obsolete version of the
Id linker in an "ancient" version of UNIX.

The results of a tsort will usually differ markedly from those of the standard sort command, above.

This filter removes duplicate lines from a sorted file. It is often seen in a pipe coupled with sort.

cat list-1 list-2 1list-3 | sort | unig > final.list
Concatenates the list files,

sorts them,

removes duplicate lines,

and finally writes the result to an output file.

The useful —c option prefixes each line of the input file with its number of occurrences.

a s w N

bash$ cat testfile
This line occurs only once.
This line occurs twice.
This line occurs twice.
This line occurs three times.
This line occurs three times.
This line occurs three times.

bash$ uniq -c testfile
1 This line occurs only once.
2 This line occurs twice.
3 This line occurs three times.

bash$ sort testfile | uniqg -c | sort -nr
3 This line occurs three times.
2 This line occurs twice.
1 This line occurs only once.

The sort INPUTFILE | uniq —c | sort —nr command string produces a frequency of
occurrence listing on the INPUTF ILE file (the —nr options to sort cause a reverse numerical sort).
This template finds use in analysis of log files and dictionary lists, and wherever the lexical structure
of a document needs to be examined.

Example 16-12. Word Frequency Analysis

1 #!/bin/bash

2 # wf.sh: Crude word frequency analysis on a text file.

3 # This is a more efficient version of the "wf2.sh" script.
4

5

6 # Check for input file on command-line.
7 ARGS=1

8 E_BADARGS=85

9 E_NOFILE=86

11 if [$# -ne "SARGS"] # Correct number of arguments passed to script?
12 then

13 echo "Usage: “basename $0° filename"

14 exit $E_BADARGS

15 fi

16

17 if [! —f "$1"] # Check if file exists.
18 then

19 echo "File \"$1\" does not exist."
20 exit SE_NOFILE
21 fi

25 HuHHHHAH AR AR AR AR AR AR AR AR AR AR AR
26 # main ()
27 sed -e 's/\.//g' -e 's/\,//g' —-e 's/ /\

28 /g' "$1" | tr 'A-Z' 'a-z' | sort | unig -c | sort -nr
29 #

30 # Frequency of occurrence
31

32 # Filter out periods and commas, and

33 #+ change space between words to linefeed,

34 #+ then shift characters to lowercase, and

35 #+ finally prefix occurrence count and sort numerically.

Arun Giridhar suggests modifying the above to:

| sort | unig -c | sort +1 [-f] | sort +0 -nr
39 # This adds a secondary sort key, so instances of

#+ equal occurrence are sorted alphabetically.

As he explains it:

42 # "This is effectively a radix sort, first on the

43 #+ least significant column

44 #+ (word or string, optionally case-insensitive)

45 #+ and last on the most significant column (frequency)."

47 # As Frank Wang explains, the above is equivalent to

48 #+ . . . | sort | unigqg -c | sort +0 -nr
49 #+ and the following also works:
50 #+ . | sort | unig -c | sort -klnr -k

51 ##
53 exit 0

55 # Exercises:

57 # 1) Add 'sed' commands to filter out other punctuation,
58 #+ such as semicolons.

59 # 2) Modify the script to also filter out multiple spaces and
60 #+ other whitespace.

bash$ cat testfile
This line occurs only once.
This line occurs twice.
This line occurs twice.
This line occurs three times.
This line occurs three times.
This line occurs three times.

bash$./wf.sh testfile
this

occurs

line

times

three

twice

only

once

H RPN WWoO oy o

expand, unexpand

cut

The expand filter converts tabs to spaces. It is often used in a pipe.

The unexpand filter converts spaces to tabs. This reverses the effect of expand.

A tool for extracting fields from files. It is similar to the print $N command set in awk, but more
limited. It may be simpler to use cut in a script than awk. Particularly important are the —d (delimiter)

and - £ (field specifier) options.
Using cut to obtain a listing of the mounted filesystems:

1 cut -d ' ' —-f1,2 /etc/mtab
Using cut to list the OS and kernel version:

1 uname -a | cut -d" " -f1,3,11,12
Using cut to extract message headers from an e-mail folder:

bash$ grep '~Subject:' read—-messages | cut -cl10-80
Re: Linux suitable for mission-critical apps-?
MAKE MILLIONS WORKING AT HOME!!!

Spam complaint

Re: Spam complaint

Using cut to parse a file:

1 # List all the users in /etc/passwd.
2

3 FILENAME=/etc/passwd

4

5 for user in $(cut -d: —-fl SFILENAME)
6 do

7 echo Suser

8
9
0

done
10 # Thanks, Oleg Philon for suggesting this.
cut -d ' ' —-£2,3 filenameisequivalenttoawk -F'[]' '{ print $2,
filename

& It is even possible to specify a linefeed as a delimiter. The trick is to actually embed a

linefeed (RETURN) in the command sequence.

bash$ cut -d'
' —£3,7,19 testfile
This is line 3 of testfile.
This is line 7 of testfile.
This is line 19 of testfile.

Thank you, Jaka Kranjc, for pointing this out.
See also Example 16-48.

$3 }!

paste
Tool for merging together different files into a single, multi-column file. In combination with cut,
useful for creating system log files.

bash$ cat items
alphabet blocks
building blocks
cables

bash$ cat prices
$1.00/dozen
$2.50 ea.

$3.75

bash$ paste items prices
alphabet blocks $1.00/dozen
building blocks $2.50 ea.
cables $3.75

join
Consider this a special-purpose cousin of paste. This powerful utility allows merging two files in a
meaningful fashion, which essentially creates a simple version of a relational database.

The join command operates on exactly two files, but pastes together only those lines with a common
tagged field (usually a numerical label), and writes the result to st dout. The files to be joined
should be sorted according to the tagged field for the matchups to work properly.

File: 1.data

100 Shoes
200 Laces
300 Socks

a s w N

File: 2.data

100 $40.00
200 $1.00
300 $2.00

g s w N

bash$ join 1l.data 2.data
File: 1l.data 2.data

100 Shoes $40.00
200 Laces $1.00
300 Socks $2.00

&) The tagged field appears only once in the output.

head
lists the beginning of a file to stdout. The default is 10 lines, but a different number can be
specified. The command has a number of interesting options.

Example 16-13. Which files are scripts?

#!/bin/bash
script-detector.sh: Detects scripts within a directory.

TESTCHARS=2 # Test first 2 characters.
SHABANG="#!" # Scripts begin with a "sha-bang."

o U1 b W N

7 for file in * # Traverse all the files in current directory.

8 do
9 if [["head -c$TESTCHARS "$file"® = "SSHABANG"]]
10 # head -c2 #!
11 # The '-c' option to "head" outputs a specified
12 #+ number of characters, rather than lines (the default).
13 then
14 echo "File \"S$file\" is a script."
15 else
16 echo "File \"$file\" is *not* a script."
17 fi
18 done
19
20 exit 0
21
22 # Exercises:
23 # -
24 # 1) Modify this script to take as an optional argument
25 #+ the directory to scan for scripts
26 #+ (rather than just the current working directory) .
27 #
28 # 2) As it stands, this script gives "false positives" for
29 #+ Perl, awk, and other scripting language scripts.
30 # Correct this.

Example 16-14. Generating 10-digit random numbers

1 #!/bin/bash

2 # rnd.sh: Outputs a 10-digit random number

3

4 # Script by Stephane Chazelas.

5

6 head -c4 /dev/urandom | od -N4 -tu4 | sed -ne 'ls/.* //p'
-

8

9 #

10

11 # Analysis

12 # ———————

13

14 # head:

15 # —-c4 option takes first 4 bytes.

16

17 # od:

18 # -N4 option limits output to 4 bytes.

19 # —-tud4 option selects unsigned decimal format for output.
20
21 # sed:
22 # -n option, in combination with "p" flag to the "s" command,
23 # outputs only matched lines.
24
25
26
27 # The author of this script explains the action of 'sed', as follows.
28
29 # head -c4 /dev/urandom | od -N4 -tu4 | sed -ne 'ls/.* //p'
30 ff —emmmmeemmeeemeeseee e > |

31

32 # Assume output up to "sed" ———————— > |

33 # is 0000000 1198195154\n

34

35 # sed begins reading characters: 0000000 1198195154\n.

tail

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

Here it finds a newline character,
#+ so it is ready to process the first line (0000000 1198195154).
It looks at its <range><action>s. The first and only one is

range action
1 s/.* //p
The line number is in the range, so it executes the action:

#+ tries to substitute the longest string ending with a space in the line
("0000000 ") with nothing (//), and if it succeeds, prints the result
("p" is a flag to the "s" command here, this is different

#+ from the "p" command) .

sed is now ready to continue reading its input. (Note that before
#+ continuing, i1f -n option had not been passed, sed would have printed
#+ the line once again) .

Now, sed reads the remainder of the characters, and finds the

#+ end of the file.

It is now ready to process its 2nd line (which is also numbered '$' as
#+ it's the last one).

It sees it is not matched by any <range>, so its job is done.

In few word this sed commmand means:
"On the first line only, remove any character up to the right-most space,

#+ then print it."

A better way to do this would have been:
sed —e 's/.* //;q'

Here, two <range><action>s (could have been written

sed —e 's/.* //' —-e Qq):
range action
nothing (matches line) s/.* [/

nothing (matches line) g (quit)

Here, sed only reads its first line of input.
It performs both actions, and prints the line (substituted) before
#+ quitting (because of the "g" action) since the "-n" option is not passed.

#
An even simpler altenative to the above one-line script would be:

head -c4 /dev/urandom| od —-An -tu4

exit

See also Example 16-39.

lists the (tail) end of a file to st dout. The default is 10 lines, but this can be changed with the —n
option. Commonly used to keep track of changes to a system logfile, using the —f option, which
outputs lines appended to the file.

Example 16-15. Using tail to monitor the system log

#!/bin/bash
filename=sys.log

cat /dev/null > S$filename; echo "Creating / cleaning out file."
Creates the file if it does not already exist,

7 #+ and truncates it to zero length if it does.

8 # : > filename and > filename also work.

9
10 tail /var/log/messages > $filename
11 # /var/log/messages must have world read permission for this to work.
12
13 echo "$filename contains tail end of system log."
14
15 exit O

i) To list a specific line of a text file, pipe the output of head to tail -n 1. For example
head —n 8 database.txt | tail -n 1 lists the 8th line of the file
database.txt.

To set a variable to a given block of a text file:

var=$ (head -n Sm S$Sfilename | tail -n $n)

m = from beginning of file, number of lines to end of block

1

2

3 # filename = name of file

4

5 # n = number of lines to set variable to (trim from end of block)

& Newer implementations of tail deprecate the older tail -$LINES filename usage. The
standard tail -n $LINES filename is correct.

See also Example 16-5, Example 16-39 and Example 32-6.

grep
A multi-purpose file search tool that uses Regular Expressions. It was originally a command/filter in
the venerable ed line editor: g/re/p -- global - regular expression - print.

grep pattern|[file..]

Search the target file(s) for occurrences of pattern, where pattern may be literal text or a
Regular Expression.

bash$ grep '[rst]ystem.$' osinfo.txt
The GPL governs the distribution of the Linux operating system.

If no target file(s) specified, grep works as a filter on stdout, as in a pipe.

bash$ ps ax | grep clock
765 ttyl S 0:00 xclock
901 pts/1 S 0:00 grep clock

The —1 option causes a case-insensitive search.
The —w option matches only whole words.
The —1 option lists only the files in which matches were found, but not the matching lines.

The —r (recursive) option searches files in the current working directory and all subdirectories below
it.

The —n option lists the matching lines, together with line numbers.

bash$ grep —n Linux osinfo.txt
2:This is a file containing information about Linux.
6:The GPL governs the distribution of the Linux operating system.

The —v (or ——invert-match) option filters out matches.

1 grep patternl *.txt | grep -v pattern2

2

3 # Matches all lines in "*.txt" files containing "patternl",

4 # but ***not*** "pattern2".
The —c (-—count) option gives a numerical count of matches, rather than actually listing the
matches.

1 grep -c txt *.sgml # (number of occurrences of "txt" in "*.sgml" files)

2

3

4 # grep -cz

5 # ~ dot

6 # means count (-c) zero-separated (-z) items matching "."

7 # that is, non-empty ones (containing at least 1 character).

8 #

9 printf 'a b\nc d\n\n\n\n\n\000\n\000e\000\000\nf' | grep -cz # 3
10 printf 'a b\nc d\n\n\n\n\n\000\n\000e\000\000\nf' | grep -cz '$' # 5
11 printf 'a b\nc d\n\n\n\n\n\000\n\000e\000\000\nf' | grep —-cz '"' # 5
12 #

13 printf 'a b\nc d\n\n\n\n\n\000\n\000e\000\000\nf' | grep -c 'S' # 9
14 # By default, newline chars (\n) separate items to match.

15

16 # Note that the -z option is GNU "grep" specific.

17

18

19 # Thanks, S.C.
The ——color (or ——colour) option marks the matching string in color (on the console or in an
xterm window). Since grep prints out each entire line containing the matching pattern, this lets you
see exactly what is being matched. See also the —o option, which shows only the matching portion of
the line(s).

Example 16-16. Printing out the From lines in stored e-mail messages

1 #!/bin/bash

2 # from.sh

3

4 # FEmulates the useful 'from' utility in Solaris, BSD, etc.

5 # Echoes the "From" header line in all messages

6 #+ in your e-mail directory.

-

8

9 MAILDIR=~/mail/* # No quoting of variable. Why?
10 # Maybe check if-exists S$SMAILDIR: if [-d SMAILDIR]

11 GREP_OPTS="-H -A 5 —-color" # Show file, plus extra context lines
12 #+ and display "From" in color.
13 TARGETSTR=""From" # "From" at beginning of line.
14

15 for file in S$MAILDIR # No quoting of variable.

16 do

17 grep $GREP_OPTS "STARGETSTR" "$file"

18 # ANNANAANAN # Again, do not quote this variable.
19 echo
20 done
21
22 exit $§7
23
24 # You might wish to pipe the output of this script to 'more'

N
(€]

#+ or redirect it to a file

When invoked with more than one target file given, grep specifies which file contains matches.

bash$ grep Linux osinfo.txt misc.txt
osinfo.txt:This is a file containing information about Linux.
osinfo.txt:The GPL governs the distribution of the Linux operating system.
misc.txt:The Linux operating system is steadily gaining in popularity.

j | To force grep to show the filename when searching only one target file, simply give
/dev/null as the second file.

bash$ grep Linux osinfo.txt /dev/null
osinfo.txt:This is a file containing information about Linux.
osinfo.txt:The GPL governs the distribution of the Linux operating system.

If there is a successful match, grep returns an exit status of 0, which makes it useful in a condition test
in a script, especially in combination with the —q option to suppress output.

1 SUCCESS=0 # 1f grep lookup succeeds

2 word=Linux

3 filename=data.file

4

5 grep —-g "$word" "$filename" # The "-g" option

6 #+ causes nothing to echo to stdout.
7 if [$? —-eq S$SUCCESS]

8 # if grep —-g "Sword" "S$filename" can replace lines 5 - 7.
9 then
10 echo "Sword found in $filename"
11 else
12 echo "Sword not found in $filename"
13 fi

Example 32-6 demonstrates how to use grep to search for a word pattern in a system logfile.

Example 16-17. Emulating grep in a script

1 #!/bin/bash

2 # grp.sh: Rudimentary reimplementation of grep.

3

4 E_BADARGS=85

5

6 if [-z "S$S1"] # Check for argument to script.

7 then

8 echo "Usage: “basename $0° pattern"

9 exit S$E_BADARGS

10 fi

11

12 echo

13

14 for file in * # Traverse all files in S$PWD.

15 do

16 output=$ (sed -n /"S$1"/p S$file) # Command substitution.
17

18 if [! -z "Soutput"] # What happens if "Soutput" is not quoted?
19 then

20 echo —n "S$file: "

21 echo "S$Soutput"

22 fi # sed -ne "/$1/s|”|${file}: |p" is equivalent to above.
23

24 echo

25 done

26

27 echo

28

29 exit 0

30

31 # Exercises:

32 # —————————

33 # 1) Add newlines to output, if more than one match in any given file.
34 # 2) Add features.

How can grep search for two (or more) separate patterns? What if you want grep to display all lines
in a file or files that contain both "patternl" and "pattern2"?

One method is to pipe the result of grep patternl to grep pattern2.
For example, given the following file:

Filename: tstfile

1
2
3 This is a sample file.

4 This is an ordinary text file.

5 This file does not contain any unusual text.
6 This file is not unusual.

7 Here is some text.

Now, let's search this file for lines containing both "file" and "text" . . .

bash$ grep file tstfile
Filename: tstfile
This is a sample file.
This is an ordinary text file.
This file does not contain any unusual text.
This file is not unusual.

bash$ grep file tstfile | grep text
This is an ordinary text file.
This file does not contain any unusual text.

Now, for an interesting recreational use of grep . ..

Example 16-18. Crossword puzzle solver

1 #!/bin/bash

2 # cw-solver.sh

3 # This is actually a wrapper around a one-liner (line 46).

4

5 # Crossword puzzle and anagramming word game solver.

6 # You know *some* of the letters in the word you're looking for,
7 #+ so you need a list of all valid words

8 #+ with the known letters in given positions.

9 # For example: w...i....n
10 # 122257222210
11 # w in position 1, 3 unknowns, i in the 5th, 4 unknowns, n at the end.

=
N

(See comments at end of script.)

I Y
s W

E_NOPATT=71

16 DICT=/usr/share/dict/word.lst
17 # ANNNNANAN Looks for word list here.
18 # ASCII word list, one word per line.

19 # If you happen to need an appropriate list,

20 #+ download the author's "yawl" word list package.

21 # http://ibiblio.org/pub/Linux/libs/yawl-0.3.2.tar.gz
22 # or

23 # http://bash.deta.in/yawl-0.3.2.tar.gz

24

25

26 if [-z "S$1"] # If no word pattern specified

27 then #+ as a command-line argument

28 echo #+ . . . then

29 echo "Usage:" #+ Usage message.

30 echo

31 echo ""$0" \"pattern,\""

32 echo "where \"pattern\" is in the form"

33 echo "xxx..x.x..."

34 echo

35 echo "The x's represent known letters,"

36 echo "and the periods are unknown letters (blanks)."
37 echo "Letters and periods can be in any position."
38 echo "For example, try: sh cw-solver.sh w...i....n"
39 echo

40 exit S$E_NOPATT

41 fi

42

43 echo

44 #

45 # This is where all the work gets done.

46 grep ~"$1"$ "SDICT" # Yes, only one line!

47 # | |

48 # ~ is start-of-word regex anchor.

49 # $ is end-of-word regex anchor.

50

51 # From _Stupid Grep Tricks_, vol. 1,

52 #+ a book the ABS Guide author may yet get around
53 #+ to writing . . . one of these days

54 #
55 echo

56

57

58 exit $? # Script terminates here.

59 # If there are too many words generated,
60 #+ redirect the output to a file.

61

62 $ sh cw-solver.sh w...i....n

63

64 wellington

65 workingman

66 workingmen

egrep -- extended grep -- is the same as grep -E. This uses a somewhat different, extended set of
Regular Expressions, which can make the search a bit more flexible. It also allows the boolean | (or)
operator.

bash $ egrep 'matches|Matches' file.txt
Line 1 matches.

Line 3 Matches.

Line 4 contains matches, but also Matches

fgrep -- fast grep -- is the same as grep -F. It does a literal string search (no Regular Expressions),
which generally speeds things up a bit.

- On some Linux distros, egrep and fgrep are symbolic links to, or aliases for grep, but
invoked with the —E and —F options, respectively.

Example 16-19. Looking up definitions in Webster's 1913 Dictionary

QO J oy U b W N

AU U U U U OO U OO DD DD DD D WWWWWWWWWWNNNNNNNNNDNRFE
NGO WP OOV JdNO D WNRFEOW®OWJdOU D WNEFEOWOW®OJdONU D WNEOWOW®OWJOU S WNEOWOWUJoO U WN ko W

#!/bin/bash
dict-lookup.sh

This script looks up definitions in the 1913 Webster's Dictionary.
This Public Domain dictionary is available for download

#+ from various sites, including

#+ Project Gutenberg (http://www.gutenberg.org/etext/247).

Convert it from DOS to UNIX format (with only LF at end of line)
#+ before using it with this script.

Store the file in plain, uncompressed ASCII text.

Set DEFAULT _DICTFILE variable below to path/filename.

E_BADARGS=85

MAXCONTEXTLINES=50 # Maximum number of lines to show.

DEFAULT DICTFILE="/usr/share/dict/websterl913-dict.txt"

Default dictionary file pathname.

Change this as necessary.
Note:
This particular edition of the 1913 Webster's
+ begins each entry with an uppercase letter
+ (lowercase for the remaining characters).
Only the *very first line* of an entry begins this way,
#+ and that's why the search algorithm below works.

ey

if [[-z $(echo "$1" | sed -n '"/~[A-Z]/p") 1]
Must at least specify word to look up, and
#+ it must start with an uppercase letter.
then

echo "Usage: “basename $0° Word-to-define [dictionary-file]"
echo
echo "Note: Word to look up must start with capital letter,"
echo "with the rest of the word in lowercase."
echo "--————71+7""++"""""""""""""""""""""""""""""""""- "
echo "Examples: Abandon, Dictionary, Marking, etc."
exit $E_BADARGS
fi
if [-z "$2"] # May specify different dictionary
#+ as an argument to this script.
then
dictfile=$DEFAULT_DICTFILE
else
dictfile="$2"
fi

Definition=$ (fgrep —A SMAXCONTEXTLINES "$1 \\" "Sdictfile")
Definitions in form "Word \..."
#
And, yes, "fgrep" is fast enough

#+ to search even a very large text file.

Now, snip out just the definition block.

echo "S$Definition" |

sed -n '1l,/"[A-Z]/p" |

Print from first line of output

#+ to the first line of the next entry.
sed 'Sd' | sed 'sd'

67 # Delete last two lines of output
68 #+ (blank line and first line of next entry).

84
85

w
—

Modify the script to parse one of the other available
Public Domain Dictionaries, such as the U.S. Census Bureau Gazetteer.

B9 §i —==———=——=——==—===—==
70
71 exit $?
72
73 # Exercises:
74 # ————————=
75 # 1) Modify the script to accept any type of alphabetic input
76 # + (uppercase, lowercase, mixed case), and convert it
77 # + to an acceptable format for processing.
78 #
79 # 2) Convert the script to a GUI application,
80 # + using something like 'gdialog' or 'zenity'
81 # The script will then no longer take its argument (s)
82 # + from the command-line.
83 #
#
#

NS

&) See also Example A-41 for an example of speedy fgrep lookup on a large text file.

agrep (approximate grep) extends the capabilities of grep to approximate matching. The search string
may differ by a specified number of characters from the resulting matches. This utility is not part of
the core Linux distribution.

i) To search compressed files, use zgrep, zegrep, or zfgrep. These also work on
non-compressed files, though slower than plain grep, egrep, fgrep. They are
handy for searching through a mixed set of files, some compressed, some not.

To search bzipped files, use bzgrep.
look
The command look works like grep, but does a lookup on a "dictionary," a sorted word list. By
default, look searches for a match in /usr/dict/words, but a different dictionary file may be
specified.

Example 16-20. Checking words in a list for validity

1 #!/bin/bash

2 # lookup: Does a dictionary lookup on each word in a data file.

3

4 file=words.data # Data file from which to read words to test.

5

6 echo

7 echo "Testing file $file"

8 echo

9

10 while ["Sword" != end] # Last word in data file.

11 do # o

12 read word # From data file, because of redirection at end of loop.
13 look S$word > /dev/null # Don't want to display lines in dictionary file.
14 # Searches for words in the file /usr/share/dict/words

15 #+ (usually a link to linux.words).

16 lookup=$"? # Exit status of 'look' command.

17

18 if ["Slookup" -eq 0]

19 then

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

echo "\"$Sword\" is valid."
else
echo "\"Sword\" is invalid."
fi
done <"Sfile" # Redirects stdin to $file, so "reads" come from there.
echo
exit O
__
Code below line will not execute because of "exit" command above.

Stephane Chazelas proposes the following, more concise alternative:

while read word && [[Sword != end 1]

do if look "S$Sword" > /dev/null
then echo "\"Sword\" is valid."
else echo "\"Sword\" is invalid."
fi

done <"$file"

exit O

sed, awk
Scripting languages especially suited for parsing text files and command output. May be embedded
singly or in combination in pipes and shell scripts.

sed

&
=~

Non-interactive "stream editor”, permits using many ex commands in batch mode. It finds many uses
in shell scripts.

Programmable file extractor and formatter, good for manipulating and/or extracting fields (columns)
in structured text files. Its syntax is similar to C.

wec gives a "word count” on a file or I/O stream:

bash
13
[13

S we /usr/share/doc/sed-4.1.2/README
70 447 README
lines 70 words 447 characters]

wc —w gives only the word count.

wc -1 gives only the line count.

wc —c gives only the byte count.

wc -m gives only the character count.

we -L gives only the length of the longest line.

Using we to count how many . txt files are in current working directory:

~ o U W N

S 1s *.txt | we -1
Will work as long as none of the "*.txt" files
#+ have a linefeed embedded in their name.

Alternative ways of doing this are:
find . -maxdepth 1 -name *.txt -print0 | grep -cz
(shopt -s nullglob; set —— *.txt; echo $#)

tr

8
9 # Thanks, S.C.
Using we to total up the size of all the files whose names begin with letters in the range d - h

bash$ we [d-h]* | grep total | awk '{print $3}'
71832

Using we to count the instances of the word "Linux" in the main source file for this book.

bash$ grep Linux abs-book.sgml | wc -1
138

See also Example 16-39 and Example 20-8.

Certain commands include some of the functionality of wc as options.

1 | grep foo | wc -1

2 # This frequently used construct can be more concisely rendered.
3

4 ... | grep -c foo

5 # Just use the "-c" (or "--count") option of grep.

6

7 # Thanks, S.C.

character translation filter.

<1 Must use quoting and/or brackets, as appropriate. Quotes prevent the shell from

reinterpreting the special characters in tr command sequences. Brackets should be

quoted to prevent expansion by the shell.
Either tr "A-Z" "*" <filenameortr A-Z * <filename changes all the uppercase
letters in £1lename to asterisks (writes to stdout). On some systems this may not work, but tr
A-Z '[**]' will

The —d option deletes a range of characters.

echo "abcdef" # abcdef
echo "abcdef" | tr -d b-d # aef

tr -d 0-9 <filename

1
2
3
4
5
6 # Deletes all digits from the file "filename".

The ——squeeze-repeats (or —s) option deletes all but the first instance of a string of
consecutive characters. This option is useful for removing excess whitespace.

bash$ echo "XXXXX" | tr —--squeeze-repeats 'X'
X

The —c "complement" option inverts the character set to match. With this option, tr acts only upon
those characters not matching the specified set.

bash$ echo "acfdebl23" | tr -c b-d +
+ect+d+b++++

Note that tr recognizes POSIX character classes. [1]

bash$ echo "abcd2efl" | tr '[:alpha:]' -
————2--1

Example 16-21. foupper: Transforms a file to all uppercase.

#!/bin/bash
Changes a file to all uppercase.

E_BADARGS=85

if [-z "$1"] # Standard check for command-line arg.
then

echo "Usage: “basename $0° filename"

9 exit S$E_BADARGS
10 fi

12 tr a-z A-7Z <"$1"

14 # Same effect as above, but using POSIX character set notation:
15 # tr '"[:lower:]"' '[:upper:]' <"S$1"
16 # Thanks, S.C.

18 # Or even .
19 # cat "$1" | tr a-z A-7Z
20 # Or dozens of other ways

22 exit O

24 # Exercise:

25 # Rewrite this script to give the option of changing a file
26 #+ to *either* upper or lowercase.

27 # Hint: Use either the "case" or "select" command.

Example 16-22. lowercase: Changes all filenames in working directory to lowercase.

1 #!/bin/bash

2 #

3 # Changes every filename in working directory to all lowercase.

4 #

5 # Inspired by a script of John Dubois,

6 #+ which was translated into Bash by Chet Ramey,

7 #+ and considerably simplified by the author of the ABS Guide.

8

9
10 for filename in * # Traverse all files in directory.
11 do
12 fname="basename $filename’
13 n="echo S$fname | tr A-Z a-z # Change name to lowercase.
14 if ["S$Sfname" != "Sn"] # Rename only files not already lowercase.
15 then

16 mv Sfname $n

17 fi

18 done

19
20 exit $°?
21
22
23 # Code below this line will not execute because of "exit".
24 fim=m======s=ss=============================—============= #
25 # To run it, delete script above line.
26
27 # The above script will not work on filenames containing blanks or newlines.

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

Stephane Chazelas therefore suggests the following alternative:

for filename in * # Not necessary to use basename,
since "*" won't return any file containing "/".
do n="echo "$filename/" | tr '[:upper:]' '[:lower:]""
POSIX char set notation.
Slash added so that trailing newlines are not
removed by command substitution.
Variable substitution:
n=S${n%/} # Removes trailing slash, added above, from filename.
[[Sfilename == Sn]] || mv "Sfilename" "Sn"
Checks if filename already lowercase.
done
exit $°?

Example 16-23. du: DOS to UNIX text file conversion.

0 J o U W

O

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

#!/bin/bash

Du.sh:

DOS to UNIX text file converter.

E_WRONGARGS=85

if [-z ngqm]

then

echo "Usage: "basename $0° filename-to-convert"
exit S$E_WRONGARGS

fi

NEWFILENAME=S1.unx

CR='\015"

Carriage return.

015 is octal ASCII code for CR.

Lines in a DOS text file end in CR-LF.

Lines in a UNIX text file end in LF only.

tr —-d SCR < $1 > SNEWFILENAME
Delete CR's and write to new file.

echo "Original DOS text file is \"S$S1\"."
echo "Converted UNIX text file is \"SNEWFILENAME\"."

exit O

Exercise:

,,,,,,,

29 # Change the above script to convert from UNIX to DOS.

Example 16-24. rot13: ultra-weak encryption.

O ~J oUW

#!/bin/bash
rotl3.sh: Classic rotl3 algorithm,

#
#

4=

Usage:
or
or

4=

encryption that might fool a 3-year old
for about 10 minutes.

./rotl3.sh filename
./rotl3.sh <filename
./rotl3.sh and supply keyboard input (stdin)

9
10
11
12
13
14

cat "$@" | tr 'a-zA-Z' 'n-za-mN-ZA-M' # "a" goes to "n", "b" to "o"
The cat "s@" construct

#+ permits input either from stdin or from files.

exit O

Example 16-25. Generating ''Crypto-Quote'' Puzzles

0 J o U W

]

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

#!/bin/bash

#

#
#

crypto—quote.sh: Encrypt quotes

Will encrypt famous quotes in a simple monoalphabetic substitution.
The result is similar to the "Crypto Quote" puzzles

#+ seen in the Op Ed pages of the Sunday paper.

key=ETAOINSHRDLUBCFGJMQPVWZYXK

The "key" is nothing more than a scrambled alphabet.

Changing the "key" changes the encryption.

The 'cat "$Q@"' construction gets input either from stdin or from files.
If using stdin, terminate input with a Control-D.

Otherwise, specify filename as command-line parameter.

Cat ll$@ll | tr "a7Z" IIA7ZII I tr "A*Z" llskeyll

| to uppercase | encrypt

Will work on lowercase, uppercase, or mixed-case quotes.

Passes non-alphabetic characters through unchanged.

Try this script with something like:

"Nothing so needs reforming as other people's habits."

——Mark Twain

#

Output is:

"CFPHRCS QF CIIOQ MINFMBRCS EQ FPHIM GIFGUI'Q HETRPQ."

——BEML PZERC

To reverse the encryption:

cat "$SQ@" | tr "Skey" "A-Z"

This simple-minded cipher can be broken by an average 12-year old
#+ using only pencil and paper.

exit O

Exercise:

,,,,,,,,

Modify the script so that it will either encrypt or decrypt,
#+ depending on command-line argument (s) .

Of course, tr lends itself to code obfuscation.

o U b W N

#!/bin/bash

#

jabh.sh

x="wftedskaebjgdBstbdbsmnjgz"
echo $x | tr "a-z" 'oh, turtleneck Phrase Jar!'

7 # Based on the Wikipedia "Just another Perl hacker" article.

tr variants

The tr utility has two historic variants. The BSD version does not use brackets (tr a—-z A-2Z), but
the SysV one does (txr '[a—z]' '[A-Z]"'). The GNU version of tr resembles the BSD one.

fold
A filter that wraps lines of input to a specified width. This is especially useful with the —s option,
which breaks lines at word spaces (see Example 16-26 and Example A-1).

fmt
Simple-minded file formatter, used as a filter in a pipe to "wrap" long lines of text output.

Example 16-26. Formatted file listing.

#!/bin/bash

WIDTH=40 # 40 columns wide.

1
2
3
4
5 b="1s /usr/local/bin" # Get a file listing...
6
7 echo $b | fmt -w SWIDTH

8

9 # Could also have been done by
10 # echo $b | fold - -s -w SWIDTH
11
12 exit O

See also Example 16-5.

i | A powerful alternative to fmt is Kamil Toman's par utility, available from
http://www.cs.berkeley.edu/~amc/Par/.

col
This deceptively named filter removes reverse line feeds from an input stream. It also attempts to
replace whitespace with equivalent tabs. The chief use of col is in filtering the output from certain text
processing utilities, such as groff and tbl.

column
Column formatter. This filter transforms list-type text output into a "pretty-printed" table by inserting
tabs at appropriate places.

Example 16-27. Using column to format a directory listing

1 #!/bin/bash

2 # colms.sh

3 # A minor modification of the example file in the "column" man page.
4

5

6 (printf "PERMISSIONS LINKS OWNER GROUP SIZE MONTH DAY HH:MM PROG-NAME\n" \
7 ; 1ls -1 | sed 1d) | column -t

8 # Annnnn an

9
10 # The "sed 1d" in the pipe deletes the first line of output,
11 #+ which would be "total N",

12 #+ where "N" is the total number of files found by "ls -1".