
Advanced Bash-Scripting Guide

Table of Contents
Advanced Bash-Scripting Guide...1

An in-depth exploration of the art of shell scripting..1
Mendel Cooper..1

Dedication..3

Part 1. Introduction..15

Chapter 1. Shell Programming!...17
Notes..18

Chapter 2. Starting Off With a Sha-Bang..21

2.1. Invoking the script...25
Notes..25

2.2. Preliminary Exercises..27

Part 2. Basics...29

Chapter 3. Special Characters...31
Notes..51

Chapter 4. Introduction to Variables and Parameters..53

4.1. Variable Substitution...55
Notes..57

4.2. Variable Assignment..59

4.3. Bash Variables Are Untyped...61

4.4. Special Variable Types..63
Notes..67

Chapter 5. Quoting...69

5.1. Quoting Variables..71
Notes..73

5.2. Escaping..75

Chapter 6. Exit and Exit Status...83
Notes..85

Chapter 7. Tests..87

Advanced Bash-Scripting Guide

i

Table of Contents
7.1. Test Constructs...89

Notes..96

7.2. File test operators...97
Notes..100

7.3. Other Comparison Operators...101
Notes..106

7.4. Nested if/then Condition Tests..107

7.5. Testing Your Knowledge of Tests...109

Chapter 8. Operations and Related Topics..111

8.1. Operators..113
Notes..119

8.2. Numerical Constants...121

8.3. The Double-Parentheses Construct..123

8.4. Operator Precedence...125
Notes..127

Part 3. Beyond the Basics...129

Chapter 9. Another Look at Variables...131

9.1. Internal Variables..133
Notes..151

9.2. Typing variables: declare or typeset..153
9.2.1. Another use for declare..155

Notes..155

9.3. $RANDOM: generate random integer...157
Notes..168

Chapter 10. Manipulating Variables...169

10.1. Manipulating Strings...171
10.1.1. Manipulating strings using awk...178
10.1.2. Further Reference...179

Notes..179

Advanced Bash-Scripting Guide

ii

Table of Contents
10.2. Parameter Substitution...181

Notes..190

Chapter 11. Loops and Branches..191

11.1. Loops...193
Notes..207

11.2. Nested Loops...209

11.3. Loop Control..211
Notes..214

11.4. Testing and Branching..215
Notes..222

Chapter 12. Command Substitution...223
Notes..228

Chapter 13. Arithmetic Expansion..229

Chapter 14. Recess Time..231

Part 4. Commands..233

Chapter 15. Internal Commands and Builtins...241

15.1. Job Control Commands..271
Notes..274

Chapter 16. External Filters, Programs and Commands...277

16.1. Basic Commands..279
Notes..284

16.2. Complex Commands..285
Notes..295

16.3. Time / Date Commands...297

16.4. Text Processing Commands..301
Notes..322

16.5. File and Archiving Commands...323
Notes..340

Advanced Bash-Scripting Guide

iii

Table of Contents
16.6. Communications Commands..343

Notes..356

16.7. Terminal Control Commands...357

16.8. Math Commands..359

16.9. Miscellaneous Commands...371
Notes..385

Chapter 17. System and Administrative Commands..387

17.1. Analyzing a System Script...419
Notes..420

Part 5. Advanced Topics...421

Chapter 18. Regular Expressions..423

18.1. A Brief Introduction to Regular Expressions..425
Notes..428

18.2. Globbing..431
Notes..432

Chapter 19. Here Documents...433

19.1. Here Strings..445
Notes..447

Chapter 20. I/O Redirection...449

20.1. Using exec...453
Notes..456

20.2. Redirecting Code Blocks...457

20.3. Applications..463

Chapter 21. Subshells...465
Notes..469

Chapter 22. Restricted Shells...471

Chapter 23. Process Substitution...473
Notes..477

Advanced Bash-Scripting Guide

iv

Table of Contents
Chapter 24. Functions..479

24.1. Complex Functions and Function Complexities...485
Notes..495

24.2. Local Variables...497
24.2.1. Local variables and recursion..498

Notes..500

24.3. Recursion Without Local Variables...503

Chapter 25. Aliases...507
Notes..509

Chapter 26. List Constructs...511

Chapter 27. Arrays...515

Chapter 28. Indirect References..543

Chapter 29. /dev and /proc...547

29.1. /dev..549
Notes..551

29.2. /proc...553
Notes..558

Chapter 30. Network Programming...559

Chapter 31. Of Zeros and Nulls...563

Chapter 32. Debugging...567
Notes..577

Chapter 33. Options..579

Chapter 34. Gotchas...583
Notes..591

Chapter 35. Scripting With Style..593

35.1. Unofficial Shell Scripting Stylesheet..595
Notes..597

Chapter 36. Miscellany...599

Advanced Bash-Scripting Guide

v

Table of Contents
36.1. Interactive and non-interactive shells and scripts..601

36.2. Shell Wrappers...603
Notes..608

36.3. Tests and Comparisons: Alternatives..609

36.4. Recursion: a script calling itself..611

36.5. "Colorizing" Scripts..615
Notes..627

36.6. Optimizations...629
Notes..632

36.7. Assorted Tips..633
36.7.1. Ideas for more powerful scripts...633
36.7.2. Widgets..643

36.8. Security Issues..647
36.8.1. Infected Shell Scripts...647
36.8.2. Hiding Shell Script Source..647
36.8.3. Writing Secure Shell Scripts..647

Notes..647

36.9. Portability Issues..649
36.9.1. A Test Suite...649

Notes..650

36.10. Shell Scripting Under Windows...651

Chapter 37. Bash, versions 2, 3, and 4..653

37.1. Bash, version 2..655

37.2. Bash, version 3..661
37.2.1. Bash, version 3.1..663
37.2.2. Bash, version 3.2..664

37.3. Bash, version 4..665
37.3.1. Bash, version 4.1..671
37.3.2. Bash, version 4.2..673

Notes..675

Chapter 38. Endnotes...677

Advanced Bash-Scripting Guide

vi

Table of Contents
38.1. Author's Note...679

Notes..679

38.2. About the Author...681
Notes..681

38.3. Where to Go For Help...683
Notes..683

38.4. Tools Used to Produce This Book...685
38.4.1. Hardware..685
38.4.2. Software and Printware..685

38.5. Credits...687

38.6. Disclaimer...689

Bibliography..691
Notes..697

Appendix A. Contributed Scripts..699

Appendix B. Reference Cards..899

Appendix C. A Sed and Awk Micro-Primer..905

C.1. Sed..907
Notes..909

C.2. Awk...911
Notes..913

Appendix D. Parsing and Managing Pathnames...915

Appendix E. Exit Codes With Special Meanings...919
Notes..919

Appendix F. A Detailed Introduction to I/O and I/O Redirection...921

Appendix G. Command-Line Options..923

G.1. Standard Command-Line Options..925

G.2. Bash Command-Line Options...927

Appendix H. Important Files...929
Notes..929

Advanced Bash-Scripting Guide

vii

Table of Contents
Appendix I. Important System Directories..931

Notes..932

Appendix J. An Introduction to Programmable Completion...933
Notes..935

Appendix K. Localization...937

Appendix L. History Commands...941

Appendix M. Sample .bashrc and .bash_profile Files...943

Appendix N. Converting DOS Batch Files to Shell Scripts...959
Notes..962

Appendix O. Exercises..963

O.1. Analyzing Scripts..965

O.2. Writing Scripts..967
Notes..975

Appendix P. Revision History..977

Appendix Q. Download and Mirror Sites...981

Appendix R. To Do List..983

Appendix S. Copyright...985

Appendix T. ASCII Table..987

Index...991

Advanced Bash-Scripting Guide

viii

Advanced Bash-Scripting Guide

An in-depth exploration of the art of shell scripting

Version 10

10 Mar 2014

Mendel Cooper

thegrendel.abs@gmail.com

This tutorial assumes no previous knowledge of scripting or programming, yet progresses rapidly toward an
intermediate/advanced level of instruction . . . all the while sneaking in little nuggets of UNIX® wisdom and
lore. It serves as a textbook, a manual for self-study, and as a reference and source of knowledge on shell
scripting techniques. The exercises and heavily-commented examples invite active reader participation, under
the premise that the only way to really learn scripting is to write scripts.

This book is suitable for classroom use as a general introduction to programming concepts.

This document is herewith granted to the Public Domain. No copyright!

Dedication
For Anita, the source of all the magic

Table of Contents
Part 1. Introduction

1. Shell Programming!
2. Starting Off With a Sha-Bang

2.1. Invoking the script
2.2. Preliminary Exercises

Part 2. Basics
3. Special Characters
4. Introduction to Variables and Parameters

4.1. Variable Substitution
4.2. Variable Assignment
4.3. Bash Variables Are Untyped
4.4. Special Variable Types

5. Quoting
5.1. Quoting Variables
5.2. Escaping

6. Exit and Exit Status
7. Tests

7.1. Test Constructs
7.2. File test operators
7.3. Other Comparison Operators
7.4. Nested if/then Condition Tests
7.5. Testing Your Knowledge of Tests

8. Operations and Related Topics
8.1. Operators
8.2. Numerical Constants
8.3. The Double-Parentheses Construct
8.4. Operator Precedence

Part 3. Beyond the Basics
9. Another Look at Variables

9.1. Internal Variables
9.2. Typing variables: declare or typeset
9.3. $RANDOM: generate random integer

10. Manipulating Variables
10.1. Manipulating Strings
10.2. Parameter Substitution

11. Loops and Branches
11.1. Loops
11.2. Nested Loops
11.3. Loop Control
11.4. Testing and Branching

12. Command Substitution
13. Arithmetic Expansion
14. Recess Time

Part 4. Commands
15. Internal Commands and Builtins

15.1. Job Control Commands
16. External Filters, Programs and Commands

16.1. Basic Commands

16.2. Complex Commands
16.3. Time / Date Commands
16.4. Text Processing Commands
16.5. File and Archiving Commands
16.6. Communications Commands
16.7. Terminal Control Commands
16.8. Math Commands
16.9. Miscellaneous Commands

17. System and Administrative Commands
17.1. Analyzing a System Script

Part 5. Advanced Topics
18. Regular Expressions

18.1. A Brief Introduction to Regular Expressions
18.2. Globbing

19. Here Documents
19.1. Here Strings

20. I/O Redirection
20.1. Using exec
20.2. Redirecting Code Blocks
20.3. Applications

21. Subshells
22. Restricted Shells
23. Process Substitution
24. Functions

24.1. Complex Functions and Function Complexities
24.2. Local Variables
24.3. Recursion Without Local Variables

25. Aliases
26. List Constructs
27. Arrays
28. Indirect References
29. /dev and /proc

29.1. /dev
29.2. /proc

30. Network Programming
31. Of Zeros and Nulls
32. Debugging
33. Options
34. Gotchas
35. Scripting With Style

35.1. Unofficial Shell Scripting Stylesheet
36. Miscellany

36.1. Interactive and non-interactive shells and scripts
36.2. Shell Wrappers
36.3. Tests and Comparisons: Alternatives
36.4. Recursion: a script calling itself
36.5. "Colorizing" Scripts
36.6. Optimizations
36.7. Assorted Tips
36.8. Security Issues
36.9. Portability Issues
36.10. Shell Scripting Under Windows

37. Bash, versions 2, 3, and 4
37.1. Bash, version 2

37.2. Bash, version 3
37.3. Bash, version 4

38. Endnotes
38.1. Author's Note
38.2. About the Author
38.3. Where to Go For Help
38.4. Tools Used to Produce This Book

38.4.1. Hardware
38.4.2. Software and Printware

38.5. Credits
38.6. Disclaimer

Bibliography
A. Contributed Scripts
B. Reference Cards
C. A Sed and Awk Micro-Primer

C.1. Sed
C.2. Awk

D. Parsing and Managing Pathnames
E. Exit Codes With Special Meanings
F. A Detailed Introduction to I/O and I/O Redirection
G. Command-Line Options

G.1. Standard Command-Line Options
G.2. Bash Command-Line Options

H. Important Files
I. Important System Directories
J. An Introduction to Programmable Completion
K. Localization
L. History Commands
M. Sample .bashrc and .bash_profile Files
N. Converting DOS Batch Files to Shell Scripts
O. Exercises

O.1. Analyzing Scripts
O.2. Writing Scripts

P. Revision History
Q. Download and Mirror Sites
R. To Do List
S. Copyright
T. ASCII Table
Index

List of Tables
8-1. Operator Precedence
15-1. Job identifiers
33-1. Bash options
36-1. Numbers representing colors in Escape Sequences
B-1. Special Shell Variables
B-2. TEST Operators: Binary Comparison
B-3. TEST Operators: Files
B-4. Parameter Substitution and Expansion
B-5. String Operations
B-6. Miscellaneous Constructs
C-1. Basic sed operators
C-2. Examples of sed operators
E-1. Reserved Exit Codes

N-1. Batch file keywords / variables / operators, and their shell equivalents
N-2. DOS commands and their UNIX equivalents
P-1. Revision History

List of Examples
2-1. cleanup: A script to clean up log files in /var/log
2-2. cleanup: An improved clean-up script
2-3. cleanup: An enhanced and generalized version of above scripts.
3-1. Code blocks and I/O redirection
3-2. Saving the output of a code block to a file
3-3. Running a loop in the background
3-4. Backup of all files changed in last day
4-1. Variable assignment and substitution
4-2. Plain Variable Assignment
4-3. Variable Assignment, plain and fancy
4-4. Integer or string?
4-5. Positional Parameters
4-6. wh, whois domain name lookup
4-7. Using shift
5-1. Echoing Weird Variables
5-2. Escaped Characters
5-3. Detecting key-presses
6-1. exit / exit status
6-2. Negating a condition using !
7-1. What is truth?
7-2. Equivalence of test, /usr/bin/test, [], and /usr/bin/[
7-3. Arithmetic Tests using (())
7-4. Testing for broken links
7-5. Arithmetic and string comparisons
7-6. Testing whether a string is null
7-7. zmore
8-1. Greatest common divisor
8-2. Using Arithmetic Operations
8-3. Compound Condition Tests Using && and ||
8-4. Representation of numerical constants
8-5. C-style manipulation of variables
9-1. $IFS and whitespace
9-2. Timed Input
9-3. Once more, timed input
9-4. Timed read
9-5. Am I root?
9-6. arglist: Listing arguments with $* and $@
9-7. Inconsistent $* and $@ behavior
9-8. $* and $@ when $IFS is empty
9-9. Underscore variable
9-10. Using declare to type variables
9-11. Generating random numbers
9-12. Picking a random card from a deck
9-13. Brownian Motion Simulation
9-14. Random between values
9-15. Rolling a single die with RANDOM
9-16. Reseeding RANDOM
9-17. Pseudorandom numbers, using awk
10-1. Inserting a blank line between paragraphs in a text file

10-2. Generating an 8-character "random" string
10-3. Converting graphic file formats, with filename change
10-4. Converting streaming audio files to ogg
10-5. Emulating getopt
10-6. Alternate ways of extracting and locating substrings
10-7. Using parameter substitution and error messages
10-8. Parameter substitution and "usage" messages
10-9. Length of a variable
10-10. Pattern matching in parameter substitution
10-11. Renaming file extensions:
10-12. Using pattern matching to parse arbitrary strings
10-13. Matching patterns at prefix or suffix of string
11-1. Simple for loops
11-2. for loop with two parameters in each [list] element
11-3. Fileinfo: operating on a file list contained in a variable
11-4. Operating on a parameterized file list
11-5. Operating on files with a for loop
11-6. Missing in [list] in a for loop
11-7. Generating the [list] in a for loop with command substitution
11-8. A grep replacement for binary files
11-9. Listing all users on the system
11-10. Checking all the binaries in a directory for authorship
11-11. Listing the symbolic links in a directory
11-12. Symbolic links in a directory, saved to a file
11-13. A C-style for loop
11-14. Using efax in batch mode
11-15. Simple while loop
11-16. Another while loop
11-17. while loop with multiple conditions
11-18. C-style syntax in a while loop
11-19. until loop
11-20. Nested Loop
11-21. Effects of break and continue in a loop
11-22. Breaking out of multiple loop levels
11-23. Continuing at a higher loop level
11-24. Using continue N in an actual task
11-25. Using case
11-26. Creating menus using case
11-27. Using command substitution to generate the case variable
11-28. Simple string matching
11-29. Checking for alphabetic input
11-30. Creating menus using select
11-31. Creating menus using select in a function
12-1. Stupid script tricks
12-2. Generating a variable from a loop
12-3. Finding anagrams
15-1. A script that spawns multiple instances of itself
15-2. printf in action
15-3. Variable assignment, using read
15-4. What happens when read has no variable
15-5. Multi-line input to read
15-6. Detecting the arrow keys
15-7. Using read with file redirection
15-8. Problems reading from a pipe

15-9. Changing the current working directory
15-10. Letting let do arithmetic.
15-11. Showing the effect of eval
15-12. Using eval to select among variables
15-13. Echoing the command-line parameters
15-14. Forcing a log-off
15-15. A version of rot13
15-16. Using set with positional parameters
15-17. Reversing the positional parameters
15-18. Reassigning the positional parameters
15-19. "Unsetting" a variable
15-20. Using export to pass a variable to an embedded awk script
15-21. Using getopts to read the options/arguments passed to a script
15-22. "Including" a data file
15-23. A (useless) script that sources itself
15-24. Effects of exec
15-25. A script that exec's itself
15-26. Waiting for a process to finish before proceeding
15-27. A script that kills itself
16-1. Using ls to create a table of contents for burning a CDR disk
16-2. Hello or Good-bye
16-3. Badname, eliminate file names in current directory containing bad characters and whitespace.
16-4. Deleting a file by its inode number
16-5. Logfile: Using xargs to monitor system log
16-6. Copying files in current directory to another
16-7. Killing processes by name
16-8. Word frequency analysis using xargs
16-9. Using expr
16-10. Using date
16-11. Date calculations
16-12. Word Frequency Analysis
16-13. Which files are scripts?
16-14. Generating 10-digit random numbers
16-15. Using tail to monitor the system log
16-16. Printing out the From lines in stored e-mail messages
16-17. Emulating grep in a script
16-18. Crossword puzzle solver
16-19. Looking up definitions in Webster's 1913 Dictionary
16-20. Checking words in a list for validity
16-21. toupper: Transforms a file to all uppercase.
16-22. lowercase: Changes all filenames in working directory to lowercase.
16-23. du: DOS to UNIX text file conversion.
16-24. rot13: ultra-weak encryption.
16-25. Generating "Crypto-Quote" Puzzles
16-26. Formatted file listing.
16-27. Using column to format a directory listing
16-28. nl: A self-numbering script.
16-29. manview: Viewing formatted manpages
16-30. Using cpio to move a directory tree
16-31. Unpacking an rpm archive
16-32. Stripping comments from C program files
16-33. Exploring /usr/X11R6/bin
16-34. An "improved" strings command
16-35. Using cmp to compare two files within a script.

16-36. basename and dirname
16-37. A script that copies itself in sections
16-38. Checking file integrity
16-39. Uudecoding encoded files
16-40. Finding out where to report a spammer
16-41. Analyzing a spam domain
16-42. Getting a stock quote
16-43. Updating FC4
16-44. Using ssh
16-45. A script that mails itself
16-46. Generating prime numbers
16-47. Monthly Payment on a Mortgage
16-48. Base Conversion
16-49. Invoking bc using a here document
16-50. Calculating PI
16-51. Converting a decimal number to hexadecimal
16-52. Factoring
16-53. Calculating the hypotenuse of a triangle
16-54. Using seq to generate loop arguments
16-55. Letter Count"
16-56. Using getopt to parse command-line options
16-57. A script that copies itself
16-58. Exercising dd
16-59. Capturing Keystrokes
16-60. Preparing a bootable SD card for the Raspberry Pi
16-61. Securely deleting a file
16-62. Filename generator
16-63. Converting meters to miles
16-64. Using m4
17-1. Setting a new password
17-2. Setting an erase character
17-3. secret password: Turning off terminal echoing
17-4. Keypress detection
17-5. Checking a remote server for identd
17-6. pidof helps kill a process
17-7. Checking a CD image
17-8. Creating a filesystem in a file
17-9. Adding a new hard drive
17-10. Using umask to hide an output file from prying eyes
17-11. Backlight: changes the brightness of the (laptop) screen backlight
17-12. killall, from /etc/rc.d/init.d
19-1. broadcast: Sends message to everyone logged in
19-2. dummyfile: Creates a 2-line dummy file
19-3. Multi-line message using cat
19-4. Multi-line message, with tabs suppressed
19-5. Here document with replaceable parameters
19-6. Upload a file pair to Sunsite incoming directory
19-7. Parameter substitution turned off
19-8. A script that generates another script
19-9. Here documents and functions
19-10. "Anonymous" Here Document
19-11. Commenting out a block of code
19-12. A self-documenting script
19-13. Prepending a line to a file

19-14. Parsing a mailbox
20-1. Redirecting stdin using exec
20-2. Redirecting stdout using exec
20-3. Redirecting both stdin and stdout in the same script with exec
20-4. Avoiding a subshell
20-5. Redirected while loop
20-6. Alternate form of redirected while loop
20-7. Redirected until loop
20-8. Redirected for loop
20-9. Redirected for loop (both stdin and stdout redirected)
20-10. Redirected if/then test
20-11. Data file names.data for above examples
20-12. Logging events
21-1. Variable scope in a subshell
21-2. List User Profiles
21-3. Running parallel processes in subshells
22-1. Running a script in restricted mode
23-1. Code block redirection without forking
23-2. Redirecting the output of process substitution into a loop.
24-1. Simple functions
24-2. Function Taking Parameters
24-3. Functions and command-line args passed to the script
24-4. Passing an indirect reference to a function
24-5. Dereferencing a parameter passed to a function
24-6. Again, dereferencing a parameter passed to a function
24-7. Maximum of two numbers
24-8. Converting numbers to Roman numerals
24-9. Testing large return values in a function
24-10. Comparing two large integers
24-11. Real name from username
24-12. Local variable visibility
24-13. Demonstration of a simple recursive function
24-14. Another simple demonstration
24-15. Recursion, using a local variable
24-16. The Fibonacci Sequence
24-17. The Towers of Hanoi
25-1. Aliases within a script
25-2. unalias: Setting and unsetting an alias
26-1. Using an and list to test for command-line arguments
26-2. Another command-line arg test using an and list
26-3. Using or lists in combination with an and list
27-1. Simple array usage
27-2. Formatting a poem
27-3. Various array operations
27-4. String operations on arrays
27-5. Loading the contents of a script into an array
27-6. Some special properties of arrays
27-7. Of empty arrays and empty elements
27-8. Initializing arrays
27-9. Copying and concatenating arrays
27-10. More on concatenating arrays
27-11. The Bubble Sort
27-12. Embedded arrays and indirect references
27-13. The Sieve of Eratosthenes

27-14. The Sieve of Eratosthenes, Optimized
27-15. Emulating a push-down stack
27-16. Complex array application: Exploring a weird mathematical series
27-17. Simulating a two-dimensional array, then tilting it
28-1. Indirect Variable References
28-2. Passing an indirect reference to awk
29-1. Using /dev/tcp for troubleshooting
29-2. Playing music
29-3. Finding the process associated with a PID
29-4. On-line connect status
30-1. Print the server environment
30-2. IP addresses
31-1. Hiding the cookie jar
31-2. Setting up a swapfile using /dev/zero
31-3. Creating a ramdisk
32-1. A buggy script
32-2. Missing keyword
32-3. test24: another buggy script
32-4. Testing a condition with an assert
32-5. Trapping at exit
32-6. Cleaning up after Control-C
32-7. A Simple Implementation of a Progress Bar
32-8. Tracing a variable
32-9. Running multiple processes (on an SMP box)
34-1. Numerical and string comparison are not equivalent
34-2. Subshell Pitfalls
34-3. Piping the output of echo to a read
36-1. shell wrapper
36-2. A slightly more complex shell wrapper
36-3. A generic shell wrapper that writes to a logfile
36-4. A shell wrapper around an awk script
36-5. A shell wrapper around another awk script
36-6. Perl embedded in a Bash script
36-7. Bash and Perl scripts combined
36-8. Python embedded in a Bash script
36-9. A script that speaks
36-10. A (useless) script that recursively calls itself
36-11. A (useful) script that recursively calls itself
36-12. Another (useful) script that recursively calls itself
36-13. A "colorized" address database
36-14. Drawing a box
36-15. Echoing colored text
36-16. A "horserace" game
36-17. A Progress Bar
36-18. Return value trickery
36-19. Even more return value trickery
36-20. Passing and returning arrays
36-21. Fun with anagrams
36-22. Widgets invoked from a shell script
36-23. Test Suite
37-1. String expansion
37-2. Indirect variable references - the new way
37-3. Simple database application, using indirect variable referencing
37-4. Using arrays and other miscellaneous trickery to deal four random hands from a deck of cards

37-5. A simple address database
37-6. A somewhat more elaborate address database
37-7. Testing characters
37-8. Reading N characters
37-9. Using a here document to set a variable
37-10. Piping input to a read
37-11. Negative array indices
37-12. Negative parameter in string-extraction construct
A-1. mailformat: Formatting an e-mail message
A-2. rn: A simple-minded file renaming utility
A-3. blank-rename: Renames filenames containing blanks
A-4. encryptedpw: Uploading to an ftp site, using a locally encrypted password
A-5. copy-cd: Copying a data CD
A-6. Collatz series
A-7. days-between: Days between two dates
A-8. Making a dictionary
A-9. Soundex conversion
A-10. Game of Life
A-11. Data file for Game of Life
A-12. behead: Removing mail and news message headers
A-13. password: Generating random 8-character passwords
A-14. fifo: Making daily backups, using named pipes
A-15. Generating prime numbers using the modulo operator
A-16. tree: Displaying a directory tree
A-17. tree2: Alternate directory tree script
A-18. string functions: C-style string functions
A-19. Directory information
A-20. Library of hash functions
A-21. Colorizing text using hash functions
A-22. More on hash functions
A-23. Mounting USB keychain storage devices
A-24. Converting to HTML
A-25. Preserving weblogs
A-26. Protecting literal strings
A-27. Unprotecting literal strings
A-28. Spammer Identification
A-29. Spammer Hunt
A-30. Making wget easier to use
A-31. A podcasting script
A-32. Nightly backup to a firewire HD
A-33. An expanded cd command
A-34. A soundcard setup script
A-35. Locating split paragraphs in a text file
A-36. Insertion sort
A-37. Standard Deviation
A-38. A pad file generator for shareware authors
A-39. A man page editor
A-40. Petals Around the Rose
A-41. Quacky: a Perquackey-type word game
A-42. Nim
A-43. A command-line stopwatch
A-44. An all-purpose shell scripting homework assignment solution
A-45. The Knight's Tour
A-46. Magic Squares

A-47. Fifteen Puzzle
A-48. The Towers of Hanoi, graphic version
A-49. The Towers of Hanoi, alternate graphic version
A-50. An alternate version of the getopt-simple.sh script
A-51. The version of the UseGetOpt.sh example used in the Tab Expansion appendix
A-52. Cycling through all the possible color backgrounds
A-53. Morse Code Practice
A-54. Base64 encoding/decoding
A-55. Inserting text in a file using sed
A-56. The Gronsfeld Cipher
A-57. Bingo Number Generator
A-58. Basics Reviewed
A-59. Testing execution times of various commands
A-60. Associative arrays vs. conventional arrays (execution times)
C-1. Counting Letter Occurrences
J-1. Completion script for UseGetOpt.sh
M-1. Sample .bashrc file
M-2. .bash_profile file
N-1. VIEWDATA.BAT: DOS Batch File
N-2. viewdata.sh: Shell Script Conversion of VIEWDATA.BAT
T-1. A script that generates an ASCII table
T-2. Another ASCII table script
T-3. A third ASCII table script, using awk

Next
Introduction

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Next

Part 1. Introduction

Script: A writing; a written document. [Obs.]

--Webster's Dictionary, 1913 ed.

The shell is a command interpreter. More than just the insulating layer between the operating system kernel
and the user, it's also a fairly powerful programming language. A shell program, called a script, is an
easy-to-use tool for building applications by "gluing together" system calls, tools, utilities, and compiled
binaries. Virtually the entire repertoire of UNIX commands, utilities, and tools is available for invocation by a
shell script. If that were not enough, internal shell commands, such as testing and loop constructs, lend
additional power and flexibility to scripts. Shell scripts are especially well suited for administrative system
tasks and other routine repetitive tasks not requiring the bells and whistles of a full-blown tightly structured
programming language.

Table of Contents
1. Shell Programming!
2. Starting Off With a Sha-Bang

Prev Home Next
Advanced Bash-Scripting Guide Shell Programming!

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Next

Chapter 1. Shell Programming!
No programming language is perfect. There is
not even a single best language; there are only
languages well suited or perhaps poorly suited
for particular purposes.

--Herbert Mayer
A working knowledge of shell scripting is essential to anyone wishing to become reasonably proficient at
system administration, even if they do not anticipate ever having to actually write a script. Consider that as a
Linux machine boots up, it executes the shell scripts in /etc/rc.d to restore the system configuration and
set up services. A detailed understanding of these startup scripts is important for analyzing the behavior of a
system, and possibly modifying it.

The craft of scripting is not hard to master, since scripts can be built in bite-sized sections and there is only a
fairly small set of shell-specific operators and options [1] to learn. The syntax is simple -- even austere --
similar to that of invoking and chaining together utilities at the command line, and there are only a few "rules"
governing their use. Most short scripts work right the first time, and debugging even the longer ones is
straightforward.

 In the early days of personal computing, the BASIC language enabled
 anyone reasonably computer proficient to write programs on an early
 generation of microcomputers. Decades later, the Bash scripting
 language enables anyone with a rudimentary knowledge of Linux or
 UNIX to do the same on modern machines.

 We now have miniaturized single-board computers with amazing
 capabilities, such as the Raspberry Pi.
 Bash scripting provides a way to explore the capabilities of these
 fascinating devices.

A shell script is a quick-and-dirty method of prototyping a complex application. Getting even a limited subset
of the functionality to work in a script is often a useful first stage in project development. In this way, the
structure of the application can be tested and tinkered with, and the major pitfalls found before proceeding to
the final coding in C, C++, Java, Perl, or Python.

Shell scripting hearkens back to the classic UNIX philosophy of breaking complex projects into simpler
subtasks, of chaining together components and utilities. Many consider this a better, or at least more
esthetically pleasing approach to problem solving than using one of the new generation of high-powered
all-in-one languages, such as Perl, which attempt to be all things to all people, but at the cost of forcing you to
alter your thinking processes to fit the tool.

According to Herbert Mayer, "a useful language needs arrays, pointers, and a generic mechanism for building
data structures." By these criteria, shell scripting falls somewhat short of being "useful." Or, perhaps not. . . .

When not to use shell scripts

Resource-intensive tasks, especially where speed is a factor (sorting, hashing, recursion [2] ...)•
Procedures involving heavy-duty math operations, especially floating point arithmetic, arbitrary
precision calculations, or complex numbers (use C++ or FORTRAN instead)

•

http://www.raspberrypi.org/

Cross-platform portability required (use C or Java instead)•
Complex applications, where structured programming is a necessity (type-checking of variables,
function prototypes, etc.)

•

Mission-critical applications upon which you are betting the future of the company•
Situations where security is important, where you need to guarantee the integrity of your system and
protect against intrusion, cracking, and vandalism

•

Project consists of subcomponents with interlocking dependencies•
Extensive file operations required (Bash is limited to serial file access, and that only in a
particularly clumsy and inefficient line-by-line fashion.)

•

Need native support for multi-dimensional arrays•
Need data structures, such as linked lists or trees•
Need to generate / manipulate graphics or GUIs•
Need direct access to system hardware or external peripherals•
Need port or socket I/O•
Need to use libraries or interface with legacy code•
Proprietary, closed-source applications (Shell scripts put the source code right out in the open for all
the world to see.)

•

If any of the above applies, consider a more powerful scripting language -- perhaps Perl, Tcl, Python, Ruby
-- or possibly a compiled language such as C, C++, or Java. Even then, prototyping the application as a
shell script might still be a useful development step.

We will be using Bash, an acronym [3] for "Bourne-Again shell" and a pun on Stephen Bourne's now classic
Bourne shell. Bash has become a de facto standard for shell scripting on most flavors of UNIX. Most of the
principles this book covers apply equally well to scripting with other shells, such as the Korn Shell, from
which Bash derives some of its features, [4] and the C Shell and its variants. (Note that C Shell programming
is not recommended due to certain inherent problems, as pointed out in an October, 1993 Usenet post by Tom
Christiansen.)

What follows is a tutorial on shell scripting. It relies heavily on examples to illustrate various features of the
shell. The example scripts work -- they've been tested, insofar as possible -- and some of them are even useful
in real life. The reader can play with the actual working code of the examples in the source archive
(scriptname.sh or scriptname.bash), [5] give them execute permission (chmod u+rx
scriptname), then run them to see what happens. Should the source archive not be available, then
cut-and-paste from the HTML or pdf rendered versions. Be aware that some of the scripts presented here
introduce features before they are explained, and this may require the reader to temporarily skip ahead for
enlightenment.

Unless otherwise noted, the author of this book wrote the example scripts that follow.

His countenance was bold and bashed not.

--Edmund Spenser
Notes

[1] These are referred to as builtins, features internal to the shell.
[2] Although recursion is possible in a shell script, it tends to be slow and its implementation is often an

ugly kludge.
[3] An acronym is an ersatz word formed by pasting together the initial letters of the words into a

tongue-tripping phrase. This morally corrupt and pernicious practice deserves appropriately severe
punishment. Public flogging suggests itself.

[4] Many of the features of ksh88, and even a few from the updated ksh93 have been merged into Bash.

http://www.faqs.org/faqs/unix-faq/shell/csh-whynot/
http://bash.deta.in/abs-guide-latest.tar.bz2
http://www.tldp.org/LDP/abs/abs-guide.html.tar.gz
http://bash.deta.in/abs-guide.pdf
mailto:thegrendel.abs@gmail.com

[5] By convention, user-written shell scripts that are Bourne shell compliant generally take a name with a
.sh extension. System scripts, such as those found in /etc/rc.d, do not necessarily conform to this
nomenclature.

Prev Home Next
Introduction Up Starting Off With a Sha-Bang

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Next

Chapter 2. Starting Off With a Sha-Bang
Shell programming is a 1950s juke box . . .

--Larry Wall
In the simplest case, a script is nothing more than a list of system commands stored in a file. At the very least,
this saves the effort of retyping that particular sequence of commands each time it is invoked.

Example 2-1. cleanup: A script to clean up log files in /var/log

 1 # Cleanup
 2 # Run as root, of course.
 3
 4 cd /var/log
 5 cat /dev/null > messages
 6 cat /dev/null > wtmp
 7 echo "Log files cleaned up."

There is nothing unusual here, only a set of commands that could just as easily have been invoked one by one
from the command-line on the console or in a terminal window. The advantages of placing the commands in a
script go far beyond not having to retype them time and again. The script becomes a program -- a tool -- and it
can easily be modified or customized for a particular application.

Example 2-2. cleanup: An improved clean-up script

 1 #!/bin/bash
 2 # Proper header for a Bash script.
 3
 4 # Cleanup, version 2
 5
 6 # Run as root, of course.
 7 # Insert code here to print error message and exit if not root.
 8
 9 LOG_DIR=/var/log
 10 # Variables are better than hard-coded values.
 11 cd $LOG_DIR
 12
 13 cat /dev/null > messages
 14 cat /dev/null > wtmp
 15
 16
 17 echo "Logs cleaned up."
 18
 19 exit # The right and proper method of "exiting" from a script.
 20 # A bare "exit" (no parameter) returns the exit status
 21 #+ of the preceding command.

Now that's beginning to look like a real script. But we can go even farther . . .

Example 2-3. cleanup: An enhanced and generalized version of above scripts.

 1 #!/bin/bash
 2 # Cleanup, version 3
 3
 4 # Warning:

 5 # -------
 6 # This script uses quite a number of features that will be explained
 7 #+ later on.
 8 # By the time you've finished the first half of the book,
 9 #+ there should be nothing mysterious about it.
 10
 11
 12
 13 LOG_DIR=/var/log
 14 ROOT_UID=0 # Only users with $UID 0 have root privileges.
 15 LINES=50 # Default number of lines saved.
 16 E_XCD=86 # Can't change directory?
 17 E_NOTROOT=87 # Non-root exit error.
 18
 19
 20 # Run as root, of course.
 21 if ["$UID" -ne "$ROOT_UID"]
 22 then
 23 echo "Must be root to run this script."
 24 exit $E_NOTROOT
 25 fi
 26
 27 if [-n "$1"]
 28 # Test whether command-line argument is present (non-empty).
 29 then
 30 lines=$1
 31 else
 32 lines=$LINES # Default, if not specified on command-line.
 33 fi
 34
 35
 36 # Stephane Chazelas suggests the following,
 37 #+ as a better way of checking command-line arguments,
 38 #+ but this is still a bit advanced for this stage of the tutorial.
 39 #
 40 # E_WRONGARGS=85 # Non-numerical argument (bad argument format).
 41 #
 42 # case "$1" in
 43 # "") lines=50;;
 44 # *[!0-9]*) echo "Usage: `basename $0` lines-to-cleanup";
 45 # exit $E_WRONGARGS;;
 46 # *) lines=$1;;
 47 # esac
 48 #
 49 #* Skip ahead to "Loops" chapter to decipher all this.
 50
 51
 52 cd $LOG_DIR
 53
 54 if [`pwd` != "$LOG_DIR"] # or if ["$PWD" != "$LOG_DIR"]
 55 # Not in /var/log?
 56 then
 57 echo "Can't change to $LOG_DIR."
 58 exit $E_XCD
 59 fi # Doublecheck if in right directory before messing with log file.
 60
 61 # Far more efficient is:
 62 #
 63 # cd /var/log || {
 64 # echo "Cannot change to necessary directory." >&2
 65 # exit $E_XCD;
 66 # }
 67
 68
 69
 70

 71 tail -n $lines messages > mesg.temp # Save last section of message log file.
 72 mv mesg.temp messages # Rename it as system log file.
 73
 74
 75 # cat /dev/null > messages
 76 #* No longer needed, as the above method is safer.
 77
 78 cat /dev/null > wtmp # ': > wtmp' and '> wtmp' have the same effect.
 79 echo "Log files cleaned up."
 80 # Note that there are other log files in /var/log not affected
 81 #+ by this script.
 82
 83 exit 0
 84 # A zero return value from the script upon exit indicates success
 85 #+ to the shell.

Since you may not wish to wipe out the entire system log, this version of the script keeps the last section of
the message log intact. You will constantly discover ways of fine-tuning previously written scripts for
increased effectiveness.

* * *

The sha-bang (#!) [1] at the head of a script tells your system that this file is a set of commands to be fed to
the command interpreter indicated. The #! is actually a two-byte [2] magic number, a special marker that
designates a file type, or in this case an executable shell script (type man magic for more details on this
fascinating topic). Immediately following the sha-bang is a path name. This is the path to the program that
interprets the commands in the script, whether it be a shell, a programming language, or a utility. This
command interpreter then executes the commands in the script, starting at the top (the line following the
sha-bang line), and ignoring comments. [3]

 1 #!/bin/sh
 2 #!/bin/bash
 3 #!/usr/bin/perl
 4 #!/usr/bin/tcl
 5 #!/bin/sed -f
 6 #!/bin/awk -f

Each of the above script header lines calls a different command interpreter, be it /bin/sh, the default shell
(bash in a Linux system) or otherwise. [4] Using #!/bin/sh, the default Bourne shell in most commercial
variants of UNIX, makes the script portable to non-Linux machines, though you sacrifice Bash-specific
features. The script will, however, conform to the POSIX [5] sh standard.

Note that the path given at the "sha-bang" must be correct, otherwise an error message -- usually "Command
not found." -- will be the only result of running the script. [6]

#! can be omitted if the script consists only of a set of generic system commands, using no internal shell
directives. The second example, above, requires the initial #!, since the variable assignment line, lines=50,
uses a shell-specific construct. [7] Note again that #!/bin/sh invokes the default shell interpreter, which
defaults to /bin/bash on a Linux machine.

This tutorial encourages a modular approach to constructing a script. Make note of and collect
"boilerplate" code snippets that might be useful in future scripts. Eventually you will build quite an
extensive library of nifty routines. As an example, the following script prolog tests whether the script has
been invoked with the correct number of parameters.

 1 E_WRONG_ARGS=85
 2 script_parameters="-a -h -m -z"
 3 # -a = all, -h = help, etc.
 4

 5 if [$# -ne $Number_of_expected_args]
 6 then
 7 echo "Usage: `basename $0` $script_parameters"
 8 # `basename $0` is the script's filename.
 9 exit $E_WRONG_ARGS
 10 fi

Many times, you will write a script that carries out one particular task. The first script in this chapter is
an example. Later, it might occur to you to generalize the script to do other, similar tasks. Replacing the
literal ("hard-wired") constants by variables is a step in that direction, as is replacing repetitive code
blocks by functions.

2.1. Invoking the script
Having written the script, you can invoke it by sh scriptname, [8] or alternatively bash scriptname.
(Not recommended is using sh <scriptname, since this effectively disables reading from stdin within
the script.) Much more convenient is to make the script itself directly executable with a chmod.

Either:
chmod 555 scriptname (gives everyone read/execute permission) [9]

or
chmod +rx scriptname (gives everyone read/execute permission)

chmod u+rx scriptname (gives only the script owner read/execute permission)

Having made the script executable, you may now test it by ./scriptname. [10] If it begins with a
"sha-bang" line, invoking the script calls the correct command interpreter to run it.

As a final step, after testing and debugging, you would likely want to move it to /usr/local/bin (as root,
of course), to make the script available to yourself and all other users as a systemwide executable. The script
could then be invoked by simply typing scriptname [ENTER] from the command-line.

Notes

[1] More commonly seen in the literature as she-bang or sh-bang. This derives from the concatenation of the
tokens sharp (#) and bang (!).

[2] Some flavors of UNIX (those based on 4.2 BSD) allegedly take a four-byte magic number, requiring a blank
after the ! -- #! /bin/sh. According to Sven Mascheck this is probably a myth.

[3] The #! line in a shell script will be the first thing the command interpreter (sh or bash) sees. Since this line
begins with a #, it will be correctly interpreted as a comment when the command interpreter finally executes
the script. The line has already served its purpose - calling the command interpreter.

If, in fact, the script includes an extra #! line, then bash will interpret it as a comment.

 1 #!/bin/bash
 2
 3 echo "Part 1 of script."
 4 a=1
 5
 6 #!/bin/bash
 7 # This does *not* launch a new script.
 8
 9 echo "Part 2 of script."
 10 echo $a # Value of $a stays at 1.

[4] This allows some cute tricks.

 1 #!/bin/rm
 2 # Self-deleting script.
 3
 4 # Nothing much seems to happen when you run this... except that the file disappears.
 5
 6 WHATEVER=85
 7
 8 echo "This line will never print (betcha!)."
 9
 10 exit $WHATEVER # Doesn't matter. The script will not exit here.
 11 # Try an echo $? after script termination.
 12 # You'll get a 0, not a 85.

http://www.in-ulm.de/~mascheck/various/shebang/#details

Also, try starting a README file with a #!/bin/more, and making it executable. The result is a self-listing
documentation file. (A here document using cat is possibly a better alternative -- see Example 19-3).

[5] Portable Operating System Interface, an attempt to standardize UNIX-like OSes. The POSIX specifications
are listed on the Open Group site.

[6] To avoid this possibility, a script may begin with a #!/bin/env bash sha-bang line. This may be useful on
UNIX machines where bash is not located in /bin

[7] If Bash is your default shell, then the #! isn't necessary at the beginning of a script. However, if launching a
script from a different shell, such as tcsh, then you will need the #!.

[8] Caution: invoking a Bash script by sh scriptname turns off Bash-specific extensions, and the script may
therefore fail to execute.

[9] A script needs read, as well as execute permission for it to run, since the shell needs to be able to read it.
[10] Why not simply invoke the script with scriptname? If the directory you are in ($PWD) is where

scriptname is located, why doesn't this work? This fails because, for security reasons, the current
directory (./) is not by default included in a user's $PATH. It is therefore necessary to explicitly invoke the
script in the current directory with a ./scriptname.

Prev Home Next
Shell Programming! Up Preliminary Exercises

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Chapter 2. Starting Off With a Sha-Bang Next

http://www.opengroup.org/onlinepubs/007904975/toc.htm

2.2. Preliminary Exercises
System administrators often write scripts to automate common tasks. Give several instances where
such scripts would be useful.

1.

Write a script that upon invocation shows the time and date, lists all logged-in users, and gives the
system uptime. The script then saves this information to a logfile.

2.

Prev Home Next
Starting Off With a Sha-Bang Up Basics

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Next

Part 2. Basics
Table of Contents
3. Special Characters
4. Introduction to Variables and Parameters
5. Quoting
6. Exit and Exit Status
7. Tests
8. Operations and Related Topics

Prev Home Next
Preliminary Exercises Special Characters

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Next

Chapter 3. Special Characters
What makes a character special? If it has a meaning beyond its literal meaning, a meta-meaning, then we refer
to it as a special character. Along with commands and keywords, special characters are building blocks of
Bash scripts.

Special Characters Found In Scripts and Elsewhere

#
Comments. Lines beginning with a # (with the exception of #!) are comments and will not be
executed.

 1 # This line is a comment.

Comments may also occur following the end of a command.

 1 echo "A comment will follow." # Comment here.
 2 # ^ Note whitespace before #

Comments may also follow whitespace at the beginning of a line.

 1 # A tab precedes this comment.

Comments may even be embedded within a pipe.

 1 initial=(`cat "$startfile" | sed -e '/#/d' | tr -d '\n' |\
 2 # Delete lines containing '#' comment character.
 3 sed -e 's/\./\. /g' -e 's/_/_ /g'`)
 4 # Excerpted from life.sh script

A command may not follow a comment on the same line. There is no method of
terminating the comment, in order for "live code" to begin on the same line. Use
a new line for the next command.
Of course, a quoted or an escaped # in an echo statement does not begin a comment.
Likewise, a # appears in certain parameter-substitution constructs and in numerical
constant expressions.

 1 echo "The # here does not begin a comment."
 2 echo 'The # here does not begin a comment.'
 3 echo The \# here does not begin a comment.
 4 echo The # here begins a comment.
 5
 6 echo ${PATH#*:} # Parameter substitution, not a comment.
 7 echo $((2#101011)) # Base conversion, not a comment.
 8
 9 # Thanks, S.C.

The standard quoting and escape characters (" ' \) escape the #.
Certain pattern matching operations also use the #.

;
Command separator [semicolon]. Permits putting two or more commands on the same line.

 1 echo hello; echo there
 2
 3
 4 if [-x "$filename"]; then # Note the space after the semicolon.
 5 #+ ^^
 6 echo "File $filename exists."; cp $filename $filename.bak
 7 else # ^^
 8 echo "File $filename not found."; touch $filename
 9 fi; echo "File test complete."

Note that the ";" sometimes needs to be escaped.
;;

Terminator in a case option [double semicolon].

 1 case "$variable" in
 2 abc) echo "\$variable = abc" ;;
 3 xyz) echo "\$variable = xyz" ;;
 4 esac

;;&, ;&
Terminators in a case option (version 4+ of Bash).

.

"dot" command [period]. Equivalent to source (see Example 15-22). This is a bash builtin.
.

"dot", as a component of a filename. When working with filenames, a leading dot is the prefix of a
"hidden" file, a file that an ls will not normally show.

bash$ touch .hidden-file
bash$ ls -l
total 10

 -rw-r--r-- 1 bozo 4034 Jul 18 22:04 data1.addressbook
 -rw-r--r-- 1 bozo 4602 May 25 13:58 data1.addressbook.bak
 -rw-r--r-- 1 bozo 877 Dec 17 2000 employment.addressbook

bash$ ls -al
total 14

 drwxrwxr-x 2 bozo bozo 1024 Aug 29 20:54 ./
 drwx------ 52 bozo bozo 3072 Aug 29 20:51 ../
 -rw-r--r-- 1 bozo bozo 4034 Jul 18 22:04 data1.addressbook
 -rw-r--r-- 1 bozo bozo 4602 May 25 13:58 data1.addressbook.bak
 -rw-r--r-- 1 bozo bozo 877 Dec 17 2000 employment.addressbook
 -rw-rw-r-- 1 bozo bozo 0 Aug 29 20:54 .hidden-file

When considering directory names, a single dot represents the current working directory, and two dots
denote the parent directory.

bash$ pwd
/home/bozo/projects

bash$ cd .
bash$ pwd
/home/bozo/projects

bash$ cd ..
bash$ pwd
/home/bozo/

The dot often appears as the destination (directory) of a file movement command, in this context
meaning current directory.

bash$ cp /home/bozo/current_work/junk/* .

Copy all the "junk" files to $PWD.
.

"dot" character match. When matching characters, as part of a regular expression, a "dot" matches a
single character.

"

partial quoting [double quote]. "STRING" preserves (from interpretation) most of the special
characters within STRING. See Chapter 5.

'
full quoting [single quote]. 'STRING' preserves all special characters within STRING. This is a
stronger form of quoting than "STRING". See Chapter 5.

,
comma operator. The comma operator [1] links together a series of arithmetic operations. All are
evaluated, but only the last one is returned.

 1 let "t2 = ((a = 9, 15 / 3))"
 2 # Set "a = 9" and "t2 = 15 / 3"

The comma operator can also concatenate strings.

 1 for file in /{,usr/}bin/*calc
 2 # ^ Find all executable files ending in "calc"
 3 #+ in /bin and /usr/bin directories.
 4 do
 5 if [-x "$file"]
 6 then
 7 echo $file
 8 fi
 9 done
 10
 11 # /bin/ipcalc
 12 # /usr/bin/kcalc
 13 # /usr/bin/oidcalc
 14 # /usr/bin/oocalc
 15
 16
 17 # Thank you, Rory Winston, for pointing this out.

,, ,
Lowercase conversion in parameter substitution (added in version 4 of Bash).

\
escape [backslash]. A quoting mechanism for single characters.

\X escapes the character X. This has the effect of "quoting" X, equivalent to 'X'. The \ may be used to
quote " and ', so they are expressed literally.

See Chapter 5 for an in-depth explanation of escaped characters.
/

Filename path separator [forward slash]. Separates the components of a filename (as in
/home/bozo/projects/Makefile).

This is also the division arithmetic operator.
`

command substitution. The `command` construct makes available the output of command for
assignment to a variable. This is also known as backquotes or backticks.

:

null command [colon]. This is the shell equivalent of a "NOP" (no op, a do-nothing operation). It
may be considered a synonym for the shell builtin true. The ":" command is itself a Bash builtin, and
its exit status is true (0).

 1 :
 2 echo $? # 0

Endless loop:

 1 while :
 2 do
 3 operation-1
 4 operation-2
 5 ...
 6 operation-n
 7 done
 8
 9 # Same as:
 10 # while true
 11 # do
 12 # ...
 13 # done

Placeholder in if/then test:

 1 if condition
 2 then : # Do nothing and branch ahead
 3 else # Or else ...
 4 take-some-action
 5 fi

Provide a placeholder where a binary operation is expected, see Example 8-2 and default parameters.

 1 : ${username=`whoami`}
 2 # ${username=`whoami`} Gives an error without the leading :
 3 # unless "username" is a command or builtin...
 4
 5 : ${1?"Usage: $0 ARGUMENT"} # From "usage-message.sh example script.

Provide a placeholder where a command is expected in a here document. See Example 19-10.

Evaluate string of variables using parameter substitution (as in Example 10-7).

 1 : ${HOSTNAME?} ${USER?} ${MAIL?}
 2 # Prints error message
 3 #+ if one or more of essential environmental variables not set.

Variable expansion / substring replacement.

In combination with the > redirection operator, truncates a file to zero length, without changing its
permissions. If the file did not previously exist, creates it.

 1 : > data.xxx # File "data.xxx" now empty.
 2
 3 # Same effect as cat /dev/null >data.xxx
 4 # However, this does not fork a new process, since ":" is a builtin.

See also Example 16-15.

In combination with the >> redirection operator, has no effect on a pre-existing target file (: >>
target_file). If the file did not previously exist, creates it.

This applies to regular files, not pipes, symlinks, and certain special files.

May be used to begin a comment line, although this is not recommended. Using # for a comment
turns off error checking for the remainder of that line, so almost anything may appear in a comment.
However, this is not the case with :.

 1 : This is a comment that generates an error, (if [$x -eq 3]).

The ":" serves as a field separator, in /etc/passwd, and in the $PATH variable.

bash$ echo $PATH
/usr/local/bin:/bin:/usr/bin:/usr/X11R6/bin:/sbin:/usr/sbin:/usr/games

A colon is acceptable as a function name.

 1 :()
 2 {
 3 echo "The name of this function is "$FUNCNAME" "
 4 # Why use a colon as a function name?
 5 # It's a way of obfuscating your code.
 6 }
 7
 8 :
 9
 10 # The name of this function is :

This is not portable behavior, and therefore not a recommended practice. In fact, more recent releases
of Bash do not permit this usage. An underscore _ works, though.

A colon can serve as a placeholder in an otherwise empty function.

 1 not_empty ()
 2 {
 3 :
 4 } # Contains a : (null command), and so is not empty.

!
reverse (or negate) the sense of a test or exit status [bang]. The ! operator inverts the exit status of
the command to which it is applied (see Example 6-2). It also inverts the meaning of a test operator.
This can, for example, change the sense of equal (=) to not-equal (!=). The ! operator is a Bash
keyword.

In a different context, the ! also appears in indirect variable references.

In yet another context, from the command line, the ! invokes the Bash history mechanism (see
Appendix L). Note that within a script, the history mechanism is disabled.

*
wild card [asterisk]. The * character serves as a "wild card" for filename expansion in globbing. By
itself, it matches every filename in a given directory.

bash$ echo *
abs-book.sgml add-drive.sh agram.sh alias.sh

The * also represents any number (or zero) characters in a regular expression.
*

arithmetic operator. In the context of arithmetic operations, the * denotes multiplication.

** A double asterisk can represent the exponentiation operator or extended file-match globbing.
?

test operator. Within certain expressions, the ? indicates a test for a condition.

In a double-parentheses construct, the ? can serve as an element of a C-style trinary operator. [2]

condition?result-if-true:result-if-false

 1 ((var0 = var1<98?9:21))
 2 # ^ ^
 3
 4 # if ["$var1" -lt 98]

 5 # then
 6 # var0=9
 7 # else
 8 # var0=21
 9 # fi

In a parameter substitution expression, the ? tests whether a variable has been set.
?

wild card. The ? character serves as a single-character "wild card" for filename expansion in
globbing, as well as representing one character in an extended regular expression.

$
Variable substitution (contents of a variable).

 1 var1=5
 2 var2=23skidoo
 3
 4 echo $var1 # 5
 5 echo $var2 # 23skidoo

A $ prefixing a variable name indicates the value the variable holds.
$

end-of-line. In a regular expression, a "$" addresses the end of a line of text.
${}

Parameter substitution.
$' ... '

Quoted string expansion. This construct expands single or multiple escaped octal or hex values into
ASCII [3] or Unicode characters.

$*, $@
positional parameters.

$?
exit status variable. The $? variable holds the exit status of a command, a function, or of the script
itself.

$$
process ID variable. The $$ variable holds the process ID [4] of the script in which it appears.

()
command group.

 1 (a=hello; echo $a)

A listing of commands within parentheses starts a subshell.

Variables inside parentheses, within the subshell, are not visible to the rest of the
script. The parent process, the script, cannot read variables created in the child
process, the subshell.

 1 a=123
 2 (a=321;)
 3
 4 echo "a = $a" # a = 123
 5 # "a" within parentheses acts like a local variable.

array initialization.

 1 Array=(element1 element2 element3)

{xxx,yyy,zzz,...}
Brace expansion.

 1 echo \"{These,words,are,quoted}\" # " prefix and suffix
 2 # "These" "words" "are" "quoted"

 3
 4
 5 cat {file1,file2,file3} > combined_file
 6 # Concatenates the files file1, file2, and file3 into combined_file.
 7
 8 cp file22.{txt,backup}
 9 # Copies "file22.txt" to "file22.backup"

A command may act upon a comma-separated list of file specs within braces. [5] Filename
expansion (globbing) applies to the file specs between the braces.

No spaces allowed within the braces unless the spaces are quoted or
escaped.

echo {file1,file2}\ :{\ A," B",' C'}

file1 : A file1 : B file1 : C file2 : A file2 : B
file2 : C

{a..z}
Extended Brace expansion.

 1 echo {a..z} # a b c d e f g h i j k l m n o p q r s t u v w x y z
 2 # Echoes characters between a and z.
 3
 4 echo {0..3} # 0 1 2 3
 5 # Echoes characters between 0 and 3.
 6
 7
 8 base64_charset=({A..Z} {a..z} {0..9} + / =)
 9 # Initializing an array, using extended brace expansion.
 10 # From vladz's "base64.sh" example script.

The {a..z} extended brace expansion construction is a feature introduced in version 3 of Bash.
{}

Block of code [curly brackets]. Also referred to as an inline group, this construct, in effect, creates
an anonymous function (a function without a name). However, unlike in a "standard" function, the
variables inside a code block remain visible to the remainder of the script.

bash$ { local a;
 a=123; }
bash: local: can only be used in a

function

 1 a=123
 2 { a=321; }
 3 echo "a = $a" # a = 321 (value inside code block)
 4
 5 # Thanks, S.C.

The code block enclosed in braces may have I/O redirected to and from it.

Example 3-1. Code blocks and I/O redirection

 1 #!/bin/bash
 2 # Reading lines in /etc/fstab.
 3
 4 File=/etc/fstab
 5
 6 {

 7 read line1
 8 read line2
 9 } < $File
 10
 11 echo "First line in $File is:"
 12 echo "$line1"
 13 echo
 14 echo "Second line in $File is:"
 15 echo "$line2"
 16
 17 exit 0
 18
 19 # Now, how do you parse the separate fields of each line?
 20 # Hint: use awk, or . . .
 21 # . . . Hans-Joerg Diers suggests using the "set" Bash builtin.

Example 3-2. Saving the output of a code block to a file

 1 #!/bin/bash
 2 # rpm-check.sh
 3
 4 # Queries an rpm file for description, listing,
 5 #+ and whether it can be installed.
 6 # Saves output to a file.
 7 #
 8 # This script illustrates using a code block.
 9
 10 SUCCESS=0
 11 E_NOARGS=65
 12
 13 if [-z "$1"]
 14 then
 15 echo "Usage: `basename $0` rpm-file"
 16 exit $E_NOARGS
 17 fi
 18
 19 { # Begin code block.
 20 echo
 21 echo "Archive Description:"
 22 rpm -qpi $1 # Query description.
 23 echo
 24 echo "Archive Listing:"
 25 rpm -qpl $1 # Query listing.
 26 echo
 27 rpm -i --test $1 # Query whether rpm file can be installed.
 28 if ["$?" -eq $SUCCESS]
 29 then
 30 echo "$1 can be installed."
 31 else
 32 echo "$1 cannot be installed."
 33 fi
 34 echo # End code block.
 35 } > "$1.test" # Redirects output of everything in block to file.
 36
 37 echo "Results of rpm test in file $1.test"
 38
 39 # See rpm man page for explanation of options.
 40
 41 exit 0

Unlike a command group within (parentheses), as above, a code block enclosed by
{braces} will not normally launch a subshell. [6]

It is possible to iterate a code block using a non-standard for-loop.
{}

placeholder for text. Used after xargs -i (replace strings option). The {} double curly brackets are a
placeholder for output text.

 1 ls . | xargs -i -t cp ./{} $1
 2 # ^^ ^^
 3
 4 # From "ex42.sh" (copydir.sh) example.

{} \;
pathname. Mostly used in find constructs. This is not a shell builtin.

Definition: A pathname is a filename that includes the complete path. As an example,
/home/bozo/Notes/Thursday/schedule.txt. This is sometimes referred to as the
absolute path.

The ";" ends the -exec option of a find command sequence. It needs to be
escaped to protect it from interpretation by the shell.

[]
test.

Test expression between []. Note that [is part of the shell builtin test (and a synonym for it), not a
link to the external command /usr/bin/test.

[[]]
test.

Test expression between [[]]. More flexible than the single-bracket [] test, this is a shell keyword.

See the discussion on the [[...]] construct.
[]

array element.

In the context of an array, brackets set off the numbering of each element of that array.

 1 Array[1]=slot_1
 2 echo ${Array[1]}

[]
range of characters.

As part of a regular expression, brackets delineate a range of characters to match.
$[...]

integer expansion.

Evaluate integer expression between $[].

 1 a=3
 2 b=7
 3
 4 echo $[$a+$b] # 10
 5 echo $[$a*$b] # 21

Note that this usage is deprecated, and has been replaced by the ((...)) construct.
(())

integer expansion.

Expand and evaluate integer expression between (()).

See the discussion on the ((...)) construct.
> &> >& >> < <>

redirection.

scriptname >filename redirects the output of scriptname to file filename. Overwrite
filename if it already exists.

command &>filename redirects both the stdout and the stderr of command to filename.

This is useful for suppressing output when testing for a condition. For example, let us
test whether a certain command exists.

bash$ type bogus_command &>/dev/null

bash$ echo $?
1

Or in a script:

 1 command_test () { type "$1" &>/dev/null; }
 2 # ^
 3
 4 cmd=rmdir # Legitimate command.
 5 command_test $cmd; echo $? # 0
 6
 7
 8 cmd=bogus_command # Illegitimate command
 9 command_test $cmd; echo $? # 1

command >&2 redirects stdout of command to stderr.

scriptname >>filename appends the output of scriptname to file filename. If
filename does not already exist, it is created.

[i]<>filename opens file filename for reading and writing, and assigns file descriptor i to it. If
filename does not exist, it is created.

process substitution.

(command)>

<(command)

In a different context, the "<" and ">" characters act as string comparison operators.

In yet another context, the "<" and ">" characters act as integer comparison operators. See also
Example 16-9.

<<
redirection used in a here document.

<<<
redirection used in a here string.

<, >
ASCII comparison.

 1 veg1=carrots
 2 veg2=tomatoes
 3
 4 if [["$veg1" < "$veg2"]]
 5 then
 6 echo "Although $veg1 precede $veg2 in the dictionary,"
 7 echo -n "this does not necessarily imply anything "
 8 echo "about my culinary preferences."
 9 else
 10 echo "What kind of dictionary are you using, anyhow?"
 11 fi

\<, \>
word boundary in a regular expression.

bash$ grep '\<the\>' textfile
|

pipe. Passes the output (stdout) of a previous command to the input (stdin) of the next one, or to
the shell. This is a method of chaining commands together.

 1 echo ls -l | sh
 2 # Passes the output of "echo ls -l" to the shell,
 3 #+ with the same result as a simple "ls -l".
 4
 5
 6 cat *.lst | sort | uniq
 7 # Merges and sorts all ".lst" files, then deletes duplicate lines.

A pipe, as a classic method of interprocess communication, sends the stdout of one process to the
stdin of another. In a typical case, a command, such as cat or echo, pipes a stream of data to a
filter, a command that transforms its input for processing. [7]

cat $filename1 $filename2 | grep $search_word

For an interesting note on the complexity of using UNIX pipes, see the UNIX FAQ, Part 3.

The output of a command or commands may be piped to a script.

 1 #!/bin/bash
 2 # uppercase.sh : Changes input to uppercase.
 3
 4 tr 'a-z' 'A-Z'
 5 # Letter ranges must be quoted
 6 #+ to prevent filename generation from single-letter filenames.
 7
 8 exit 0

Now, let us pipe the output of ls -l to this script.
bash$ ls -l | ./uppercase.sh
-RW-RW-R-- 1 BOZO BOZO 109 APR 7 19:49 1.TXT

 -RW-RW-R-- 1 BOZO BOZO 109 APR 14 16:48 2.TXT

http://www.faqs.org/faqs/unix-faq/faq/part3/

 -RW-R--R-- 1 BOZO BOZO 725 APR 20 20:56 DATA-FILE

The stdout of each process in a pipe must be read as the stdin of the next. If this
is not the case, the data stream will block, and the pipe will not behave as expected.

 1 cat file1 file2 | ls -l | sort
 2 # The output from "cat file1 file2" disappears.

A pipe runs as a child process, and therefore cannot alter script variables.

 1 variable="initial_value"
 2 echo "new_value" | read variable
 3 echo "variable = $variable" # variable = initial_value

If one of the commands in the pipe aborts, this prematurely terminates execution of the
pipe. Called a broken pipe, this condition sends a SIGPIPE signal.

>|
force redirection (even if the noclobber option is set). This will forcibly overwrite an existing file.

||
OR logical operator. In a test construct, the || operator causes a return of 0 (success) if either of the
linked test conditions is true.

&
Run job in background. A command followed by an & will run in the background.

bash$ sleep 10 &
[1] 850
[1]+ Done sleep 10

Within a script, commands and even loops may run in the background.

Example 3-3. Running a loop in the background

 1 #!/bin/bash
 2 # background-loop.sh
 3
 4 for i in 1 2 3 4 5 6 7 8 9 10 # First loop.
 5 do
 6 echo -n "$i "
 7 done & # Run this loop in background.
 8 # Will sometimes execute after second loop.
 9
 10 echo # This 'echo' sometimes will not display.
 11
 12 for i in 11 12 13 14 15 16 17 18 19 20 # Second loop.
 13 do
 14 echo -n "$i "
 15 done
 16
 17 echo # This 'echo' sometimes will not display.
 18
 19 # ==
 20
 21 # The expected output from the script:
 22 # 1 2 3 4 5 6 7 8 9 10
 23 # 11 12 13 14 15 16 17 18 19 20
 24
 25 # Sometimes, though, you get:
 26 # 11 12 13 14 15 16 17 18 19 20
 27 # 1 2 3 4 5 6 7 8 9 10 bozo $
 28 # (The second 'echo' doesn't execute. Why?)

 29
 30 # Occasionally also:
 31 # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 32 # (The first 'echo' doesn't execute. Why?)
 33
 34 # Very rarely something like:
 35 # 11 12 13 1 2 3 4 5 6 7 8 9 10 14 15 16 17 18 19 20
 36 # The foreground loop preempts the background one.
 37
 38 exit 0
 39
 40 # Nasimuddin Ansari suggests adding sleep 1
 41 #+ after the echo -n "$i" in lines 6 and 14,
 42 #+ for some real fun.

A command run in the background within a script may cause the script to hang,
waiting for a keystroke. Fortunately, there is a remedy for this.

&&
AND logical operator. In a test construct, the && operator causes a return of 0 (success) only if both
the linked test conditions are true.

-
option, prefix. Option flag for a command or filter. Prefix for an operator. Prefix for a default
parameter in parameter substitution.

COMMAND -[Option1][Option2][...]

ls -al

sort -dfu $filename

 1 if [$file1 -ot $file2]
 2 then # ^
 3 echo "File $file1 is older than $file2."
 4 fi
 5
 6 if ["$a" -eq "$b"]
 7 then # ^
 8 echo "$a is equal to $b."
 9 fi
 10
 11 if ["$c" -eq 24 -a "$d" -eq 47]
 12 then # ^ ^
 13 echo "$c equals 24 and $d equals 47."
 14 fi
 15
 16
 17 param2=${param1:-$DEFAULTVAL}
 18 # ^

--

The double-dash -- prefixes long (verbatim) options to commands.

sort --ignore-leading-blanks

Used with a Bash builtin, it means the end of options to that particular command.

This provides a handy means of removing files whose names begin with a dash.

bash$ ls -l
-rw-r--r-- 1 bozo bozo 0 Nov 25 12:29 -badname

bash$ rm -- -badname

bash$ ls -l
total 0

The double-dash is also used in conjunction with set.

set -- $variable (as in Example 15-18)
-

redirection from/to stdin or stdout [dash].

bash$ cat -
abc
abc

...

Ctl-D

As expected, cat - echoes stdin, in this case keyboarded user input, to stdout. But, does I/O
redirection using - have real-world applications?

 1 (cd /source/directory && tar cf - .) | (cd /dest/directory && tar xpvf -)
 2 # Move entire file tree from one directory to another
 3 # [courtesy Alan Cox <a.cox@swansea.ac.uk>, with a minor change]
 4
 5 # 1) cd /source/directory
 6 # Source directory, where the files to be moved are.
 7 # 2) &&
 8 # "And-list": if the 'cd' operation successful,
 9 # then execute the next command.
 10 # 3) tar cf - .
 11 # The 'c' option 'tar' archiving command creates a new archive,
 12 # the 'f' (file) option, followed by '-' designates the target file
 13 # as stdout, and do it in current directory tree ('.').
 14 # 4) |
 15 # Piped to ...
 16 # 5) (...)
 17 # a subshell
 18 # 6) cd /dest/directory
 19 # Change to the destination directory.
 20 # 7) &&
 21 # "And-list", as above
 22 # 8) tar xpvf -
 23 # Unarchive ('x'), preserve ownership and file permissions ('p'),
 24 # and send verbose messages to stdout ('v'),
 25 # reading data from stdin ('f' followed by '-').
 26 #
 27 # Note that 'x' is a command, and 'p', 'v', 'f' are options.
 28 #
 29 # Whew!
 30
 31
 32
 33 # More elegant than, but equivalent to:
 34 # cd source/directory
 35 # tar cf - . | (cd ../dest/directory; tar xpvf -)
 36 #
 37 # Also having same effect:
 38 # cp -a /source/directory/* /dest/directory
 39 # Or:

 40 # cp -a /source/directory/* /source/directory/.[^.]* /dest/directory
 41 # If there are hidden files in /source/directory.

 1 bunzip2 -c linux-2.6.16.tar.bz2 | tar xvf -
 2 # --uncompress tar file-- | --then pass it to "tar"--
 3 # If "tar" has not been patched to handle "bunzip2",
 4 #+ this needs to be done in two discrete steps, using a pipe.
 5 # The purpose of the exercise is to unarchive "bzipped" kernel source.

Note that in this context the "-" is not itself a Bash operator, but rather an option recognized by certain
UNIX utilities that write to stdout, such as tar, cat, etc.

bash$ echo "whatever" | cat -
whatever

Where a filename is expected, - redirects output to stdout (sometimes seen with tar cf), or
accepts input from stdin, rather than from a file. This is a method of using a file-oriented utility as
a filter in a pipe.

bash$ file
Usage: file [-bciknvzL] [-f namefile] [-m magicfiles] file...

By itself on the command-line, file fails with an error message.

Add a "-" for a more useful result. This causes the shell to await user input.

bash$ file -
abc
standard input: ASCII text

bash$ file -
#!/bin/bash
standard input: Bourne-Again shell script text executable

Now the command accepts input from stdin and analyzes it.

The "-" can be used to pipe stdout to other commands. This permits such stunts as prepending lines
to a file.

Using diff to compare a file with a section of another:

grep Linux file1 | diff file2 -

Finally, a real-world example using - with tar.

Example 3-4. Backup of all files changed in last day

 1 #!/bin/bash
 2
 3 # Backs up all files in current directory modified within last 24 hours
 4 #+ in a "tarball" (tarred and gzipped file).
 5
 6 BACKUPFILE=backup-$(date +%m-%d-%Y)
 7 # Embeds date in backup filename.
 8 # Thanks, Joshua Tschida, for the idea.
 9 archive=${1:-$BACKUPFILE}
 10 # If no backup-archive filename specified on command-line,
 11 #+ it will default to "backup-MM-DD-YYYY.tar.gz."

 12
 13 tar cvf - `find . -mtime -1 -type f -print` > $archive.tar
 14 gzip $archive.tar
 15 echo "Directory $PWD backed up in archive file \"$archive.tar.gz\"."
 16
 17
 18 # Stephane Chazelas points out that the above code will fail
 19 #+ if there are too many files found
 20 #+ or if any filenames contain blank characters.
 21
 22 # He suggests the following alternatives:
 23 # ---
 24 # find . -mtime -1 -type f -print0 | xargs -0 tar rvf "$archive.tar"
 25 # using the GNU version of "find".
 26
 27
 28 # find . -mtime -1 -type f -exec tar rvf "$archive.tar" '{}' \;
 29 # portable to other UNIX flavors, but much slower.
 30 # ---
 31
 32
 33 exit 0

Filenames beginning with "-" may cause problems when coupled with the "-"
redirection operator. A script should check for this and add an appropriate prefix to
such filenames, for example ./-FILENAME, $PWD/-FILENAME, or
$PATHNAME/-FILENAME.

If the value of a variable begins with a -, this may likewise create problems.

 1 var="-n"
 2 echo $var
 3 # Has the effect of "echo -n", and outputs nothing.

-
previous working directory. A cd - command changes to the previous working directory. This uses
the $OLDPWD environmental variable.

Do not confuse the "-" used in this sense with the "-" redirection operator just
discussed. The interpretation of the "-" depends on the context in which it
appears.

-
Minus. Minus sign in an arithmetic operation.

=
Equals. Assignment operator

 1 a=28
 2 echo $a # 28

In a different context, the "=" is a string comparison operator.
+

Plus. Addition arithmetic operator.

In a different context, the + is a Regular Expression operator.
+

Option. Option flag for a command or filter.

Certain commands and builtins use the + to enable certain options and the - to disable them. In
parameter substitution, the + prefixes an alternate value that a variable expands to.

%

modulo. Modulo (remainder of a division) arithmetic operation.

 1 let "z = 5 % 3"
 2 echo $z # 2

In a different context, the % is a pattern matching operator.
~

home directory [tilde]. This corresponds to the $HOME internal variable. ~bozo is bozo's home
directory, and ls ~bozo lists the contents of it. ~/ is the current user's home directory, and ls ~/ lists the
contents of it.

bash$ echo ~bozo
/home/bozo

bash$ echo ~
/home/bozo

bash$ echo ~/
/home/bozo/

bash$ echo ~:
/home/bozo:

bash$ echo ~nonexistent-user
~nonexistent-user

~+
current working directory. This corresponds to the $PWD internal variable.

~-
previous working directory. This corresponds to the $OLDPWD internal variable.

=~
regular expression match. This operator was introduced with version 3 of Bash.

^
beginning-of-line. In a regular expression, a "^" addresses the beginning of a line of text.

^, ^^
Uppercase conversion in parameter substitution (added in version 4 of Bash).

Control Characters
change the behavior of the terminal or text display. A control character is a CONTROL + key
combination (pressed simultaneously). A control character may also be written in octal or
hexadecimal notation, following an escape.

Control characters are not normally useful inside a script.

Ctl-A

Moves cursor to beginning of line of text (on the command-line).

◊

Ctl-B

Backspace (nondestructive).

◊

Ctl-C

Break. Terminate a foreground job.

◊

Ctl-D

Log out from a shell (similar to exit).

◊

EOF (end-of-file). This also terminates input from stdin.

When typing text on the console or in an xterm window, Ctl-D erases the character under
the cursor. When there are no characters present, Ctl-D logs out of the session, as expected.
In an xterm window, this has the effect of closing the window.
Ctl-E

Moves cursor to end of line of text (on the command-line).

◊

Ctl-F

Moves cursor forward one character position (on the command-line).

◊

Ctl-G

BEL. On some old-time teletype terminals, this would actually ring a bell. In an xterm it
might beep.

◊

Ctl-H

Rubout (destructive backspace). Erases characters the cursor backs over while backspacing.

 1 #!/bin/bash
 2 # Embedding Ctl-H in a string.
 3
 4 a="^H^H" # Two Ctl-H's -- backspaces
 5 # ctl-V ctl-H, using vi/vim
 6 echo "abcdef" # abcdef
 7 echo
 8 echo -n "abcdef$a " # abcd f
 9 # Space at end ^ ^ Backspaces twice.
 10 echo
 11 echo -n "abcdef$a" # abcdef
 12 # No space at end ^ Doesn't backspace (why?).
 13 # Results may not be quite as expected.
 14 echo; echo
 15
 16 # Constantin Hagemeier suggests trying:
 17 # a=$'\010\010'
 18 # a=$'\b\b'
 19 # a=$'\x08\x08'
 20 # But, this does not change the results.
 21
 22 ##
 23
 24 # Now, try this.
 25
 26 rubout="^H^H^H^H^H" # 5 x Ctl-H.
 27
 28 echo -n "12345678"
 29 sleep 2
 30 echo -n "$rubout"
 31 sleep 2

◊

Ctl-I

Horizontal tab.

◊

Ctl-J

Newline (line feed). In a script, may also be expressed in octal notation -- '\012' or in

◊

hexadecimal -- '\x0a'.
Ctl-K

Vertical tab.

When typing text on the console or in an xterm window, Ctl-K erases from the character
under the cursor to end of line. Within a script, Ctl-K may behave differently, as in Lee Lee
Maschmeyer's example, below.

◊

Ctl-L

Formfeed (clear the terminal screen). In a terminal, this has the same effect as the clear
command. When sent to a printer, a Ctl-L causes an advance to end of the paper sheet.

◊

Ctl-M

Carriage return.

 1 #!/bin/bash
 2 # Thank you, Lee Maschmeyer, for this example.
 3
 4 read -n 1 -s -p \
 5 $'Control-M leaves cursor at beginning of this line. Press Enter. \x0d'
 6 # Of course, '0d' is the hex equivalent of Control-M.
 7 echo >&2 # The '-s' makes anything typed silent,
 8 #+ so it is necessary to go to new line explicitly.
 9
 10 read -n 1 -s -p $'Control-J leaves cursor on next line. \x0a'
 11 # '0a' is the hex equivalent of Control-J, linefeed.
 12 echo >&2
 13
 14 ###
 15
 16 read -n 1 -s -p $'And Control-K\x0bgoes straight down.'
 17 echo >&2 # Control-K is vertical tab.
 18
 19 # A better example of the effect of a vertical tab is:
 20
 21 var=$'\x0aThis is the bottom line\x0bThis is the top line\x0a'
 22 echo "$var"
 23 # This works the same way as the above example. However:
 24 echo "$var" | col
 25 # This causes the right end of the line to be higher than the left end.
 26 # It also explains why we started and ended with a line feed --
 27 #+ to avoid a garbled screen.
 28
 29 # As Lee Maschmeyer explains:
 30 # --------------------------
 31 # In the [first vertical tab example] . . . the vertical tab
 32 #+ makes the printing go straight down without a carriage return.
 33 # This is true only on devices, such as the Linux console,
 34 #+ that can't go "backward."
 35 # The real purpose of VT is to go straight UP, not down.
 36 # It can be used to print superscripts on a printer.
 37 # The col utility can be used to emulate the proper behavior of VT.
 38
 39 exit 0

◊

Ctl-N

Erases a line of text recalled from history buffer [8] (on the command-line).

◊

Ctl-O◊

Issues a newline (on the command-line).
Ctl-P

Recalls last command from history buffer (on the command-line).

◊

Ctl-Q

Resume (XON).

This resumes stdin in a terminal.

◊

Ctl-R

Backwards search for text in history buffer (on the command-line).

◊

Ctl-S

Suspend (XOFF).

This freezes stdin in a terminal. (Use Ctl-Q to restore input.)

◊

Ctl-T

Reverses the position of the character the cursor is on with the previous character (on the
command-line).

◊

Ctl-U

Erase a line of input, from the cursor backward to beginning of line. In some settings, Ctl-U
erases the entire line of input, regardless of cursor position.

◊

Ctl-V

When inputting text, Ctl-V permits inserting control characters. For example, the following
two are equivalent:

 1 echo -e '\x0a'
 2 echo <Ctl-V><Ctl-J>

Ctl-V is primarily useful from within a text editor.

◊

Ctl-W

When typing text on the console or in an xterm window, Ctl-W erases from the character
under the cursor backwards to the first instance of whitespace. In some settings, Ctl-W
erases backwards to first non-alphanumeric character.

◊

Ctl-X

In certain word processing programs, Cuts highlighted text and copies to clipboard.

◊

Ctl-Y

Pastes back text previously erased (with Ctl-U or Ctl-W).

◊

Ctl-Z

Pauses a foreground job.

Substitute operation in certain word processing applications.

EOF (end-of-file) character in the MSDOS filesystem.

◊

Whitespace
functions as a separator between commands and/or variables. Whitespace consists of either
spaces, tabs, blank lines, or any combination thereof. [9] In some contexts, such as variable

assignment, whitespace is not permitted, and results in a syntax error.

Blank lines have no effect on the action of a script, and are therefore useful for visually separating
functional sections.

$IFS, the special variable separating fields of input to certain commands. It defaults to whitespace.

Definition: A field is a discrete chunk of data expressed as a string of consecutive characters.
Separating each field from adjacent fields is either whitespace or some other designated character
(often determined by the $IFS). In some contexts, a field may be called a record.

To preserve whitespace within a string or in a variable, use quoting.

UNIX filters can target and operate on whitespace using the POSIX character class [:space:].

Notes

[1] An operator is an agent that carries out an operation. Some examples are the common arithmetic
operators, + - * /. In Bash, there is some overlap between the concepts of operator and keyword.

[2] This is more commonly known as the ternary operator. Unfortunately, ternary is an ugly word. It
doesn't roll off the tongue, and it doesn't elucidate. It obfuscates. Trinary is by far the more elegant
usage.

[3]
American Standard Code for Information Interchange. This is a system for encoding text characters
(alphabetic, numeric, and a limited set of symbols) as 7-bit numbers that can be stored and manipulated
by computers. Many of the ASCII characters are represented on a standard keyboard.

[4]
A PID, or process ID, is a number assigned to a running process. The PIDs of running processes may
be viewed with a ps command.

Definition: A process is a currently executing command (or program), sometimes referred to as a
job.

[5] The shell does the brace expansion. The command itself acts upon the result of the expansion.
[6] Exception: a code block in braces as part of a pipe may run as a subshell.

 1 ls | { read firstline; read secondline; }
 2 # Error. The code block in braces runs as a subshell,
 3 #+ so the output of "ls" cannot be passed to variables within the block.
 4 echo "First line is $firstline; second line is $secondline" # Won't work.
 5
 6 # Thanks, S.C.

[7] Even as in olden times a philtre denoted a potion alleged to have magical transformative powers, so
does a UNIX filter transform its target in (roughly) analogous fashion. (The coder who comes up with a
"love philtre" that runs on a Linux machine will likely win accolades and honors.)

[8] Bash stores a list of commands previously issued from the command-line in a buffer, or memory space,
for recall with the builtin history commands.

[9] A linefeed (newline) is also a whitespace character. This explains why a blank line, consisting only of a
linefeed, is considered whitespace.

Prev Home Next

Basics Up Introduction to Variables and
Parameters

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Next

Chapter 4. Introduction to Variables and
Parameters
Variables are how programming and scripting languages represent data. A variable is nothing more than a
label, a name assigned to a location or set of locations in computer memory holding an item of data.

Variables appear in arithmetic operations and manipulation of quantities, and in string parsing.

4.1. Variable Substitution
The name of a variable is a placeholder for its value, the data it holds. Referencing (retrieving) its value is
called variable substitution.

$

Let us carefully distinguish between the name of a variable and its value. If variable1 is the name
of a variable, then $variable1 is a reference to its value, the data item it contains. [1]

bash$ variable1=23

bash$ echo variable1
variable1

bash$ echo $variable1
23

The only times a variable appears "naked" -- without the $ prefix -- is when declared or assigned,
when unset, when exported, in an arithmetic expression within double parentheses ((...)), or in the
special case of a variable representing a signal (see Example 32-5). Assignment may be with an = (as
in var1=27), in a read statement, and at the head of a loop (for var2 in 1 2 3).

Enclosing a referenced value in double quotes (" ... ") does not interfere with variable substitution.
This is called partial quoting, sometimes referred to as "weak quoting." Using single quotes (' ... ')
causes the variable name to be used literally, and no substitution will take place. This is full quoting,
sometimes referred to as 'strong quoting.' See Chapter 5 for a detailed discussion.

Note that $variable is actually a simplified form of ${variable}. In contexts where the
$variable syntax causes an error, the longer form may work (see Section 10.2, below).

Example 4-1. Variable assignment and substitution

 1 #!/bin/bash
 2 # ex9.sh
 3
 4 # Variables: assignment and substitution
 5
 6 a=375
 7 hello=$a
 8 # ^ ^
 9
 10 #---
 11 # No space permitted on either side of = sign when initializing variables.
 12 # What happens if there is a space?
 13
 14 # "VARIABLE =value"
 15 # ^
 16 #% Script tries to run "VARIABLE" command with one argument, "=value".
 17
 18 # "VARIABLE= value"
 19 # ^
 20 #% Script tries to run "value" command with
 21 #+ the environmental variable "VARIABLE" set to "".
 22 #---
 23
 24

 25 echo hello # hello
 26 # Not a variable reference, just the string "hello" ...
 27
 28 echo $hello # 375
 29 # ^ This *is* a variable reference.
 30 echo ${hello} # 375
 31 # Likewise a variable reference, as above.
 32
 33 # Quoting . . .
 34 echo "$hello" # 375
 35 echo "${hello}" # 375
 36
 37 echo
 38
 39 hello="A B C D"
 40 echo $hello # A B C D
 41 echo "$hello" # A B C D
 42 # As we see, echo $hello and echo "$hello" give different results.
 43 # =======================================
 44 # Quoting a variable preserves whitespace.
 45 # =======================================
 46
 47 echo
 48
 49 echo '$hello' # $hello
 50 # ^ ^
 51 # Variable referencing disabled (escaped) by single quotes,
 52 #+ which causes the "$" to be interpreted literally.
 53
 54 # Notice the effect of different types of quoting.
 55
 56
 57 hello= # Setting it to a null value.
 58 echo "\$hello (null value) = $hello" # $hello (null value) =
 59 # Note that setting a variable to a null value is not the same as
 60 #+ unsetting it, although the end result is the same (see below).
 61
 62 # --
 63
 64 # It is permissible to set multiple variables on the same line,
 65 #+ if separated by white space.
 66 # Caution, this may reduce legibility, and may not be portable.
 67
 68 var1=21 var2=22 var3=$V3
 69 echo
 70 echo "var1=$var1 var2=$var2 var3=$var3"
 71
 72 # May cause problems with legacy versions of "sh" . . .
 73
 74 # --
 75
 76 echo; echo
 77
 78 numbers="one two three"
 79 # ^ ^
 80 other_numbers="1 2 3"
 81 # ^ ^
 82 # If there is whitespace embedded within a variable,
 83 #+ then quotes are necessary.
 84 # other_numbers=1 2 3 # Gives an error message.
 85 echo "numbers = $numbers"
 86 echo "other_numbers = $other_numbers" # other_numbers = 1 2 3
 87 # Escaping the whitespace also works.
 88 mixed_bag=2\ ---\ Whatever
 89 # ^ ^ Space after escape (\).
 90

 91 echo "$mixed_bag" # 2 --- Whatever
 92
 93 echo; echo
 94
 95 echo "uninitialized_variable = $uninitialized_variable"
 96 # Uninitialized variable has null value (no value at all!).
 97 uninitialized_variable= # Declaring, but not initializing it --
 98 #+ same as setting it to a null value, as above.
 99 echo "uninitialized_variable = $uninitialized_variable"
 100 # It still has a null value.
 101
 102 uninitialized_variable=23 # Set it.
 103 unset uninitialized_variable # Unset it.
 104 echo "uninitialized_variable = $uninitialized_variable"
 105 # uninitialized_variable =
 106 # It still has a null value.
 107 echo
 108
 109 exit 0

An uninitialized variable has a "null" value -- no assigned value at all (not zero!).

 1 if [-z "$unassigned"]
 2 then
 3 echo "\$unassigned is NULL."
 4 fi # $unassigned is NULL.

Using a variable before assigning a value to it may cause problems. It is nevertheless
possible to perform arithmetic operations on an uninitialized variable.

 1 echo "$uninitialized" # (blank line)
 2 let "uninitialized += 5" # Add 5 to it.
 3 echo "$uninitialized" # 5
 4
 5 # Conclusion:
 6 # An uninitialized variable has no value,
 7 #+ however it evaluates as 0 in an arithmetic operation.

See also Example 15-23.

Notes

[1] Technically, the name of a variable is called an lvalue, meaning that it appears on the left side of an
assignment statment, as in VARIABLE=23. A variable's value is an rvalue, meaning that it appears on
the right side of an assignment statement, as in VAR2=$VARIABLE.

A variable's name is, in fact, a reference, a pointer to the memory location(s) where the actual data
associated with that variable is kept.

Prev Home Next
Special Characters Up Variable Assignment

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Chapter 4. Introduction to Variables and Parameters Next

4.2. Variable Assignment
=

the assignment operator (no space before and after)

Do not confuse this with = and -eq, which test, rather than assign!

Note that = can be either an assignment or a test operator, depending on context.

Example 4-2. Plain Variable Assignment

 1 #!/bin/bash
 2 # Naked variables
 3
 4 echo
 5
 6 # When is a variable "naked", i.e., lacking the '$' in front?
 7 # When it is being assigned, rather than referenced.
 8
 9 # Assignment
 10 a=879
 11 echo "The value of \"a\" is $a."
 12
 13 # Assignment using 'let'
 14 let a=16+5
 15 echo "The value of \"a\" is now $a."
 16
 17 echo
 18
 19 # In a 'for' loop (really, a type of disguised assignment):
 20 echo -n "Values of \"a\" in the loop are: "
 21 for a in 7 8 9 11
 22 do
 23 echo -n "$a "
 24 done
 25
 26 echo
 27 echo
 28
 29 # In a 'read' statement (also a type of assignment):
 30 echo -n "Enter \"a\" "
 31 read a
 32 echo "The value of \"a\" is now $a."
 33
 34 echo
 35
 36 exit 0

Example 4-3. Variable Assignment, plain and fancy

 1 #!/bin/bash
 2
 3 a=23 # Simple case
 4 echo $a
 5 b=$a
 6 echo $b
 7

 8 # Now, getting a little bit fancier (command substitution).
 9
 10 a=`echo Hello!` # Assigns result of 'echo' command to 'a' ...
 11 echo $a
 12 # Note that including an exclamation mark (!) within a
 13 #+ command substitution construct will not work from the command-line,
 14 #+ since this triggers the Bash "history mechanism."
 15 # Inside a script, however, the history functions are disabled by default.
 16
 17 a=`ls -l` # Assigns result of 'ls -l' command to 'a'
 18 echo $a # Unquoted, however, it removes tabs and newlines.
 19 echo
 20 echo "$a" # The quoted variable preserves whitespace.
 21 # (See the chapter on "Quoting.")
 22
 23 exit 0

Variable assignment using the $(...) mechanism (a newer method than backquotes). This is likewise a
form of command substitution.

 1 # From /etc/rc.d/rc.local
 2 R=$(cat /etc/redhat-release)
 3 arch=$(uname -m)

Prev Home Next
Introduction to Variables and
Parameters

Up Bash Variables Are Untyped

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Chapter 4. Introduction to Variables and Parameters Next

4.3. Bash Variables Are Untyped

Unlike many other programming languages, Bash does not segregate its variables by "type." Essentially, Bash
variables are character strings, but, depending on context, Bash permits arithmetic operations and
comparisons on variables. The determining factor is whether the value of a variable contains only digits.

Example 4-4. Integer or string?

 1 #!/bin/bash
 2 # int-or-string.sh
 3
 4 a=2334 # Integer.
 5 let "a += 1"
 6 echo "a = $a " # a = 2335
 7 echo # Integer, still.
 8
 9
 10 b=${a/23/BB} # Substitute "BB" for "23".
 11 # This transforms $b into a string.
 12 echo "b = $b" # b = BB35
 13 declare -i b # Declaring it an integer doesn't help.
 14 echo "b = $b" # b = BB35
 15
 16 let "b += 1" # BB35 + 1
 17 echo "b = $b" # b = 1
 18 echo # Bash sets the "integer value" of a string to 0.
 19
 20 c=BB34
 21 echo "c = $c" # c = BB34
 22 d=${c/BB/23} # Substitute "23" for "BB".
 23 # This makes $d an integer.
 24 echo "d = $d" # d = 2334
 25 let "d += 1" # 2334 + 1
 26 echo "d = $d" # d = 2335
 27 echo
 28
 29
 30 # What about null variables?
 31 e='' # ... Or e="" ... Or e=
 32 echo "e = $e" # e =
 33 let "e += 1" # Arithmetic operations allowed on a null variable?
 34 echo "e = $e" # e = 1
 35 echo # Null variable transformed into an integer.
 36
 37 # What about undeclared variables?
 38 echo "f = $f" # f =
 39 let "f += 1" # Arithmetic operations allowed?
 40 echo "f = $f" # f = 1
 41 echo # Undeclared variable transformed into an integer.
 42 #
 43 # However ...
 44 let "f /= $undecl_var" # Divide by zero?
 45 # let: f /= : syntax error: operand expected (error token is " ")
 46 # Syntax error! Variable $undecl_var is not set to zero here!
 47 #
 48 # But still ...
 49 let "f /= 0"
 50 # let: f /= 0: division by 0 (error token is "0")
 51 # Expected behavior.
 52
 53

 54 # Bash (usually) sets the "integer value" of null to zero
 55 #+ when performing an arithmetic operation.
 56 # But, don't try this at home, folks!
 57 # It's undocumented and probably non-portable behavior.
 58
 59
 60 # Conclusion: Variables in Bash are untyped,
 61 #+ with all attendant consequences.
 62
 63 exit $?

Untyped variables are both a blessing and a curse. They permit more flexibility in scripting and make it easier
to grind out lines of code (and give you enough rope to hang yourself!). However, they likewise permit subtle
errors to creep in and encourage sloppy programming habits.

To lighten the burden of keeping track of variable types in a script, Bash does permit declaring variables.

Prev Home Next
Variable Assignment Up Special Variable Types

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Chapter 4. Introduction to Variables and Parameters Next

4.4. Special Variable Types
Local variables

Variables visible only within a code block or function (see also local variables in functions)
Environmental variables

Variables that affect the behavior of the shell and user interface

In a more general context, each process has an "environment", that is, a group
of variables that the process may reference. In this sense, the shell behaves like
any other process.

Every time a shell starts, it creates shell variables that correspond to its own
environmental variables. Updating or adding new environmental variables
causes the shell to update its environment, and all the shell's child processes
(the commands it executes) inherit this environment.
The space allotted to the environment is limited. Creating too many environmental
variables or ones that use up excessive space may cause problems.

bash$ eval "`seq 10000 | sed -e 's/.*/export var&=ZZZZZZZZZZZZZZ/'`"

bash$ du
bash: /usr/bin/du: Argument list too long

Note: this "error" has been fixed, as of kernel version 2.6.23.

(Thank you, Stéphane Chazelas for the clarification, and for providing the above
example.)

If a script sets environmental variables, they need to be "exported," that is, reported to the
environment local to the script. This is the function of the export command.

A script can export variables only to child processes, that is, only to commands or
processes which that particular script initiates. A script invoked from the
command-line cannot export variables back to the command-line environment.
Child processes cannot export variables back to the parent processes that spawned
them.

Definition: A child process is a subprocess launched by another process, its
parent.

Positional parameters
Arguments passed to the script from the command line [1] : $0, $1, $2, $3 . . .

$0 is the name of the script itself, $1 is the first argument, $2 the second, $3 the third, and so forth.
[2] After $9, the arguments must be enclosed in brackets, for example, ${10}, ${11}, ${12}.

The special variables $* and $@ denote all the positional parameters.

Example 4-5. Positional Parameters

 1 #!/bin/bash
 2
 3 # Call this script with at least 10 parameters, for example
 4 # ./scriptname 1 2 3 4 5 6 7 8 9 10

 5 MINPARAMS=10
 6
 7 echo
 8
 9 echo "The name of this script is \"$0\"."
 10 # Adds ./ for current directory
 11 echo "The name of this script is \"`basename $0`\"."
 12 # Strips out path name info (see 'basename')
 13
 14 echo
 15
 16 if [-n "$1"] # Tested variable is quoted.
 17 then
 18 echo "Parameter #1 is $1" # Need quotes to escape #
 19 fi
 20
 21 if [-n "$2"]
 22 then
 23 echo "Parameter #2 is $2"
 24 fi
 25
 26 if [-n "$3"]
 27 then
 28 echo "Parameter #3 is $3"
 29 fi
 30
 31 # ...
 32
 33
 34 if [-n "${10}"] # Parameters > $9 must be enclosed in {brackets}.
 35 then
 36 echo "Parameter #10 is ${10}"
 37 fi
 38
 39 echo "-----------------------------------"
 40 echo "All the command-line parameters are: "$*""
 41
 42 if [$# -lt "$MINPARAMS"]
 43 then
 44 echo
 45 echo "This script needs at least $MINPARAMS command-line arguments!"
 46 fi
 47
 48 echo
 49
 50 exit 0

Bracket notation for positional parameters leads to a fairly simple way of referencing the last
argument passed to a script on the command-line. This also requires indirect referencing.

 1 args=$# # Number of args passed.
 2 lastarg=${!args}
 3 # Note: This is an *indirect reference* to $args ...
 4
 5
 6 # Or: lastarg=${!#} (Thanks, Chris Monson.)
 7 # This is an *indirect reference* to the $# variable.
 8 # Note that lastarg=${!$#} doesn't work.

Some scripts can perform different operations, depending on which name they are invoked with. For
this to work, the script needs to check $0, the name it was invoked by. [3] There must also exist
symbolic links to all the alternate names of the script. See Example 16-2.

If a script expects a command-line parameter but is invoked without one, this may
cause a null variable assignment, generally an undesirable result. One way to prevent
this is to append an extra character to both sides of the assignment statement using the
expected positional parameter.

 1 variable1_=$1_ # Rather than variable1=$1
 2 # This will prevent an error, even if positional parameter is absent.
 3
 4 critical_argument01=$variable1_
 5
 6 # The extra character can be stripped off later, like so.
 7 variable1=${variable1_/_/}
 8 # Side effects only if $variable1_ begins with an underscore.
 9 # This uses one of the parameter substitution templates discussed later.
 10 # (Leaving out the replacement pattern results in a deletion.)
 11
 12 # A more straightforward way of dealing with this is
 13 #+ to simply test whether expected positional parameters have been passed.
 14 if [-z $1]
 15 then
 16 exit $E_MISSING_POS_PARAM
 17 fi
 18
 19
 20 # However, as Fabian Kreutz points out,
 21 #+ the above method may have unexpected side-effects.
 22 # A better method is parameter substitution:
 23 # ${1:-$DefaultVal}
 24 # See the "Parameter Substition" section
 25 #+ in the "Variables Revisited" chapter.

Example 4-6. wh, whois domain name lookup

 1 #!/bin/bash
 2 # ex18.sh
 3
 4 # Does a 'whois domain-name' lookup on any of 3 alternate servers:
 5 # ripe.net, cw.net, radb.net
 6
 7 # Place this script -- renamed 'wh' -- in /usr/local/bin
 8
 9 # Requires symbolic links:
 10 # ln -s /usr/local/bin/wh /usr/local/bin/wh-ripe
 11 # ln -s /usr/local/bin/wh /usr/local/bin/wh-apnic
 12 # ln -s /usr/local/bin/wh /usr/local/bin/wh-tucows
 13
 14 E_NOARGS=75
 15
 16
 17 if [-z "$1"]
 18 then
 19 echo "Usage: `basename $0` [domain-name]"
 20 exit $E_NOARGS
 21 fi
 22
 23 # Check script name and call proper server.
 24 case `basename $0` in # Or: case ${0##*/} in
 25 "wh") whois $1@whois.tucows.com;;
 26 "wh-ripe") whois $1@whois.ripe.net;;
 27 "wh-apnic") whois $1@whois.apnic.net;;
 28 "wh-cw") whois $1@whois.cw.net;;
 29 *) echo "Usage: `basename $0` [domain-name]";;

 30 esac
 31
 32 exit $?

The shift command reassigns the positional parameters, in effect shifting them to the left one notch.

$1 <--- $2, $2 <--- $3, $3 <--- $4, etc.

The old $1 disappears, but $0 (the script name) does not change. If you use a large number of
positional parameters to a script, shift lets you access those past 10, although {bracket} notation also
permits this.

Example 4-7. Using shift

 1 #!/bin/bash
 2 # shft.sh: Using 'shift' to step through all the positional parameters.
 3
 4 # Name this script something like shft.sh,
 5 #+ and invoke it with some parameters.
 6 #+ For example:
 7 # sh shft.sh a b c def 83 barndoor
 8
 9 until [-z "$1"] # Until all parameters used up . . .
 10 do
 11 echo -n "$1 "
 12 shift
 13 done
 14
 15 echo # Extra linefeed.
 16
 17 # But, what happens to the "used-up" parameters?
 18 echo "$2"
 19 # Nothing echoes!
 20 # When $2 shifts into $1 (and there is no $3 to shift into $2)
 21 #+ then $2 remains empty.
 22 # So, it is not a parameter *copy*, but a *move*.
 23
 24 exit
 25
 26 # See also the echo-params.sh script for a "shiftless"
 27 #+ alternative method of stepping through the positional params.

The shift command can take a numerical parameter indicating how many positions to shift.

 1 #!/bin/bash
 2 # shift-past.sh
 3
 4 shift 3 # Shift 3 positions.
 5 # n=3; shift $n
 6 # Has the same effect.
 7
 8 echo "$1"
 9
 10 exit 0
 11
 12 # ======================== #
 13

 14
 15 $ sh shift-past.sh 1 2 3 4 5
 16 4
 17
 18 # However, as Eleni Fragkiadaki, points out,
 19 #+ attempting a 'shift' past the number of
 20 #+ positional parameters ($#) returns an exit status of 1,
 21 #+ and the positional parameters themselves do not change.
 22 # This means possibly getting stuck in an endless loop. . . .
 23 # For example:
 24 # until [-z "$1"]
 25 # do
 26 # echo -n "$1 "
 27 # shift 20 # If less than 20 pos params,
 28 # done #+ then loop never ends!
 29 #
 30 # When in doubt, add a sanity check. . . .
 31 # shift 20 || break
 32 # ^^^^^^^^

The shift command works in a similar fashion on parameters passed to a function. See
Example 36-18.

Notes

[1] Note that functions also take positional parameters.
[2] The process calling the script sets the $0 parameter. By convention, this parameter is the name of the

script. See the manpage (manual page) for execv.

From the command-line, however, $0 is the name of the shell.

bash$ echo $0
bash

tcsh% echo $0
tcsh

[3] If the the script is sourced or symlinked, then this will not work. It is safer to check $BASH_Source.

Prev Home Next
Bash Variables Are Untyped Up Quoting

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Next

Chapter 5. Quoting

Quoting means just that, bracketing a string in quotes. This has the effect of protecting special characters in
the string from reinterpretation or expansion by the shell or shell script. (A character is "special" if it has an
interpretation other than its literal meaning. For example, the asterisk * represents a wild card character in
globbing and Regular Expressions).

bash$ ls -l [Vv]*
-rw-rw-r-- 1 bozo bozo 324 Apr 2 15:05 VIEWDATA.BAT

 -rw-rw-r-- 1 bozo bozo 507 May 4 14:25 vartrace.sh
 -rw-rw-r-- 1 bozo bozo 539 Apr 14 17:11 viewdata.sh

bash$ ls -l '[Vv]*'
ls: [Vv]*: No such file or directory

In everyday speech or writing, when we "quote" a phrase, we set it apart and give it special meaning. In a
Bash script, when we quote a string, we set it apart and protect its literal meaning.

Certain programs and utilities reinterpret or expand special characters in a quoted string. An important use of
quoting is protecting a command-line parameter from the shell, but still letting the calling program expand it.

bash$ grep '[Ff]irst' *.txt
file1.txt:This is the first line of file1.txt.

 file2.txt:This is the First line of file2.txt.

Note that the unquoted grep [Ff]irst *.txt works under the Bash shell. [1]

Quoting can also suppress echo's "appetite" for newlines.

bash$ echo $(ls -l)
total 8 -rw-rw-r-- 1 bo bo 13 Aug 21 12:57 t.sh -rw-rw-r-- 1 bo bo 78 Aug 21 12:57 u.sh

bash$ echo "$(ls -l)"
total 8

 -rw-rw-r-- 1 bo bo 13 Aug 21 12:57 t.sh
 -rw-rw-r-- 1 bo bo 78 Aug 21 12:57 u.sh

5.1. Quoting Variables
When referencing a variable, it is generally advisable to enclose its name in double quotes. This prevents
reinterpretation of all special characters within the quoted string -- except $, ` (backquote), and \ (escape). [2]
Keeping $ as a special character within double quotes permits referencing a quoted variable
("$variable"), that is, replacing the variable with its value (see Example 4-1, above).

Use double quotes to prevent word splitting. [3] An argument enclosed in double quotes presents itself as a
single word, even if it contains whitespace separators.

 1 List="one two three"
 2
 3 for a in $List # Splits the variable in parts at whitespace.
 4 do
 5 echo "$a"
 6 done
 7 # one
 8 # two
 9 # three
 10
 11 echo "---"
 12
 13 for a in "$List" # Preserves whitespace in a single variable.
 14 do # ^ ^
 15 echo "$a"
 16 done
 17 # one two three

A more elaborate example:

 1 variable1="a variable containing five words"
 2 COMMAND This is $variable1 # Executes COMMAND with 7 arguments:
 3 # "This" "is" "a" "variable" "containing" "five" "words"
 4
 5 COMMAND "This is $variable1" # Executes COMMAND with 1 argument:
 6 # "This is a variable containing five words"
 7
 8
 9 variable2="" # Empty.
 10
 11 COMMAND $variable2 $variable2 $variable2
 12 # Executes COMMAND with no arguments.
 13 COMMAND "$variable2" "$variable2" "$variable2"
 14 # Executes COMMAND with 3 empty arguments.
 15 COMMAND "$variable2 $variable2 $variable2"
 16 # Executes COMMAND with 1 argument (2 spaces).
 17
 18 # Thanks, Stéphane Chazelas.

Enclosing the arguments to an echo statement in double quotes is necessary only when word splitting or
preservation of whitespace is an issue.

Example 5-1. Echoing Weird Variables

 1 #!/bin/bash
 2 # weirdvars.sh: Echoing weird variables.
 3
 4 echo
 5

 6 var="'(]\\{}\$\""
 7 echo $var # '(]\{}$"
 8 echo "$var" # '(]\{}$" Doesn't make a difference.
 9
 10 echo
 11
 12 IFS='\'
 13 echo $var # '(] {}$" \ converted to space. Why?
 14 echo "$var" # '(]\{}$"
 15
 16 # Examples above supplied by Stephane Chazelas.
 17
 18 echo
 19
 20 var2="\\\\\""
 21 echo $var2 # "
 22 echo "$var2" # \\"
 23 echo
 24 # But ... var2="\\\\"" is illegal. Why?
 25 var3='\\\\'
 26 echo "$var3" # \\\\
 27 # Strong quoting works, though.
 28
 29
 30 # ** #
 31 # As the first example above shows, nesting quotes is permitted.
 32
 33 echo "$(echo '"')" # "
 34 # ^ ^
 35
 36
 37 # At times this comes in useful.
 38
 39 var1="Two bits"
 40 echo "\$var1 = "$var1"" # $var1 = Two bits
 41 # ^ ^
 42
 43 # Or, as Chris Hiestand points out ...
 44
 45 if [["$(du "$My_File1")" -gt "$(du "$My_File2")"]]
 46 # ^ ^ ^ ^ ^ ^ ^ ^
 47 then
 48 ...
 49 fi
 50 # ** #

Single quotes (' ') operate similarly to double quotes, but do not permit referencing variables, since the special
meaning of $ is turned off. Within single quotes, every special character except ' gets interpreted literally.
Consider single quotes ("full quoting") to be a stricter method of quoting than double quotes ("partial
quoting").

Since even the escape character (\) gets a literal interpretation within single quotes, trying to enclose a
single quote within single quotes will not yield the expected result.

 1 echo "Why can't I write 's between single quotes"
 2
 3 echo
 4
 5 # The roundabout method.
 6 echo 'Why can'\''t I write '"'"'s between single quotes'
 7 # |-------| |----------| |-----------------------|
 8 # Three single-quoted strings, with escaped and quoted single quotes between.
 9

 10 # This example courtesy of Stéphane Chazelas.

Notes

[1] Unless there is a file named first in the current working directory. Yet another reason to quote.
(Thank you, Harald Koenig, for pointing this out.

[2]
Encapsulating "!" within double quotes gives an error when used from the command line. This is
interpreted as a history command. Within a script, though, this problem does not occur, since the Bash
history mechanism is disabled then.

Of more concern is the apparently inconsistent behavior of \ within double quotes, and especially
following an echo -e command.

bash$ echo hello\!
hello!
bash$ echo "hello\!"
hello\!

bash$ echo \
>
bash$ echo "\"
>
bash$ echo \a
a
bash$ echo "\a"
\a

bash$ echo x\ty
xty
bash$ echo "x\ty"
x\ty

bash$ echo -e x\ty
xty
bash$ echo -e "x\ty"
x y

Double quotes following an echo sometimes escape \. Moreover, the -e option to echo causes the "\t"
to be interpreted as a tab.

(Thank you, Wayne Pollock, for pointing this out, and Geoff Lee and Daniel Barclay for explaining it.)
[3] "Word splitting," in this context, means dividing a character string into separate and discrete arguments.

Prev Home Next
Special Variable Types Up Escaping

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Chapter 5. Quoting Next

5.2. Escaping
Escaping is a method of quoting single characters. The escape (\) preceding a character tells the shell to
interpret that character literally.

With certain commands and utilities, such as echo and sed, escaping a character may have the opposite
effect - it can toggle on a special meaning for that character.

Special meanings of certain escaped characters

used with echo and sed
\n

means newline
\r

means return
\t

means tab
\v

means vertical tab
\b

means backspace
\a

means alert (beep or flash)
\0xx

translates to the octal ASCII equivalent of 0nn, where nn is a string of digits

The $' ... ' quoted string-expansion construct is a mechanism that uses escaped
octal or hex values to assign ASCII characters to variables, e.g., quote=$'\042'.

Example 5-2. Escaped Characters

 1 #!/bin/bash
 2 # escaped.sh: escaped characters
 3
 4 ###
 5 ### First, let's show some basic escaped-character usage. ###
 6 ###
 7
 8 # Escaping a newline.
 9 # ------------------
 10
 11 echo ""
 12
 13 echo "This will print
 14 as two lines."
 15 # This will print
 16 # as two lines.
 17
 18 echo "This will print \
 19 as one line."
 20 # This will print as one line.
 21
 22 echo; echo
 23
 24 echo "============="
 25

 26
 27 echo "\v\v\v\v" # Prints \v\v\v\v literally.
 28 # Use the -e option with 'echo' to print escaped characters.
 29 echo "============="
 30 echo "VERTICAL TABS"
 31 echo -e "\v\v\v\v" # Prints 4 vertical tabs.
 32 echo "=============="
 33
 34 echo "QUOTATION MARK"
 35 echo -e "\042" # Prints " (quote, octal ASCII character 42).
 36 echo "=============="
 37
 38
 39
 40 # The $'\X' construct makes the -e option unnecessary.
 41
 42 echo; echo "NEWLINE and (maybe) BEEP"
 43 echo $'\n' # Newline.
 44 echo $'\a' # Alert (beep).
 45 # May only flash, not beep, depending on terminal.
 46
 47 # We have seen $'\nnn" string expansion, and now . . .
 48
 49 # === #
 50 # Version 2 of Bash introduced the $'\nnn' string expansion construct.
 51 # === #
 52
 53 echo "Introducing the \$\' ... \' string-expansion construct . . . "
 54 echo ". . . featuring more quotation marks."
 55
 56 echo $'\t \042 \t' # Quote (") framed by tabs.
 57 # Note that '\nnn' is an octal value.
 58
 59 # It also works with hexadecimal values, in an $'\xhhh' construct.
 60 echo $'\t \x22 \t' # Quote (") framed by tabs.
 61 # Thank you, Greg Keraunen, for pointing this out.
 62 # Earlier Bash versions allowed '\x022'.
 63
 64 echo
 65
 66
 67 # Assigning ASCII characters to a variable.
 68 # --
 69 quote=$'\042' # " assigned to a variable.
 70 echo "$quote Quoted string $quote and this lies outside the quotes."
 71
 72 echo
 73
 74 # Concatenating ASCII chars in a variable.
 75 triple_underline=$'\137\137\137' # 137 is octal ASCII code for '_'.
 76 echo "$triple_underline UNDERLINE $triple_underline"
 77
 78 echo
 79
 80 ABC=$'\101\102\103\010' # 101, 102, 103 are octal A, B, C.
 81 echo $ABC
 82
 83 echo
 84
 85 escape=$'\033' # 033 is octal for escape.
 86 echo "\"escape\" echoes as $escape"
 87 # no visible output.
 88
 89 echo
 90
 91 exit 0

A more elaborate example:

Example 5-3. Detecting key-presses

 1 #!/bin/bash
 2 # Author: Sigurd Solaas, 20 Apr 2011
 3 # Used in ABS Guide with permission.
 4 # Requires version 4.2+ of Bash.
 5
 6 key="no value yet"
 7 while true; do
 8 clear
 9 echo "Bash Extra Keys Demo. Keys to try:"
 10 echo
 11 echo "* Insert, Delete, Home, End, Page_Up and Page_Down"
 12 echo "* The four arrow keys"
 13 echo "* Tab, enter, escape, and space key"
 14 echo "* The letter and number keys, etc."
 15 echo
 16 echo " d = show date/time"
 17 echo " q = quit"
 18 echo "================================"
 19 echo
 20
 21 # Convert the separate home-key to home-key_num_7:
 22 if ["$key" = $'\x1b\x4f\x48']; then
 23 key=$'\x1b\x5b\x31\x7e'
 24 # Quoted string-expansion construct.
 25 fi
 26
 27 # Convert the separate end-key to end-key_num_1.
 28 if ["$key" = $'\x1b\x4f\x46']; then
 29 key=$'\x1b\x5b\x34\x7e'
 30 fi
 31
 32 case "$key" in
 33 $'\x1b\x5b\x32\x7e') # Insert
 34 echo Insert Key
 35 ;;
 36 $'\x1b\x5b\x33\x7e') # Delete
 37 echo Delete Key
 38 ;;
 39 $'\x1b\x5b\x31\x7e') # Home_key_num_7
 40 echo Home Key
 41 ;;
 42 $'\x1b\x5b\x34\x7e') # End_key_num_1
 43 echo End Key
 44 ;;
 45 $'\x1b\x5b\x35\x7e') # Page_Up
 46 echo Page_Up
 47 ;;
 48 $'\x1b\x5b\x36\x7e') # Page_Down
 49 echo Page_Down
 50 ;;
 51 $'\x1b\x5b\x41') # Up_arrow
 52 echo Up arrow
 53 ;;
 54 $'\x1b\x5b\x42') # Down_arrow
 55 echo Down arrow
 56 ;;
 57 $'\x1b\x5b\x43') # Right_arrow
 58 echo Right arrow

 59 ;;
 60 $'\x1b\x5b\x44') # Left_arrow
 61 echo Left arrow
 62 ;;
 63 $'\x09') # Tab
 64 echo Tab Key
 65 ;;
 66 $'\x0a') # Enter
 67 echo Enter Key
 68 ;;
 69 $'\x1b') # Escape
 70 echo Escape Key
 71 ;;
 72 $'\x20') # Space
 73 echo Space Key
 74 ;;
 75 d)
 76 date
 77 ;;
 78 q)
 79 echo Time to quit...
 80 echo
 81 exit 0
 82 ;;
 83 *)
 84 echo You pressed: \'"$key"\'
 85 ;;
 86 esac
 87
 88 echo
 89 echo "================================"
 90
 91 unset K1 K2 K3
 92 read -s -N1 -p "Press a key: "
 93 K1="$REPLY"
 94 read -s -N2 -t 0.001
 95 K2="$REPLY"
 96 read -s -N1 -t 0.001
 97 K3="$REPLY"
 98 key="$K1$K2$K3"
 99
 100 done
 101
 102 exit $?

See also Example 37-1.
\"

gives the quote its literal meaning

 1 echo "Hello" # Hello
 2 echo "\"Hello\" ... he said." # "Hello" ... he said.

\$
gives the dollar sign its literal meaning (variable name following \$ will not be referenced)

 1 echo "\$variable01" # $variable01
 2 echo "The book cost \$7.98." # The book cost $7.98.

\\
gives the backslash its literal meaning

 1 echo "\\" # Results in \
 2
 3 # Whereas . . .
 4

 5 echo "\" # Invokes secondary prompt from the command-line.
 6 # In a script, gives an error message.
 7
 8 # However . . .
 9
 10 echo '\' # Results in \

The behavior of \ depends on whether it is escaped, strong-quoted, weak-quoted, or appearing within
command substitution or a here document.

 1 # Simple escaping and quoting
 2 echo \z # z
 3 echo \\z # \z
 4 echo '\z' # \z
 5 echo '\\z' # \\z
 6 echo "\z" # \z
 7 echo "\\z" # \z
 8
 9 # Command substitution
 10 echo `echo \z` # z
 11 echo `echo \\z` # z
 12 echo `echo \\\z` # \z
 13 echo `echo \\\\z` # \z
 14 echo `echo \\\\\\z` # \z
 15 echo `echo \\\\\\\z` # \\z
 16 echo `echo "\z"` # \z
 17 echo `echo "\\z"` # \z
 18
 19 # Here document
 20 cat <<EOF
 21 \z
 22 EOF # \z
 23
 24 cat <<EOF
 25 \\z
 26 EOF # \z
 27
 28 # These examples supplied by Stéphane Chazelas.

Elements of a string assigned to a variable may be escaped, but the escape character alone may not be
assigned to a variable.

 1 variable=\
 2 echo "$variable"
 3 # Will not work - gives an error message:
 4 # test.sh: : command not found
 5 # A "naked" escape cannot safely be assigned to a variable.
 6 #
 7 # What actually happens here is that the "\" escapes the newline and
 8 #+ the effect is variable=echo "$variable"
 9 #+ invalid variable assignment
 10
 11 variable=\
 12 23skidoo
 13 echo "$variable" # 23skidoo
 14 # This works, since the second line
 15 #+ is a valid variable assignment.
 16
 17 variable=\
 18 # \^ escape followed by space
 19 echo "$variable" # space
 20
 21 variable=\\
 22 echo "$variable" # \
 23

 24 variable=\\\
 25 echo "$variable"
 26 # Will not work - gives an error message:
 27 # test.sh: \: command not found
 28 #
 29 # First escape escapes second one, but the third one is left "naked",
 30 #+ with same result as first instance, above.
 31
 32 variable=\\\\
 33 echo "$variable" # \\
 34 # Second and fourth escapes escaped.
 35 # This is o.k.

Escaping a space can prevent word splitting in a command's argument list.

 1 file_list="/bin/cat /bin/gzip /bin/more /usr/bin/less /usr/bin/emacs-20.7"
 2 # List of files as argument(s) to a command.
 3
 4 # Add two files to the list, and list all.
 5 ls -l /usr/X11R6/bin/xsetroot /sbin/dump $file_list
 6
 7 echo "---"
 8
 9 # What happens if we escape a couple of spaces?
 10 ls -l /usr/X11R6/bin/xsetroot\ /sbin/dump\ $file_list
 11 # Error: the first three files concatenated into a single argument to 'ls -l'
 12 # because the two escaped spaces prevent argument (word) splitting.

The escape also provides a means of writing a multi-line command. Normally, each separate line constitutes a
different command, but an escape at the end of a line escapes the newline character, and the command
sequence continues on to the next line.

 1 (cd /source/directory && tar cf - .) | \
 2 (cd /dest/directory && tar xpvf -)
 3 # Repeating Alan Cox's directory tree copy command,
 4 # but split into two lines for increased legibility.
 5
 6 # As an alternative:
 7 tar cf - -C /source/directory . |
 8 tar xpvf - -C /dest/directory
 9 # See note below.
 10 # (Thanks, Stéphane Chazelas.)

If a script line ends with a |, a pipe character, then a \, an escape, is not strictly necessary. It is, however,
good programming practice to always escape the end of a line of code that continues to the following
line.

 1 echo "foo
 2 bar"
 3 #foo
 4 #bar
 5
 6 echo
 7
 8 echo 'foo
 9 bar' # No difference yet.
 10 #foo
 11 #bar
 12
 13 echo
 14
 15 echo foo\
 16 bar # Newline escaped.
 17 #foobar

 18
 19 echo
 20
 21 echo "foo\
 22 bar" # Same here, as \ still interpreted as escape within weak quotes.
 23 #foobar
 24
 25 echo
 26
 27 echo 'foo\
 28 bar' # Escape character \ taken literally because of strong quoting.
 29 #foo\
 30 #bar
 31
 32 # Examples suggested by Stéphane Chazelas.

Prev Home Next
Quoting Up Exit and Exit Status

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Next

Chapter 6. Exit and Exit Status
... there are dark corners in the Bourne shell, and
people use all of them.

--Chet Ramey
The exit command terminates a script, just as in a C program. It can also return a value, which is available to
the script's parent process.

Every command returns an exit status (sometimes referred to as a return status or exit code). A successful
command returns a 0, while an unsuccessful one returns a non-zero value that usually can be interpreted as an
error code. Well-behaved UNIX commands, programs, and utilities return a 0 exit code upon successful
completion, though there are some exceptions.

Likewise, functions within a script and the script itself return an exit status. The last command executed in the
function or script determines the exit status. Within a script, an exit nnn command may be used to deliver
an nnn exit status to the shell (nnn must be an integer in the 0 - 255 range).

When a script ends with an exit that has no parameter, the exit status of the script is the exit status of the
last command executed in the script (previous to the exit).

 1 #!/bin/bash
 2
 3 COMMAND_1
 4
 5 . . .
 6
 7 COMMAND_LAST
 8
 9 # Will exit with status of last command.
 10
 11 exit

The equivalent of a bare exit is exit $? or even just omitting the exit.

 1 #!/bin/bash
 2
 3 COMMAND_1
 4
 5 . . .
 6
 7 COMMAND_LAST
 8
 9 # Will exit with status of last command.
 10
 11 exit $?

 1 #!/bin/bash
 2
 3 COMMAND1
 4
 5 . . .
 6
 7 COMMAND_LAST
 8
 9 # Will exit with status of last command.

$? reads the exit status of the last command executed. After a function returns, $? gives the exit status of the
last command executed in the function. This is Bash's way of giving functions a "return value." [1]

Following the execution of a pipe, a $? gives the exit status of the last command executed.

After a script terminates, a $? from the command-line gives the exit status of the script, that is, the last
command executed in the script, which is, by convention, 0 on success or an integer in the range 1 - 255 on
error.

Example 6-1. exit / exit status

 1 #!/bin/bash
 2
 3 echo hello
 4 echo $? # Exit status 0 returned because command executed successfully.
 5
 6 lskdf # Unrecognized command.
 7 echo $? # Non-zero exit status returned -- command failed to execute.
 8
 9 echo
 10
 11 exit 113 # Will return 113 to shell.
 12 # To verify this, type "echo $?" after script terminates.
 13
 14 # By convention, an 'exit 0' indicates success,
 15 #+ while a non-zero exit value means an error or anomalous condition.
 16 # See the "Exit Codes With Special Meanings" appendix.

$? is especially useful for testing the result of a command in a script (see Example 16-35 and Example 16-20).

The !, the logical not qualifier, reverses the outcome of a test or command, and this affects its exit status.

Example 6-2. Negating a condition using !

 1 true # The "true" builtin.
 2 echo "exit status of \"true\" = $?" # 0
 3
 4 ! true
 5 echo "exit status of \"! true\" = $?" # 1
 6 # Note that the "!" needs a space between it and the command.
 7 # !true leads to a "command not found" error
 8 #
 9 # The '!' operator prefixing a command invokes the Bash history mechanism.
 10
 11 true
 12 !true
 13 # No error this time, but no negation either.
 14 # It just repeats the previous command (true).
 15
 16
 17 # === #
 18 # Preceding a _pipe_ with ! inverts the exit status returned.
 19 ls | bogus_command # bash: bogus_command: command not found
 20 echo $? # 127
 21
 22 ! ls | bogus_command # bash: bogus_command: command not found
 23 echo $? # 0
 24 # Note that the ! does not change the execution of the pipe.
 25 # Only the exit status changes.

 26 # === #
 27
 28 # Thanks, Stéphane Chazelas and Kristopher Newsome.

Certain exit status codes have reserved meanings and should not be user-specified in a script.

Notes

[1] In those instances when there is no return terminating the function.

Prev Home Next
Escaping Up Tests

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Next

Chapter 7. Tests

Every reasonably complete programming language can test for a condition, then act according to the result of
the test. Bash has the test command, various bracket and parenthesis operators, and the if/then construct.

7.1. Test Constructs

An if/then construct tests whether the exit status of a list of commands is 0 (since 0 means "success"
by UNIX convention), and if so, executes one or more commands.

•

There exists a dedicated command called [(left bracket special character). It is a synonym for test,
and a builtin for efficiency reasons. This command considers its arguments as comparison expressions
or file tests and returns an exit status corresponding to the result of the comparison (0 for true, 1 for
false).

•

With version 2.02, Bash introduced the [[...]] extended test command, which performs comparisons
in a manner more familiar to programmers from other languages. Note that [[is a keyword, not a
command.

Bash sees [[$a -lt $b]] as a single element, which returns an exit status.

•

The ((...)) and let ... constructs return an exit status, according to whether the arithmetic expressions
they evaluate expand to a non-zero value. These arithmetic-expansion constructs may therefore be
used to perform arithmetic comparisons.

 1 ((0 && 1)) # Logical AND
 2 echo $? # 1 ***
 3 # And so ...
 4 let "num = ((0 && 1))"
 5 echo $num # 0
 6 # But ...
 7 let "num = ((0 && 1))"
 8 echo $? # 1 ***
 9
 10
 11 ((200 || 11)) # Logical OR
 12 echo $? # 0 ***
 13 # ...
 14 let "num = ((200 || 11))"
 15 echo $num # 1
 16 let "num = ((200 || 11))"
 17 echo $? # 0 ***
 18
 19
 20 ((200 | 11)) # Bitwise OR
 21 echo $? # 0 ***
 22 # ...
 23 let "num = ((200 | 11))"
 24 echo $num # 203
 25 let "num = ((200 | 11))"
 26 echo $? # 0 ***
 27
 28 # The "let" construct returns the same exit status
 29 #+ as the double-parentheses arithmetic expansion.

Again, note that the exit status of an arithmetic expression is not an error value.

 1 var=-2 && ((var+=2))
 2 echo $? # 1
 3
 4 var=-2 && ((var+=2)) && echo $var
 5 # Will not echo $var!

•

An if can test any command, not just conditions enclosed within brackets.

 1 if cmp a b &> /dev/null # Suppress output.

•

 2 then echo "Files a and b are identical."
 3 else echo "Files a and b differ."
 4 fi
 5
 6 # The very useful "if-grep" construct:
 7 # -----------------------------------
 8 if grep -q Bash file
 9 then echo "File contains at least one occurrence of Bash."
 10 fi
 11
 12 word=Linux
 13 letter_sequence=inu
 14 if echo "$word" | grep -q "$letter_sequence"
 15 # The "-q" option to grep suppresses output.
 16 then
 17 echo "$letter_sequence found in $word"
 18 else
 19 echo "$letter_sequence not found in $word"
 20 fi
 21
 22
 23 if COMMAND_WHOSE_EXIT_STATUS_IS_0_UNLESS_ERROR_OCCURRED
 24 then echo "Command succeeded."
 25 else echo "Command failed."
 26 fi

These last two examples courtesy of Stéphane Chazelas.•

Example 7-1. What is truth?

 1 #!/bin/bash
 2
 3 # Tip:
 4 # If you're unsure how a certain condition might evaluate,
 5 #+ test it in an if-test.
 6
 7 echo
 8
 9 echo "Testing \"0\""
 10 if [0] # zero
 11 then
 12 echo "0 is true."
 13 else # Or else ...
 14 echo "0 is false."
 15 fi # 0 is true.
 16
 17 echo
 18
 19 echo "Testing \"1\""
 20 if [1] # one
 21 then
 22 echo "1 is true."
 23 else
 24 echo "1 is false."
 25 fi # 1 is true.
 26
 27 echo
 28
 29 echo "Testing \"-1\""
 30 if [-1] # minus one
 31 then
 32 echo "-1 is true."
 33 else
 34 echo "-1 is false."
 35 fi # -1 is true.

 36
 37 echo
 38
 39 echo "Testing \"NULL\""
 40 if [] # NULL (empty condition)
 41 then
 42 echo "NULL is true."
 43 else
 44 echo "NULL is false."
 45 fi # NULL is false.
 46
 47 echo
 48
 49 echo "Testing \"xyz\""
 50 if [xyz] # string
 51 then
 52 echo "Random string is true."
 53 else
 54 echo "Random string is false."
 55 fi # Random string is true.
 56
 57 echo
 58
 59 echo "Testing \"\$xyz\""
 60 if [$xyz] # Tests if $xyz is null, but...
 61 # it's only an uninitialized variable.
 62 then
 63 echo "Uninitialized variable is true."
 64 else
 65 echo "Uninitialized variable is false."
 66 fi # Uninitialized variable is false.
 67
 68 echo
 69
 70 echo "Testing \"-n \$xyz\""
 71 if [-n "$xyz"] # More pedantically correct.
 72 then
 73 echo "Uninitialized variable is true."
 74 else
 75 echo "Uninitialized variable is false."
 76 fi # Uninitialized variable is false.
 77
 78 echo
 79
 80
 81 xyz= # Initialized, but set to null value.
 82
 83 echo "Testing \"-n \$xyz\""
 84 if [-n "$xyz"]
 85 then
 86 echo "Null variable is true."
 87 else
 88 echo "Null variable is false."
 89 fi # Null variable is false.
 90
 91
 92 echo
 93
 94
 95 # When is "false" true?
 96
 97 echo "Testing \"false\""
 98 if ["false"] # It seems that "false" is just a string ...
 99 then
 100 echo "\"false\" is true." #+ and it tests true.
 101 else

 102 echo "\"false\" is false."
 103 fi # "false" is true.
 104
 105 echo
 106
 107 echo "Testing \"\$false\"" # Again, uninitialized variable.
 108 if ["$false"]
 109 then
 110 echo "\"\$false\" is true."
 111 else
 112 echo "\"\$false\" is false."
 113 fi # "$false" is false.
 114 # Now, we get the expected result.
 115
 116 # What would happen if we tested the uninitialized variable "$true"?
 117
 118 echo
 119
 120 exit 0

Exercise. Explain the behavior of Example 7-1, above.

 1 if [condition-true]
 2 then
 3 command 1
 4 command 2
 5 ...
 6 else # Or else ...
 7 # Adds default code block executing if original condition tests false.
 8 command 3
 9 command 4
 10 ...
 11 fi

When if and then are on same line in a condition test, a semicolon must terminate the if statement. Both if
and then are keywords. Keywords (or commands) begin statements, and before a new statement on the
same line begins, the old one must terminate.

 1 if [-x "$filename"]; then

Else if and elif

elif
elif is a contraction for else if. The effect is to nest an inner if/then construct within an outer one.

 1 if [condition1]
 2 then
 3 command1
 4 command2
 5 command3
 6 elif [condition2]
 7 # Same as else if
 8 then
 9 command4
 10 command5
 11 else
 12 default-command
 13 fi

The if test condition-true construct is the exact equivalent of if [condition-true]. As
it happens, the left bracket, [, is a token [1] which invokes the test command. The closing right bracket,] , in
an if/test should not therefore be strictly necessary, however newer versions of Bash require it.

The test command is a Bash builtin which tests file types and compares strings. Therefore, in a Bash
script, test does not call the external /usr/bin/test binary, which is part of the sh-utils package.
Likewise, [does not call /usr/bin/[, which is linked to /usr/bin/test.

bash$ type test
test is a shell builtin
bash$ type '['
[is a shell builtin
bash$ type '[['
[[is a shell keyword
bash$ type ']]'
]] is a shell keyword
bash$ type ']'
bash: type:]: not found

If, for some reason, you wish to use /usr/bin/test in a Bash script, then specify it by full
pathname.

Example 7-2. Equivalence of test, /usr/bin/test, [], and /usr/bin/[

 1 #!/bin/bash
 2
 3 echo
 4
 5 if test -z "$1"
 6 then
 7 echo "No command-line arguments."
 8 else
 9 echo "First command-line argument is $1."
 10 fi
 11
 12 echo
 13
 14 if /usr/bin/test -z "$1" # Equivalent to "test" builtin.
 15 # ^^^^^^^^^^^^^ # Specifying full pathname.
 16 then
 17 echo "No command-line arguments."
 18 else
 19 echo "First command-line argument is $1."
 20 fi
 21
 22 echo
 23
 24 if [-z "$1"] # Functionally identical to above code blocks.
 25 # if [-z "$1" should work, but...
 26 #+ Bash responds to a missing close-bracket with an error message.
 27 then
 28 echo "No command-line arguments."
 29 else
 30 echo "First command-line argument is $1."
 31 fi
 32
 33 echo
 34
 35
 36 if /usr/bin/[-z "$1"] # Again, functionally identical to above.
 37 # if /usr/bin/[-z "$1" # Works, but gives an error message.
 38 # # Note:
 39 # This has been fixed in Bash, version 3.x.
 40 then
 41 echo "No command-line arguments."

 42 else
 43 echo "First command-line argument is $1."
 44 fi
 45
 46 echo
 47
 48 exit 0

The [[]] construct is the more versatile Bash version of []. This is the extended test command, adopted from
ksh88.

* * *

No filename expansion or word splitting takes place between [[and]], but there is parameter expansion and
command substitution.

 1 file=/etc/passwd
 2
 3 if [[-e $file]]
 4 then
 5 echo "Password file exists."
 6 fi

Using the [[...]] test construct, rather than [...] can prevent many logic errors in scripts. For example, the
&&, ||, <, and > operators work within a [[]] test, despite giving an error within a [] construct.

Arithmetic evaluation of octal / hexadecimal constants takes place automatically within a [[...]] construct.

 1 # [[Octal and hexadecimal evaluation]]
 2 # Thank you, Moritz Gronbach, for pointing this out.
 3
 4
 5 decimal=15
 6 octal=017 # = 15 (decimal)
 7 hex=0x0f # = 15 (decimal)
 8
 9 if ["$decimal" -eq "$octal"]
 10 then
 11 echo "$decimal equals $octal"
 12 else
 13 echo "$decimal is not equal to $octal" # 15 is not equal to 017
 14 fi # Doesn't evaluate within [single brackets]!
 15
 16
 17 if [["$decimal" -eq "$octal"]]
 18 then
 19 echo "$decimal equals $octal" # 15 equals 017
 20 else
 21 echo "$decimal is not equal to $octal"
 22 fi # Evaluates within [[double brackets]]!
 23
 24 if [["$decimal" -eq "$hex"]]
 25 then
 26 echo "$decimal equals $hex" # 15 equals 0x0f
 27 else
 28 echo "$decimal is not equal to $hex"
 29 fi # [[$hexadecimal]] also evaluates!

Following an if, neither the test command nor the test brackets ([] or [[]]) are strictly necessary.

 1 dir=/home/bozo
 2
 3 if cd "$dir" 2>/dev/null; then # "2>/dev/null" hides error message.
 4 echo "Now in $dir."
 5 else
 6 echo "Can't change to $dir."
 7 fi

The "if COMMAND" construct returns the exit status of COMMAND.

Similarly, a condition within test brackets may stand alone without an if, when used in combination with
a list construct.

 1 var1=20
 2 var2=22
 3 ["$var1" -ne "$var2"] && echo "$var1 is not equal to $var2"
 4
 5 home=/home/bozo
 6 [-d "$home"] || echo "$home directory does not exist."

The (()) construct expands and evaluates an arithmetic expression. If the expression evaluates as zero, it
returns an exit status of 1, or "false". A non-zero expression returns an exit status of 0, or "true". This is in
marked contrast to using the test and [] constructs previously discussed.

Example 7-3. Arithmetic Tests using (())

 1 #!/bin/bash
 2 # arith-tests.sh
 3 # Arithmetic tests.
 4
 5 # The ((...)) construct evaluates and tests numerical expressions.
 6 # Exit status opposite from [...] construct!
 7
 8 ((0))
 9 echo "Exit status of \"((0))\" is $?." # 1
 10
 11 ((1))
 12 echo "Exit status of \"((1))\" is $?." # 0
 13
 14 ((5 > 4)) # true
 15 echo "Exit status of \"((5 > 4))\" is $?." # 0
 16
 17 ((5 > 9)) # false
 18 echo "Exit status of \"((5 > 9))\" is $?." # 1
 19
 20 ((5 == 5)) # true
 21 echo "Exit status of \"((5 == 5))\" is $?." # 0
 22 # ((5 = 5)) gives an error message.
 23
 24 ((5 - 5)) # 0
 25 echo "Exit status of \"((5 - 5))\" is $?." # 1
 26
 27 ((5 / 4)) # Division o.k.
 28 echo "Exit status of \"((5 / 4))\" is $?." # 0
 29
 30 ((1 / 2)) # Division result < 1.
 31 echo "Exit status of \"((1 / 2))\" is $?." # Rounded off to 0.
 32 # 1
 33
 34 ((1 / 0)) 2>/dev/null # Illegal division by 0.
 35 # ^^^^^^^^^^^
 36 echo "Exit status of \"((1 / 0))\" is $?." # 1
 37

 38 # What effect does the "2>/dev/null" have?
 39 # What would happen if it were removed?
 40 # Try removing it, then rerunning the script.
 41
 42 # ======================================= #
 43
 44 # ((...)) also useful in an if-then test.
 45
 46 var1=5
 47 var2=4
 48
 49 if ((var1 > var2))
 50 then #^ ^ Note: Not $var1, $var2. Why?
 51 echo "$var1 is greater than $var2"
 52 fi # 5 is greater than 4
 53
 54 exit 0

Notes

[1] A token is a symbol or short string with a special meaning attached to it (a meta-meaning). In Bash,
certain tokens, such as [and . (dot-command), may expand to keywords and commands.

Prev Home Next
Exit and Exit Status Up File test operators

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Chapter 7. Tests Next

7.2. File test operators
Returns true if...

-e
file exists

-a
file exists

This is identical in effect to -e. It has been "deprecated," [1] and its use is discouraged.
-f

file is a regular file (not a directory or device file)
-s

file is not zero size
-d

file is a directory
-b

file is a block device

-c
file is a character device

 1 device0="/dev/sda2" # / (root directory)
 2 if [-b "$device0"]
 3 then
 4 echo "$device0 is a block device."
 5 fi
 6
 7 # /dev/sda2 is a block device.
 8
 9
 10
 11 device1="/dev/ttyS1" # PCMCIA modem card.
 12 if [-c "$device1"]
 13 then
 14 echo "$device1 is a character device."
 15 fi
 16
 17 # /dev/ttyS1 is a character device.

-p
file is a pipe

 1 function show_input_type()
 2 {
 3 [-p /dev/fd/0] && echo PIPE || echo STDIN
 4 }
 5
 6 show_input_type "Input" # STDIN
 7 echo "Input" | show_input_type # PIPE
 8
 9 # This example courtesy of Carl Anderson.

-h
file is a symbolic link

-L
file is a symbolic link

-S
file is a socket

-t

file (descriptor) is associated with a terminal device

This test option may be used to check whether the stdin [-t 0] or stdout [-t 1] in a
given script is a terminal.

-r
file has read permission (for the user running the test)

-w
file has write permission (for the user running the test)

-x
file has execute permission (for the user running the test)

-g
set-group-id (sgid) flag set on file or directory

If a directory has the sgid flag set, then a file created within that directory belongs to the group that
owns the directory, not necessarily to the group of the user who created the file. This may be useful
for a directory shared by a workgroup.

-u

set-user-id (suid) flag set on file

A binary owned by root with set-user-id flag set runs with root privileges, even when an
ordinary user invokes it. [2] This is useful for executables (such as pppd and cdrecord) that need to
access system hardware. Lacking the suid flag, these binaries could not be invoked by a non-root
user.

-rwsr-xr-t 1 root 178236 Oct 2 2000 /usr/sbin/pppd

A file with the suid flag set shows an s in its permissions.
-k

sticky bit set

Commonly known as the sticky bit, the save-text-mode flag is a special type of file permission. If a
file has this flag set, that file will be kept in cache memory, for quicker access. [3] If set on a
directory, it restricts write permission. Setting the sticky bit adds a t to the permissions on the file or
directory listing. This restricts altering or deleting specific files in that directory to the owner of those
files.

drwxrwxrwt 7 root 1024 May 19 21:26 tmp/

If a user does not own a directory that has the sticky bit set, but has write permission in that directory,
she can only delete those files that she owns in it. This keeps users from inadvertently overwriting or
deleting each other's files in a publicly accessible directory, such as /tmp. (The owner of the
directory or root can, of course, delete or rename files there.)

-O
you are owner of file

-G
group-id of file same as yours

-N
file modified since it was last read

f1 -nt f2
file f1 is newer than f2

f1 -ot f2
file f1 is older than f2

f1 -ef f2

files f1 and f2 are hard links to the same file
!

"not" -- reverses the sense of the tests above (returns true if condition absent).

Example 7-4. Testing for broken links

 1 #!/bin/bash
 2 # broken-link.sh
 3 # Written by Lee bigelow <ligelowbee@yahoo.com>
 4 # Used in ABS Guide with permission.
 5
 6 # A pure shell script to find dead symlinks and output them quoted
 7 #+ so they can be fed to xargs and dealt with :)
 8 #+ eg. sh broken-link.sh /somedir /someotherdir|xargs rm
 9 #
 10 # This, however, is a better method:
 11 #
 12 # find "somedir" -type l -print0|\
 13 # xargs -r0 file|\
 14 # grep "broken symbolic"|
 15 # sed -e 's/^\|: *broken symbolic.*$/"/g'
 16 #
 17 #+ but that wouldn't be pure Bash, now would it.
 18 # Caution: beware the /proc file system and any circular links!
 19 ##
 20
 21
 22 # If no args are passed to the script set directories-to-search
 23 #+ to current directory. Otherwise set the directories-to-search
 24 #+ to the args passed.
 25 ######################
 26
 27 [$# -eq 0] && directorys=`pwd` || directorys=$@
 28
 29
 30 # Setup the function linkchk to check the directory it is passed
 31 #+ for files that are links and don't exist, then print them quoted.
 32 # If one of the elements in the directory is a subdirectory then
 33 #+ send that subdirectory to the linkcheck function.
 34 ##########
 35
 36 linkchk () {
 37 for element in $1/*; do
 38 [-h "$element" -a ! -e "$element"] && echo \"$element\"
 39 [-d "$element"] && linkchk $element
 40 # Of course, '-h' tests for symbolic link, '-d' for directory.
 41 done
 42 }
 43
 44 # Send each arg that was passed to the script to the linkchk() function
 45 #+ if it is a valid directoy. If not, then print the error message
 46 #+ and usage info.
 47 ##################
 48 for directory in $directorys; do
 49 if [-d $directory]
 50 then linkchk $directory
 51 else
 52 echo "$directory is not a directory"
 53 echo "Usage: $0 dir1 dir2 ..."
 54 fi
 55 done
 56
 57 exit $?

Example 31-1, Example 11-8, Example 11-3, Example 31-3, and Example A-1 also illustrate uses of the file
test operators.

Notes

[1] Per the 1913 edition of Webster's Dictionary:

 1 Deprecate
 2 ...
 3
 4 To pray against, as an evil;
 5 to seek to avert by prayer;
 6 to desire the removal of;
 7 to seek deliverance from;
 8 to express deep regret for;
 9 to disapprove of strongly.

[2] Be aware that suid binaries may open security holes. The suid flag has no effect on shell scripts.
[3] On Linux systems, the sticky bit is no longer used for files, only on directories.

Prev Home Next
Tests Up Other Comparison Operators

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Chapter 7. Tests Next

7.3. Other Comparison Operators
A binary comparison operator compares two variables or quantities. Note that integer and string comparison
use a different set of operators.

integer comparison

-eq
is equal to

if ["$a" -eq "$b"]
-ne

is not equal to

if ["$a" -ne "$b"]
-gt

is greater than

if ["$a" -gt "$b"]
-ge

is greater than or equal to

if ["$a" -ge "$b"]
-lt

is less than

if ["$a" -lt "$b"]
-le

is less than or equal to

if ["$a" -le "$b"]
<

is less than (within double parentheses)

(("$a" < "$b"))
<=

is less than or equal to (within double parentheses)

(("$a" <= "$b"))
>

is greater than (within double parentheses)

(("$a" > "$b"))
>=

is greater than or equal to (within double parentheses)

(("$a" >= "$b"))

string comparison

=

is equal to

if ["$a" = "$b"]

Note the whitespace framing the =.

if ["$a"="$b"] is not equivalent to the above.
==

is equal to

if ["$a" == "$b"]

This is a synonym for =.

The == comparison operator behaves differently within a double-brackets test than within
single brackets.

 1 [[$a == z*]] # True if $a starts with an "z" (pattern matching).
 2 [[$a == "z*"]] # True if $a is equal to z* (literal matching).
 3
 4 [$a == z*] # File globbing and word splitting take place.
 5 ["$a" == "z*"] # True if $a is equal to z* (literal matching).
 6
 7 # Thanks, Stéphane Chazelas

!=
is not equal to

if ["$a" != "$b"]

This operator uses pattern matching within a [[...]] construct.
<

is less than, in ASCII alphabetical order

if [["$a" < "$b"]]

if ["$a" \< "$b"]

Note that the "<" needs to be escaped within a [] construct.
>

is greater than, in ASCII alphabetical order

if [["$a" > "$b"]]

if ["$a" \> "$b"]

Note that the ">" needs to be escaped within a [] construct.

See Example 27-11 for an application of this comparison operator.
-z

string is null, that is, has zero length

 1 String='' # Zero-length ("null") string variable.
 2
 3 if [-z "$String"]
 4 then
 5 echo "\$String is null."
 6 else
 7 echo "\$String is NOT null."

 8 fi # $String is null.

-n
string is not null.

The -n test requires that the string be quoted within the test brackets. Using an
unquoted string with ! -z, or even just the unquoted string alone within test brackets
(see Example 7-6) normally works, however, this is an unsafe practice. Always quote a
tested string. [1]

Example 7-5. Arithmetic and string comparisons

 1 #!/bin/bash
 2
 3 a=4
 4 b=5
 5
 6 # Here "a" and "b" can be treated either as integers or strings.
 7 # There is some blurring between the arithmetic and string comparisons,
 8 #+ since Bash variables are not strongly typed.
 9
 10 # Bash permits integer operations and comparisons on variables
 11 #+ whose value consists of all-integer characters.
 12 # Caution advised, however.
 13
 14 echo
 15
 16 if ["$a" -ne "$b"]
 17 then
 18 echo "$a is not equal to $b"
 19 echo "(arithmetic comparison)"
 20 fi
 21
 22 echo
 23
 24 if ["$a" != "$b"]
 25 then
 26 echo "$a is not equal to $b."
 27 echo "(string comparison)"
 28 # "4" != "5"
 29 # ASCII 52 != ASCII 53
 30 fi
 31
 32 # In this particular instance, both "-ne" and "!=" work.
 33
 34 echo
 35
 36 exit 0

Example 7-6. Testing whether a string is null

 1 #!/bin/bash
 2 # str-test.sh: Testing null strings and unquoted strings,
 3 #+ but not strings and sealing wax, not to mention cabbages and kings . . .
 4
 5 # Using if [...]
 6
 7 # If a string has not been initialized, it has no defined value.
 8 # This state is called "null" (not the same as zero!).

 9
 10 if [-n $string1] # string1 has not been declared or initialized.
 11 then
 12 echo "String \"string1\" is not null."
 13 else
 14 echo "String \"string1\" is null."
 15 fi # Wrong result.
 16 # Shows $string1 as not null, although it was not initialized.
 17
 18 echo
 19
 20 # Let's try it again.
 21
 22 if [-n "$string1"] # This time, $string1 is quoted.
 23 then
 24 echo "String \"string1\" is not null."
 25 else
 26 echo "String \"string1\" is null."
 27 fi # Quote strings within test brackets!
 28
 29 echo
 30
 31 if [$string1] # This time, $string1 stands naked.
 32 then
 33 echo "String \"string1\" is not null."
 34 else
 35 echo "String \"string1\" is null."
 36 fi # This works fine.
 37 # The [...] test operator alone detects whether the string is null.
 38 # However it is good practice to quote it (if ["$string1"]).
 39 #
 40 # As Stephane Chazelas points out,
 41 # if [$string1] has one argument, "]"
 42 # if ["$string1"] has two arguments, the empty "$string1" and "]"
 43
 44
 45 echo
 46
 47
 48 string1=initialized
 49
 50 if [$string1] # Again, $string1 stands unquoted.
 51 then
 52 echo "String \"string1\" is not null."
 53 else
 54 echo "String \"string1\" is null."
 55 fi # Again, gives correct result.
 56 # Still, it is better to quote it ("$string1"), because . . .
 57
 58
 59 string1="a = b"
 60
 61 if [$string1] # Again, $string1 stands unquoted.
 62 then
 63 echo "String \"string1\" is not null."
 64 else
 65 echo "String \"string1\" is null."
 66 fi # Not quoting "$string1" now gives wrong result!
 67
 68 exit 0 # Thank you, also, Florian Wisser, for the "heads-up".

Example 7-7. zmore

 1 #!/bin/bash
 2 # zmore
 3
 4 # View gzipped files with 'more' filter.
 5
 6 E_NOARGS=85
 7 E_NOTFOUND=86
 8 E_NOTGZIP=87
 9
 10 if [$# -eq 0] # same effect as: if [-z "$1"]
 11 # $1 can exist, but be empty: zmore "" arg2 arg3
 12 then
 13 echo "Usage: `basename $0` filename" >&2
 14 # Error message to stderr.
 15 exit $E_NOARGS
 16 # Returns 85 as exit status of script (error code).
 17 fi
 18
 19 filename=$1
 20
 21 if [! -f "$filename"] # Quoting $filename allows for possible spaces.
 22 then
 23 echo "File $filename not found!" >&2 # Error message to stderr.
 24 exit $E_NOTFOUND
 25 fi
 26
 27 if [${filename##*.} != "gz"]
 28 # Using bracket in variable substitution.
 29 then
 30 echo "File $1 is not a gzipped file!"
 31 exit $E_NOTGZIP
 32 fi
 33
 34 zcat $1 | more
 35
 36 # Uses the 'more' filter.
 37 # May substitute 'less' if desired.
 38
 39 exit $? # Script returns exit status of pipe.
 40 # Actually "exit $?" is unnecessary, as the script will, in any case,
 41 #+ return the exit status of the last command executed.

compound comparison

-a
logical and

exp1 -a exp2 returns true if both exp1 and exp2 are true.
-o

logical or

exp1 -o exp2 returns true if either exp1 or exp2 is true.

These are similar to the Bash comparison operators && and ||, used within double brackets.

 1 [[condition1 && condition2]]

The -o and -a operators work with the test command or occur within single test brackets.

 1 if ["$expr1" -a "$expr2"]
 2 then
 3 echo "Both expr1 and expr2 are true."
 4 else

 5 echo "Either expr1 or expr2 is false."
 6 fi

But, as rihad points out:

 1 [1 -eq 1] && [-n "`echo true 1>&2`"] # true
 2 [1 -eq 2] && [-n "`echo true 1>&2`"] # (no output)
 3 # ^^^^^^^ False condition. So far, everything as expected.
 4
 5 # However ...
 6 [1 -eq 2 -a -n "`echo true 1>&2`"] # true
 7 # ^^^^^^^ False condition. So, why "true" output?
 8
 9 # Is it because both condition clauses within brackets evaluate?
 10 [[1 -eq 2 && -n "`echo true 1>&2`"]] # (no output)
 11 # No, that's not it.
 12
 13 # Apparently && and || "short-circuit" while -a and -o do not.

Refer to Example 8-3, Example 27-17, and Example A-29 to see compound comparison operators in action.

Notes

[1] As S.C. points out, in a compound test, even quoting the string variable might not suffice. [-n
"$string" -o "$a" = "$b"] may cause an error with some versions of Bash if $string is
empty. The safe way is to append an extra character to possibly empty variables, ["x$string" !=
x -o "x$a" = "x$b"] (the "x's" cancel out).

Prev Home Next
File test operators Up Nested if/then Condition Tests

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Chapter 7. Tests Next

7.4. Nested if/then Condition Tests
Condition tests using the if/then construct may be nested. The net result is equivalent to using the &&
compound comparison operator.

 1 a=3
 2
 3 if ["$a" -gt 0]
 4 then
 5 if ["$a" -lt 5]
 6 then
 7 echo "The value of \"a\" lies somewhere between 0 and 5."
 8 fi
 9 fi
 10
 11 # Same result as:
 12
 13 if ["$a" -gt 0] && ["$a" -lt 5]
 14 then
 15 echo "The value of \"a\" lies somewhere between 0 and 5."
 16 fi

Example 37-4 and Example 17-11 demonstrate nested if/then condition tests.

Prev Home Next
Other Comparison Operators Up Testing Your Knowledge of Tests

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Chapter 7. Tests Next

7.5. Testing Your Knowledge of Tests
The systemwide xinitrc file can be used to launch the X server. This file contains quite a number of if/then
tests. The following is excerpted from an "ancient" version of xinitrc (Red Hat 7.1, or thereabouts).

 1 if [-f $HOME/.Xclients]; then
 2 exec $HOME/.Xclients
 3 elif [-f /etc/X11/xinit/Xclients]; then
 4 exec /etc/X11/xinit/Xclients
 5 else
 6 # failsafe settings. Although we should never get here
 7 # (we provide fallbacks in Xclients as well) it can't hurt.
 8 xclock -geometry 100x100-5+5 &
 9 xterm -geometry 80x50-50+150 &
 10 if [-f /usr/bin/netscape -a -f /usr/share/doc/HTML/index.html]; then
 11 netscape /usr/share/doc/HTML/index.html &
 12 fi
 13 fi

Explain the test constructs in the above snippet, then examine an updated version of the file,
/etc/X11/xinit/xinitrc, and analyze the if/then test constructs there. You may need to refer ahead to
the discussions of grep, sed, and regular expressions.

Prev Home Next
Nested if/then Condition Tests Up Operations and Related Topics

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Next

Chapter 8. Operations and Related Topics

8.1. Operators
assignment

variable assignment
Initializing or changing the value of a variable

=
All-purpose assignment operator, which works for both arithmetic and string assignments.

 1 var=27
 2 category=minerals # No spaces allowed after the "=".

Do not confuse the "=" assignment operator with the = test operator.

 1 # = as a test operator
 2
 3 if ["$string1" = "$string2"]
 4 then
 5 command
 6 fi
 7
 8 # if ["X$string1" = "X$string2"] is safer,
 9 #+ to prevent an error message should one of the variables be empty.
 10 # (The prepended "X" characters cancel out.)

arithmetic operators

+
plus

-
minus

*
multiplication

/
division

**
exponentiation

 1 # Bash, version 2.02, introduced the "**" exponentiation operator.
 2
 3 let "z=5**3" # 5 * 5 * 5
 4 echo "z = $z" # z = 125

%
modulo, or mod (returns the remainder of an integer division operation)

bash$ expr 5 % 3
2

5/3 = 1, with remainder 2

This operator finds use in, among other things, generating numbers within a specific range (see
Example 9-11 and Example 9-15) and formatting program output (see Example 27-16 and Example
A-6). It can even be used to generate prime numbers, (see Example A-15). Modulo turns up
surprisingly often in numerical recipes.

Example 8-1. Greatest common divisor

 1 #!/bin/bash
 2 # gcd.sh: greatest common divisor
 3 # Uses Euclid's algorithm
 4
 5 # The "greatest common divisor" (gcd) of two integers
 6 #+ is the largest integer that will divide both, leaving no remainder.
 7
 8 # Euclid's algorithm uses successive division.
 9 # In each pass,
 10 #+ dividend <--- divisor
 11 #+ divisor <--- remainder
 12 #+ until remainder = 0.
 13 # The gcd = dividend, on the final pass.
 14 #
 15 # For an excellent discussion of Euclid's algorithm, see
 16 #+ Jim Loy's site, http://www.jimloy.com/number/euclids.htm.
 17
 18
 19 # --
 20 # Argument check
 21 ARGS=2
 22 E_BADARGS=85
 23
 24 if [$# -ne "$ARGS"]
 25 then
 26 echo "Usage: `basename $0` first-number second-number"
 27 exit $E_BADARGS
 28 fi
 29 # --
 30
 31
 32 gcd ()
 33 {
 34
 35 dividend=$1 # Arbitrary assignment.
 36 divisor=$2 #! It doesn't matter which of the two is larger.
 37 # Why not?
 38
 39 remainder=1 # If an uninitialized variable is used inside
 40 #+ test brackets, an error message results.
 41
 42 until ["$remainder" -eq 0]
 43 do # ^^^^^^^^^^ Must be previously initialized!
 44 let "remainder = $dividend % $divisor"
 45 dividend=$divisor # Now repeat with 2 smallest numbers.
 46 divisor=$remainder
 47 done # Euclid's algorithm
 48
 49 } # Last $dividend is the gcd.
 50
 51
 52 gcd $1 $2
 53
 54 echo; echo "GCD of $1 and $2 = $dividend"; echo
 55
 56
 57 # Exercises :
 58 # ---------
 59 # 1) Check command-line arguments to make sure they are integers,
 60 #+ and exit the script with an appropriate error message if not.
 61 # 2) Rewrite the gcd () function to use local variables.
 62
 63 exit 0

+=
plus-equal (increment variable by a constant) [1]

let "var += 5" results in var being incremented by 5.
-=

minus-equal (decrement variable by a constant)
*=

times-equal (multiply variable by a constant)

let "var *= 4" results in var being multiplied by 4.
/=

slash-equal (divide variable by a constant)
%=

mod-equal (remainder of dividing variable by a constant)

Arithmetic operators often occur in an expr or let expression.

Example 8-2. Using Arithmetic Operations

 1 #!/bin/bash
 2 # Counting to 11 in 10 different ways.
 3
 4 n=1; echo -n "$n "
 5
 6 let "n = $n + 1" # let "n = n + 1" also works.
 7 echo -n "$n "
 8
 9
 10 : $((n = $n + 1))
 11 # ":" necessary because otherwise Bash attempts
 12 #+ to interpret "$((n = $n + 1))" as a command.
 13 echo -n "$n "
 14
 15 ((n = n + 1))
 16 # A simpler alternative to the method above.
 17 # Thanks, David Lombard, for pointing this out.
 18 echo -n "$n "
 19
 20 n=$(($n + 1))
 21 echo -n "$n "
 22
 23 : $[n = $n + 1]
 24 # ":" necessary because otherwise Bash attempts
 25 #+ to interpret "$[n = $n + 1]" as a command.
 26 # Works even if "n" was initialized as a string.
 27 echo -n "$n "
 28
 29 n=$[$n + 1]
 30 # Works even if "n" was initialized as a string.
 31 #* Avoid this type of construct, since it is obsolete and nonportable.
 32 # Thanks, Stephane Chazelas.
 33 echo -n "$n "
 34
 35 # Now for C-style increment operators.
 36 # Thanks, Frank Wang, for pointing this out.
 37
 38 let "n++" # let "++n" also works.
 39 echo -n "$n "
 40

 41 ((n++)) # ((++n)) also works.
 42 echo -n "$n "
 43
 44 : $((n++)) # : $((++n)) also works.
 45 echo -n "$n "
 46
 47 : $[n++] # : $[++n] also works
 48 echo -n "$n "
 49
 50 echo
 51
 52 exit 0

Integer variables in older versions of Bash were signed long (32-bit) integers, in the range of
-2147483648 to 2147483647. An operation that took a variable outside these limits gave an erroneous
result.

 1 echo $BASH_VERSION # 1.14
 2
 3 a=2147483646
 4 echo "a = $a" # a = 2147483646
 5 let "a+=1" # Increment "a".
 6 echo "a = $a" # a = 2147483647
 7 let "a+=1" # increment "a" again, past the limit.
 8 echo "a = $a" # a = -2147483648
 9 # ERROR: out of range,
 10 # + and the leftmost bit, the sign bit,
 11 # + has been set, making the result negative.

As of version >= 2.05b, Bash supports 64-bit integers.

Bash does not understand floating point arithmetic. It treats numbers containing a decimal point as
strings.

 1 a=1.5
 2
 3 let "b = $a + 1.3" # Error.
 4 # t2.sh: let: b = 1.5 + 1.3: syntax error in expression
 5 # (error token is ".5 + 1.3")
 6
 7 echo "b = $b" # b=1

Use bc in scripts that that need floating point calculations or math library functions.
bitwise operators. The bitwise operators seldom make an appearance in shell scripts. Their chief use seems to
be manipulating and testing values read from ports or sockets. "Bit flipping" is more relevant to compiled
languages, such as C and C++, which provide direct access to system hardware. However, see vladz's
ingenious use of bitwise operators in his base64.sh (Example A-54) script.

bitwise operators

<<
bitwise left shift (multiplies by 2 for each shift position)

<<=
left-shift-equal

let "var <<= 2" results in var left-shifted 2 bits (multiplied by 4)
>>

bitwise right shift (divides by 2 for each shift position)

>>=
right-shift-equal (inverse of <<=)

&
bitwise AND

&=
bitwise AND-equal

|
bitwise OR

|=
bitwise OR-equal

~
bitwise NOT

^
bitwise XOR

^=
bitwise XOR-equal

logical (boolean) operators

!
NOT

 1 if [! -f $FILENAME]
 2 then
 3 ...

&&
AND

 1 if [$condition1] && [$condition2]
 2 # Same as: if [$condition1 -a $condition2]
 3 # Returns true if both condition1 and condition2 hold true...
 4
 5 if [[$condition1 && $condition2]] # Also works.
 6 # Note that && operator not permitted inside brackets
 7 #+ of [...] construct.

&& may also be used, depending on context, in an and list to concatenate commands.

||
OR

 1 if [$condition1] || [$condition2]
 2 # Same as: if [$condition1 -o $condition2]
 3 # Returns true if either condition1 or condition2 holds true...
 4
 5 if [[$condition1 || $condition2]] # Also works.
 6 # Note that || operator not permitted inside brackets
 7 #+ of a [...] construct.

Bash tests the exit status of each statement linked with a logical operator.

Example 8-3. Compound Condition Tests Using && and ||

 1 #!/bin/bash
 2
 3 a=24
 4 b=47
 5

 6 if ["$a" -eq 24] && ["$b" -eq 47]
 7 then
 8 echo "Test #1 succeeds."
 9 else
 10 echo "Test #1 fails."
 11 fi
 12
 13 # ERROR: if ["$a" -eq 24 && "$b" -eq 47]
 14 #+ attempts to execute ' ["$a" -eq 24 '
 15 #+ and fails to finding matching ']'.
 16 #
 17 # Note: if [[$a -eq 24 && $b -eq 24]] works.
 18 # The double-bracket if-test is more flexible
 19 #+ than the single-bracket version.
 20 # (The "&&" has a different meaning in line 17 than in line 6.)
 21 # Thanks, Stephane Chazelas, for pointing this out.
 22
 23
 24 if ["$a" -eq 98] || ["$b" -eq 47]
 25 then
 26 echo "Test #2 succeeds."
 27 else
 28 echo "Test #2 fails."
 29 fi
 30
 31
 32 # The -a and -o options provide
 33 #+ an alternative compound condition test.
 34 # Thanks to Patrick Callahan for pointing this out.
 35
 36
 37 if ["$a" -eq 24 -a "$b" -eq 47]
 38 then
 39 echo "Test #3 succeeds."
 40 else
 41 echo "Test #3 fails."
 42 fi
 43
 44
 45 if ["$a" -eq 98 -o "$b" -eq 47]
 46 then
 47 echo "Test #4 succeeds."
 48 else
 49 echo "Test #4 fails."
 50 fi
 51
 52
 53 a=rhino
 54 b=crocodile
 55 if ["$a" = rhino] && ["$b" = crocodile]
 56 then
 57 echo "Test #5 succeeds."
 58 else
 59 echo "Test #5 fails."
 60 fi
 61
 62 exit 0

The && and || operators also find use in an arithmetic context.

bash$ echo $((1 && 2)) $((3 && 0)) $((4 || 0)) $((0 || 0))
1 0 1 0

miscellaneous operators

,
Comma operator

The comma operator chains together two or more arithmetic operations. All the operations are
evaluated (with possible side effects. [2]

 1 let "t1 = ((5 + 3, 7 - 1, 15 - 4))"
 2 echo "t1 = $t1" ^^^^^^ # t1 = 11
 3 # Here t1 is set to the result of the last operation. Why?
 4
 5 let "t2 = ((a = 9, 15 / 3))" # Set "a" and calculate "t2".
 6 echo "t2 = $t2 a = $a" # t2 = 5 a = 9

The comma operator finds use mainly in for loops. See Example 11-13.

Notes

[1] In a different context, += can serve as a string concatenation operator. This can be useful for modifying
environmental variables.

[2] Side effects are, of course, unintended -- and usually undesirable -- consequences.

Prev Home Next
Testing Your Knowledge of Tests Up Numerical Constants

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Chapter 8. Operations and Related Topics Next

8.2. Numerical Constants
A shell script interprets a number as decimal (base 10), unless that number has a special prefix or notation. A
number preceded by a 0 is octal (base 8). A number preceded by 0x is hexadecimal (base 16). A
number with an embedded # evaluates as BASE#NUMBER (with range and notational restrictions).

Example 8-4. Representation of numerical constants

 1 #!/bin/bash
 2 # numbers.sh: Representation of numbers in different bases.
 3
 4 # Decimal: the default
 5 let "dec = 32"
 6 echo "decimal number = $dec" # 32
 7 # Nothing out of the ordinary here.
 8
 9
 10 # Octal: numbers preceded by '0' (zero)
 11 let "oct = 032"
 12 echo "octal number = $oct" # 26
 13 # Expresses result in decimal.
 14 # --------- ------ -- -------
 15
 16
 17 # Hexadecimal: numbers preceded by '0x' or '0X'
 18 let "hex = 0x32"
 19 echo "hexadecimal number = $hex" # 50
 20
 21 echo $((0x9abc)) # 39612
 22 # ^^ ^^ double-parentheses arithmetic expansion/evaluation
 23 # Expresses result in decimal.
 24
 25
 26
 27 # Other bases: BASE#NUMBER
 28 # BASE between 2 and 64.
 29 # NUMBER must use symbols within the BASE range, see below.
 30
 31
 32 let "bin = 2#111100111001101"
 33 echo "binary number = $bin" # 31181
 34
 35 let "b32 = 32#77"
 36 echo "base-32 number = $b32" # 231
 37
 38 let "b64 = 64#@_"
 39 echo "base-64 number = $b64" # 4031
 40 # This notation only works for a limited range (2 - 64) of ASCII characters.
 41 # 10 digits + 26 lowercase characters + 26 uppercase characters + @ + _
 42
 43
 44 echo
 45
 46 echo $((36#zz)) $((2#10101010)) $((16#AF16)) $((53#1aA))
 47 # 1295 170 44822 3375
 48
 49
 50 # Important note:
 51 # --------------
 52 # Using a digit out of range of the specified base notation
 53 #+ gives an error message.
 54

 55 let "bad_oct = 081"
 56 # (Partial) error message output:
 57 # bad_oct = 081: value too great for base (error token is "081")
 58 # Octal numbers use only digits in the range 0 - 7.
 59
 60 exit $? # Exit value = 1 (error)
 61
 62 # Thanks, Rich Bartell and Stephane Chazelas, for clarification.

Prev Home Next
Operations and Related Topics Up The Double-Parentheses Construct

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Chapter 8. Operations and Related Topics Next

8.3. The Double-Parentheses Construct

Similar to the let command, the ((...)) construct permits arithmetic expansion and evaluation. In its simplest
form, a=$((5 + 3)) would set a to 5 + 3, or 8. However, this double-parentheses construct is also a
mechanism for allowing C-style manipulation of variables in Bash, for example, ((var++)).

Example 8-5. C-style manipulation of variables

 1 #!/bin/bash
 2 # c-vars.sh
 3 # Manipulating a variable, C-style, using the ((...)) construct.
 4
 5
 6 echo
 7
 8 ((a = 23)) # Setting a value, C-style,
 9 #+ with spaces on both sides of the "=".
 10 echo "a (initial value) = $a" # 23
 11
 12 ((a++)) # Post-increment 'a', C-style.
 13 echo "a (after a++) = $a" # 24
 14
 15 ((a--)) # Post-decrement 'a', C-style.
 16 echo "a (after a--) = $a" # 23
 17
 18
 19 ((++a)) # Pre-increment 'a', C-style.
 20 echo "a (after ++a) = $a" # 24
 21
 22 ((--a)) # Pre-decrement 'a', C-style.
 23 echo "a (after --a) = $a" # 23
 24
 25 echo
 26
 27 ##
 28 # Note that, as in C, pre- and post-decrement operators
 29 #+ have different side-effects.
 30
 31 n=1; let --n && echo "True" || echo "False" # False
 32 n=1; let n-- && echo "True" || echo "False" # True
 33
 34 # Thanks, Jeroen Domburg.
 35 ##
 36
 37 echo
 38
 39 ((t = a<45?7:11)) # C-style trinary operator.
 40 # ^ ^ ^
 41 echo "If a < 45, then t = 7, else t = 11." # a = 23
 42 echo "t = $t " # t = 7
 43
 44 echo
 45
 46
 47 # -----------------
 48 # Easter Egg alert!
 49 # -----------------
 50 # Chet Ramey seems to have snuck a bunch of undocumented C-style
 51 #+ constructs into Bash (actually adapted from ksh, pretty much).

 52 # In the Bash docs, Ramey calls ((...)) shell arithmetic,
 53 #+ but it goes far beyond that.
 54 # Sorry, Chet, the secret is out.
 55
 56 # See also "for" and "while" loops using the ((...)) construct.
 57
 58 # These work only with version 2.04 or later of Bash.
 59
 60 exit

See also Example 11-13 and Example 8-4.

Prev Home Next
Numerical Constants Up Operator Precedence

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Chapter 8. Operations and Related Topics Next

8.4. Operator Precedence

In a script, operations execute in order of precedence: the higher precedence operations execute before the
lower precedence ones. [1]

Table 8-1. Operator Precedence

Operator Meaning Comments
HIGHEST PRECEDENCE

var++ var-- post-increment,
post-decrement

C-style operators

++var --var pre-increment,
pre-decrement

! ~ negation logical / bitwise, inverts sense of following
operator

** exponentiation arithmetic operation
* / % multiplication, division,

modulo
arithmetic operation

+ - addition, subtraction arithmetic operation

<< >> left, right shift bitwise

-z -n unary comparison string is/is-not null
-e -f -t -x, etc. unary comparison file-test
< -lt > -gt <= -le >=
-ge

compound comparison string and integer

-nt -ot -ef compound comparison file-test
== -eq != -ne equality / inequality test operators, string and integer

& AND bitwise
^ XOR exclusive OR, bitwise
| OR bitwise

&& -a AND logical, compound comparison
|| -o OR logical, compound comparison

?: trinary operator C-style
= assignment (do not confuse with equality test)
*= /= %= += -= <<= >>=
&=

combination assignment times-equal, divide-equal, mod-equal, etc.

, comma links a sequence of operations

LOWEST PRECEDENCE

In practice, all you really need to remember is the following:

The "My Dear Aunt Sally" mantra (multiply, divide, add, subtract) for the familiar arithmetic
operations.

•

The compound logical operators, &&, ||, -a, and -o have low precedence.•
The order of evaluation of equal-precedence operators is usually left-to-right.•

Now, let's utilize our knowledge of operator precedence to analyze a couple of lines from the
/etc/init.d/functions file, as found in the Fedora Core Linux distro.

 1 while [-n "$remaining" -a "$retry" -gt 0]; do
 2
 3 # This looks rather daunting at first glance.
 4
 5
 6 # Separate the conditions:
 7 while [-n "$remaining" -a "$retry" -gt 0]; do
 8 # --condition 1-- ^^ --condition 2-
 9
 10 # If variable "$remaining" is not zero length
 11 #+ AND (-a)
 12 #+ variable "$retry" is greater-than zero
 13 #+ then
 14 #+ the [expresion-within-condition-brackets] returns success (0)
 15 #+ and the while-loop executes an iteration.
 16 # ==
 17 # Evaluate "condition 1" and "condition 2" ***before***
 18 #+ ANDing them. Why? Because the AND (-a) has a lower precedence
 19 #+ than the -n and -gt operators,
 20 #+ and therefore gets evaluated *last*.
 21
 22 ###
 23
 24 if [-f /etc/sysconfig/i18n -a -z "${NOLOCALE:-}"] ; then
 25
 26
 27 # Again, separate the conditions:
 28 if [-f /etc/sysconfig/i18n -a -z "${NOLOCALE:-}"] ; then
 29 # --condition 1--------- ^^ --condition 2-----
 30
 31 # If file "/etc/sysconfig/i18n" exists
 32 #+ AND (-a)
 33 #+ variable $NOLOCALE is zero length
 34 #+ then
 35 #+ the [test-expresion-within-condition-brackets] returns success (0)
 36 #+ and the commands following execute.
 37 #
 38 # As before, the AND (-a) gets evaluated *last*
 39 #+ because it has the lowest precedence of the operators within
 40 #+ the test brackets.
 41 # ==
 42 # Note:
 43 # ${NOLOCALE:-} is a parameter expansion that seems redundant.
 44 # But, if $NOLOCALE has not been declared, it gets set to *null*,
 45 #+ in effect declaring it.
 46 # This makes a difference in some contexts.

To avoid confusion or error in a complex sequence of test operators, break up the sequence into
bracketed sections.

 1 if ["$v1" -gt "$v2" -o "$v1" -lt "$v2" -a -e "$filename"]
 2 # Unclear what's going on here...
 3
 4 if [["$v1" -gt "$v2"]] || [["$v1" -lt "$v2"]] && [[-e "$filename"]]
 5 # Much better -- the condition tests are grouped in logical sections.

Notes

[1] Precedence, in this context, has approximately the same meaning as priority

Prev Home Next
The Double-Parentheses Construct Up Beyond the Basics

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Next

Part 3. Beyond the Basics
Table of Contents
9. Another Look at Variables
10. Manipulating Variables
11. Loops and Branches
12. Command Substitution
13. Arithmetic Expansion
14. Recess Time

Prev Home Next
Operator Precedence Another Look at Variables

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Next

Chapter 9. Another Look at Variables
Used properly, variables can add power and flexibility to scripts. This requires learning their subtleties and
nuances.

9.1. Internal Variables
Builtin variables:

variables affecting bash script behavior
$BASH

The path to the Bash binary itself

bash$ echo $BASH
/bin/bash

$BASH_ENV
An environmental variable pointing to a Bash startup file to be read when a script is invoked

$BASH_SUBSHELL
A variable indicating the subshell level. This is a new addition to Bash, version 3.

See Example 21-1 for usage.
$BASHPID

Process ID of the current instance of Bash. This is not the same as the $$ variable, but it often gives
the same result.

bash4$ echo $$
11015

bash4$ echo $BASHPID
11015

bash4$ ps ax | grep bash4
11015 pts/2 R 0:00 bash4

But ...

 1 #!/bin/bash4
 2
 3 echo "\$\$ outside of subshell = $$" # 9602
 4 echo "\$BASH_SUBSHELL outside of subshell = $BASH_SUBSHELL" # 0
 5 echo "\$BASHPID outside of subshell = $BASHPID" # 9602
 6
 7 echo
 8
 9 (echo "\$\$ inside of subshell = $$" # 9602
 10 echo "\$BASH_SUBSHELL inside of subshell = $BASH_SUBSHELL" # 1
 11 echo "\$BASHPID inside of subshell = $BASHPID") # 9603
 12 # Note that $$ returns PID of parent process.

$BASH_VERSINFO[n]
A 6-element array containing version information about the installed release of Bash. This is similar
to $BASH_VERSION, below, but a bit more detailed.

 1 # Bash version info:
 2
 3 for n in 0 1 2 3 4 5
 4 do
 5 echo "BASH_VERSINFO[$n] = ${BASH_VERSINFO[$n]}"
 6 done
 7
 8 # BASH_VERSINFO[0] = 3 # Major version no.
 9 # BASH_VERSINFO[1] = 00 # Minor version no.
 10 # BASH_VERSINFO[2] = 14 # Patch level.
 11 # BASH_VERSINFO[3] = 1 # Build version.

 12 # BASH_VERSINFO[4] = release # Release status.
 13 # BASH_VERSINFO[5] = i386-redhat-linux-gnu # Architecture
 14 # (same as $MACHTYPE).

$BASH_VERSION
The version of Bash installed on the system

bash$ echo $BASH_VERSION
3.2.25(1)-release

tcsh% echo $BASH_VERSION
BASH_VERSION: Undefined variable.

Checking $BASH_VERSION is a good method of determining which shell is running. $SHELL does
not necessarily give the correct answer.

$CDPATH
A colon-separated list of search paths available to the cd command, similar in function to the $PATH
variable for binaries. The $CDPATH variable may be set in the local ~/.bashrc file.

bash$ cd bash-doc
bash: cd: bash-doc: No such file or directory

bash$ CDPATH=/usr/share/doc
bash$ cd bash-doc
/usr/share/doc/bash-doc

bash$ echo $PWD
/usr/share/doc/bash-doc

$DIRSTACK
The top value in the directory stack [1] (affected by pushd and popd)

This builtin variable corresponds to the dirs command, however dirs shows the entire contents of the
directory stack.

$EDITOR
The default editor invoked by a script, usually vi or emacs.

$EUID
"effective" user ID number

Identification number of whatever identity the current user has assumed, perhaps by means of su.

The $EUID is not necessarily the same as the $UID.

$FUNCNAME
Name of the current function

 1 xyz23 ()
 2 {
 3 echo "$FUNCNAME now executing." # xyz23 now executing.
 4 }
 5
 6 xyz23
 7
 8 echo "FUNCNAME = $FUNCNAME" # FUNCNAME =
 9 # Null value outside a function.

See also Example A-50.
$GLOBIGNORE

A list of filename patterns to be excluded from matching in globbing.
$GROUPS

Groups current user belongs to

This is a listing (array) of the group id numbers for current user, as recorded in /etc/passwd and
/etc/group.

root# echo $GROUPS
0

root# echo ${GROUPS[1]}
1

root# echo ${GROUPS[5]}
6

$HOME
Home directory of the user, usually /home/username (see Example 10-7)

$HOSTNAME
The hostname command assigns the system host name at bootup in an init script. However, the
gethostname() function sets the Bash internal variable $HOSTNAME. See also Example 10-7.

$HOSTTYPE
host type

Like $MACHTYPE, identifies the system hardware.

bash$ echo $HOSTTYPE
i686

$IFS
internal field separator

This variable determines how Bash recognizes fields, or word boundaries, when it interprets character
strings.

$IFS defaults to whitespace (space, tab, and newline), but may be changed, for example, to parse a
comma-separated data file. Note that $* uses the first character held in $IFS. See Example 5-1.

bash$ echo "$IFS"

(With $IFS set to default, a blank line displays.)

bash$ echo "$IFS" | cat -vte
^I$

 $
(Show whitespace: here a single space, ^I [horizontal tab],
 and newline, and display "$" at end-of-line.)

bash$ bash -c 'set w x y z; IFS=":-;"; echo "$*"'
w:x:y:z
(Read commands from string and assign any arguments to pos params.)

Set $IFS to eliminate whitespace in pathnames.

 1 IFS="$(printf '\n\t')" # Per David Wheeler.

$IFS does not handle whitespace the same as it does other characters.

Example 9-1. $IFS and whitespace

 1 #!/bin/bash
 2 # ifs.sh
 3
 4
 5 var1="a+b+c"
 6 var2="d-e-f"
 7 var3="g,h,i"
 8
 9 IFS=+
 10 # The plus sign will be interpreted as a separator.
 11 echo $var1 # a b c
 12 echo $var2 # d-e-f
 13 echo $var3 # g,h,i
 14
 15 echo
 16
 17 IFS="-"
 18 # The plus sign reverts to default interpretation.
 19 # The minus sign will be interpreted as a separator.
 20 echo $var1 # a+b+c
 21 echo $var2 # d e f
 22 echo $var3 # g,h,i
 23
 24 echo
 25
 26 IFS=","
 27 # The comma will be interpreted as a separator.
 28 # The minus sign reverts to default interpretation.
 29 echo $var1 # a+b+c
 30 echo $var2 # d-e-f
 31 echo $var3 # g h i
 32
 33 echo
 34
 35 IFS=" "
 36 # The space character will be interpreted as a separator.
 37 # The comma reverts to default interpretation.
 38 echo $var1 # a+b+c
 39 echo $var2 # d-e-f
 40 echo $var3 # g,h,i
 41
 42 # == #
 43
 44 # However ...
 45 # $IFS treats whitespace differently than other characters.
 46
 47 output_args_one_per_line()
 48 {
 49 for arg
 50 do
 51 echo "[$arg]"
 52 done # ^ ^ Embed within brackets, for your viewing pleasure.
 53 }
 54
 55 echo; echo "IFS=\" \""
 56 echo "-------"
 57
 58 IFS=" "

 59 var=" a b c "
 60 # ^ ^^ ^^^
 61 output_args_one_per_line $var # output_args_one_per_line `echo " a b c "`
 62 # [a]
 63 # [b]
 64 # [c]
 65
 66
 67 echo; echo "IFS=:"
 68 echo "-----"
 69
 70 IFS=:
 71 var=":a::b:c:::" # Same pattern as above,
 72 # ^ ^^ ^^^ #+ but substituting ":" for " " ...
 73 output_args_one_per_line $var
 74 # []
 75 # [a]
 76 # []
 77 # [b]
 78 # [c]
 79 # []
 80 # []
 81
 82 # Note "empty" brackets.
 83 # The same thing happens with the "FS" field separator in awk.
 84
 85
 86 echo
 87
 88 exit

(Many thanks, Stéphane Chazelas, for clarification and above examples.)

See also Example 16-41, Example 11-8, and Example 19-14 for instructive examples of using $IFS.
$IGNOREEOF

Ignore EOF: how many end-of-files (control-D) the shell will ignore before logging out.
$LC_COLLATE

Often set in the .bashrc or /etc/profile files, this variable controls collation order in filename
expansion and pattern matching. If mishandled, LC_COLLATE can cause unexpected results in
filename globbing.

As of version 2.05 of Bash, filename globbing no longer distinguishes
between lowercase and uppercase letters in a character range between
brackets. For example, ls [A-M]* would match both File1.txt and
file1.txt. To revert to the customary behavior of bracket matching, set
LC_COLLATE to C by an export LC_COLLATE=C in /etc/profile
and/or ~/.bashrc.

$LC_CTYPE
This internal variable controls character interpretation in globbing and pattern matching.

$LINENO
This variable is the line number of the shell script in which this variable appears. It has significance
only within the script in which it appears, and is chiefly useful for debugging purposes.

 1 # *** BEGIN DEBUG BLOCK ***
 2 last_cmd_arg=$_ # Save it.
 3
 4 echo "At line number $LINENO, variable \"v1\" = $v1"
 5 echo "Last command argument processed = $last_cmd_arg"
 6 # *** END DEBUG BLOCK ***

$MACHTYPE

machine type

Identifies the system hardware.

bash$ echo $MACHTYPE
i686

$OLDPWD
Old working directory ("OLD-Print-Working-Directory", previous directory you were in).

$OSTYPE
operating system type

bash$ echo $OSTYPE
linux

$PATH
Path to binaries, usually /usr/bin/, /usr/X11R6/bin/, /usr/local/bin, etc.

When given a command, the shell automatically does a hash table search on the directories listed in
the path for the executable. The path is stored in the environmental variable, $PATH, a list of
directories, separated by colons. Normally, the system stores the $PATH definition in
/etc/profile and/or ~/.bashrc (see Appendix H).

bash$ echo $PATH
/bin:/usr/bin:/usr/local/bin:/usr/X11R6/bin:/sbin:/usr/sbin

PATH=${PATH}:/opt/bin appends the /opt/bin directory to the current path. In a script, it
may be expedient to temporarily add a directory to the path in this way. When the script exits, this
restores the original $PATH (a child process, such as a script, may not change the environment of the
parent process, the shell).

The current "working directory", ./, is usually omitted from the $PATH as a
security measure.

$PIPESTATUS
Array variable holding exit status(es) of last executed foreground pipe.

bash$ echo $PIPESTATUS
0

bash$ ls -al | bogus_command
bash: bogus_command: command not found
bash$ echo ${PIPESTATUS[1]}
127

bash$ ls -al | bogus_command
bash: bogus_command: command not found
bash$ echo $?
127

The members of the $PIPESTATUS array hold the exit status of each respective command executed
in a pipe. $PIPESTATUS[0] holds the exit status of the first command in the pipe,
$PIPESTATUS[1] the exit status of the second command, and so on.

The $PIPESTATUS variable may contain an erroneous 0 value in a login shell (in
releases prior to 3.0 of Bash).

tcsh% bash

bash$ who | grep nobody | sort

bash$ echo ${PIPESTATUS[*]}
0

The above lines contained in a script would produce the expected 0 1 0 output.

Thank you, Wayne Pollock for pointing this out and supplying the above example.
The $PIPESTATUS variable gives unexpected results in some contexts.

bash$ echo $BASH_VERSION
3.00.14(1)-release

bash$ $ ls | bogus_command | wc
bash: bogus_command: command not found
 0 0 0

bash$ echo ${PIPESTATUS[@]}
141 127 0

Chet Ramey attributes the above output to the behavior of ls. If ls writes to a pipe
whose output is not read, then SIGPIPE kills it, and its exit status is 141. Otherwise
its exit status is 0, as expected. This likewise is the case for tr.
$PIPESTATUS is a "volatile" variable. It needs to be captured immediately after the
pipe in question, before any other command intervenes.

bash$ $ ls | bogus_command | wc
bash: bogus_command: command not found
 0 0 0

bash$ echo ${PIPESTATUS[@]}
0 127 0

bash$ echo ${PIPESTATUS[@]}
0

The pipefail option may be useful in cases where $PIPESTATUS does not give the
desired information.

$PPID

The $PPID of a process is the process ID (pid) of its parent process. [2]

Compare this with the pidof command.
$PROMPT_COMMAND

A variable holding a command to be executed just before the primary prompt, $PS1 is to be
displayed.

$PS1
This is the main prompt, seen at the command-line.

$PS2
The secondary prompt, seen when additional input is expected. It displays as ">".

$PS3
The tertiary prompt, displayed in a select loop (see Example 11-30).

$PS4
The quartenary prompt, shown at the beginning of each line of output when invoking a script with the
-x [verbose trace] option. It displays as "+".

As a debugging aid, it may be useful to embed diagnostic information in $PS4.

 1 P4='$(read time junk < /proc/$$/schedstat; echo "@@@ $time @@@ ")'
 2 # Per suggestion by Erik Brandsberg.
 3 set -x
 4 # Various commands follow ...

$PWD
Working directory (directory you are in at the time)

This is the analog to the pwd builtin command.

 1 #!/bin/bash
 2
 3 E_WRONG_DIRECTORY=85
 4
 5 clear # Clear the screen.
 6
 7 TargetDirectory=/home/bozo/projects/GreatAmericanNovel
 8
 9 cd $TargetDirectory
 10 echo "Deleting stale files in $TargetDirectory."
 11
 12 if ["$PWD" != "$TargetDirectory"]
 13 then # Keep from wiping out wrong directory by accident.
 14 echo "Wrong directory!"
 15 echo "In $PWD, rather than $TargetDirectory!"
 16 echo "Bailing out!"
 17 exit $E_WRONG_DIRECTORY
 18 fi
 19
 20 rm -rf *
 21 rm .[A-Za-z0-9]* # Delete dotfiles.
 22 # rm -f .[^.]* ..?* to remove filenames beginning with multiple dots.
 23 # (shopt -s dotglob; rm -f *) will also work.
 24 # Thanks, S.C. for pointing this out.
 25
 26 # A filename (`basename`) may contain all characters in the 0 - 255 range,
 27 #+ except "/".
 28 # Deleting files beginning with weird characters, such as -
 29 #+ is left as an exercise. (Hint: rm ./-weirdname or rm -- -weirdname)
 30 result=$? # Result of delete operations. If successful = 0.
 31
 32 echo
 33 ls -al # Any files left?
 34 echo "Done."
 35 echo "Old files deleted in $TargetDirectory."
 36 echo
 37
 38 # Various other operations here, as necessary.
 39
 40 exit $result

$REPLY
The default value when a variable is not supplied to read. Also applicable to select menus, but only
supplies the item number of the variable chosen, not the value of the variable itself.

 1 #!/bin/bash
 2 # reply.sh
 3
 4 # REPLY is the default value for a 'read' command.
 5
 6 echo
 7 echo -n "What is your favorite vegetable? "
 8 read
 9
 10 echo "Your favorite vegetable is $REPLY."
 11 # REPLY holds the value of last "read" if and only if

 12 #+ no variable supplied.
 13
 14 echo
 15 echo -n "What is your favorite fruit? "
 16 read fruit
 17 echo "Your favorite fruit is $fruit."
 18 echo "but..."
 19 echo "Value of \$REPLY is still $REPLY."
 20 # $REPLY is still set to its previous value because
 21 #+ the variable $fruit absorbed the new "read" value.
 22
 23 echo
 24
 25 exit 0

$SECONDS
The number of seconds the script has been running.

 1 #!/bin/bash
 2
 3 TIME_LIMIT=10
 4 INTERVAL=1
 5
 6 echo
 7 echo "Hit Control-C to exit before $TIME_LIMIT seconds."
 8 echo
 9
 10 while ["$SECONDS" -le "$TIME_LIMIT"]
 11 do # $SECONDS is an internal shell variable.
 12 if ["$SECONDS" -eq 1]
 13 then
 14 units=second
 15 else
 16 units=seconds
 17 fi
 18
 19 echo "This script has been running $SECONDS $units."
 20 # On a slow or overburdened machine, the script may skip a count
 21 #+ every once in a while.
 22 sleep $INTERVAL
 23 done
 24
 25 echo -e "\a" # Beep!
 26
 27 exit 0

$SHELLOPTS
The list of enabled shell options, a readonly variable.

bash$ echo $SHELLOPTS
braceexpand:hashall:histexpand:monitor:history:interactive-comments:emacs

$SHLVL
Shell level, how deeply Bash is nested. [3] If, at the command-line, $SHLVL is 1, then in a script it
will increment to 2.

This variable is not affected by subshells. Use $BASH_SUBSHELL when
you need an indication of subshell nesting.

$TMOUT
If the $TMOUT environmental variable is set to a non-zero value time, then the shell prompt will
time out after $time seconds. This will cause a logout.

As of version 2.05b of Bash, it is now possible to use $TMOUT in a script in combination with read.

 1 # Works in scripts for Bash, versions 2.05b and later.
 2
 3 TMOUT=3 # Prompt times out at three seconds.
 4
 5 echo "What is your favorite song?"
 6 echo "Quickly now, you only have $TMOUT seconds to answer!"
 7 read song
 8
 9 if [-z "$song"]
 10 then
 11 song="(no answer)"
 12 # Default response.
 13 fi
 14
 15 echo "Your favorite song is $song."

There are other, more complex, ways of implementing timed input in a script. One alternative is to set
up a timing loop to signal the script when it times out. This also requires a signal handling routine to
trap (see Example 32-5) the interrupt generated by the timing loop (whew!).

Example 9-2. Timed Input

 1 #!/bin/bash
 2 # timed-input.sh
 3
 4 # TMOUT=3 Also works, as of newer versions of Bash.
 5
 6 TIMER_INTERRUPT=14
 7 TIMELIMIT=3 # Three seconds in this instance.
 8 # May be set to different value.
 9
 10 PrintAnswer()
 11 {
 12 if ["$answer" = TIMEOUT]
 13 then
 14 echo $answer
 15 else # Don't want to mix up the two instances.
 16 echo "Your favorite veggie is $answer"
 17 kill $! # Kills no-longer-needed TimerOn function
 18 #+ running in background.
 19 # $! is PID of last job running in background.
 20 fi
 21
 22 }
 23
 24
 25 TimerOn()
 26 {
 27 sleep $TIMELIMIT && kill -s 14 $$ &
 28 # Waits 3 seconds, then sends sigalarm to script.
 29 }
 30
 31
 32 Int14Vector()
 33 {
 34 answer="TIMEOUT"
 35 PrintAnswer
 36 exit $TIMER_INTERRUPT
 37 }
 38
 39 trap Int14Vector $TIMER_INTERRUPT
 40 # Timer interrupt (14) subverted for our purposes.
 41

 42 echo "What is your favorite vegetable "
 43 TimerOn
 44 read answer
 45 PrintAnswer
 46
 47
 48 # Admittedly, this is a kludgy implementation of timed input.
 49 # However, the "-t" option to "read" simplifies this task.
 50 # See the "t-out.sh" script.
 51 # However, what about timing not just single user input,
 52 #+ but an entire script?
 53
 54 # If you need something really elegant ...
 55 #+ consider writing the application in C or C++,
 56 #+ using appropriate library functions, such as 'alarm' and 'setitimer.'
 57
 58 exit 0

An alternative is using stty.

Example 9-3. Once more, timed input

 1 #!/bin/bash
 2 # timeout.sh
 3
 4 # Written by Stephane Chazelas,
 5 #+ and modified by the document author.
 6
 7 INTERVAL=5 # timeout interval
 8
 9 timedout_read() {
 10 timeout=$1
 11 varname=$2
 12 old_tty_settings=`stty -g`
 13 stty -icanon min 0 time ${timeout}0
 14 eval read $varname # or just read $varname
 15 stty "$old_tty_settings"
 16 # See man page for "stty."
 17 }
 18
 19 echo; echo -n "What's your name? Quick! "
 20 timedout_read $INTERVAL your_name
 21
 22 # This may not work on every terminal type.
 23 # The maximum timeout depends on the terminal.
 24 #+ (it is often 25.5 seconds).
 25
 26 echo
 27
 28 if [! -z "$your_name"] # If name input before timeout ...
 29 then
 30 echo "Your name is $your_name."
 31 else
 32 echo "Timed out."
 33 fi
 34
 35 echo
 36
 37 # The behavior of this script differs somewhat from "timed-input.sh."
 38 # At each keystroke, the counter resets.
 39
 40 exit 0

Perhaps the simplest method is using the -t option to read.

Example 9-4. Timed read

 1 #!/bin/bash
 2 # t-out.sh [time-out]
 3 # Inspired by a suggestion from "syngin seven" (thanks).
 4
 5
 6 TIMELIMIT=4 # 4 seconds
 7
 8 read -t $TIMELIMIT variable <&1
 9 # ^^^
 10 # In this instance, "<&1" is needed for Bash 1.x and 2.x,
 11 # but unnecessary for Bash 3+.
 12
 13 echo
 14
 15 if [-z "$variable"] # Is null?
 16 then
 17 echo "Timed out, variable still unset."
 18 else
 19 echo "variable = $variable"
 20 fi
 21
 22 exit 0

$UID
User ID number

Current user's user identification number, as recorded in /etc/passwd

This is the current user's real id, even if she has temporarily assumed another identity through su.
$UID is a readonly variable, not subject to change from the command line or within a script, and is
the counterpart to the id builtin.

Example 9-5. Am I root?

 1 #!/bin/bash
 2 # am-i-root.sh: Am I root or not?
 3
 4 ROOT_UID=0 # Root has $UID 0.
 5
 6 if ["$UID" -eq "$ROOT_UID"] # Will the real "root" please stand up?
 7 then
 8 echo "You are root."
 9 else
 10 echo "You are just an ordinary user (but mom loves you just the same)."
 11 fi
 12
 13 exit 0
 14
 15
 16 # === #
 17 # Code below will not execute, because the script already exited.
 18
 19 # An alternate method of getting to the root of matters:
 20

 21 ROOTUSER_NAME=root
 22
 23 username=`id -nu` # Or... username=`whoami`
 24 if ["$username" = "$ROOTUSER_NAME"]
 25 then
 26 echo "Rooty, toot, toot. You are root."
 27 else
 28 echo "You are just a regular fella."
 29 fi

See also Example 2-3.

The variables $ENV, $LOGNAME, $MAIL, $TERM, $USER, and $USERNAME are not
Bash builtins. These are, however, often set as environmental variables in one of the
Bash or login startup files. $SHELL, the name of the user's login shell, may be set
from /etc/passwd or in an "init" script, and it is likewise not a Bash builtin.

tcsh% echo $LOGNAME
bozo
tcsh% echo $SHELL
/bin/tcsh
tcsh% echo $TERM
rxvt

bash$ echo $LOGNAME
bozo
bash$ echo $SHELL
/bin/tcsh
bash$ echo $TERM
rxvt

Positional Parameters

$0, $1, $2, etc.
Positional parameters, passed from command line to script, passed to a function, or set to a variable
(see Example 4-5 and Example 15-16)

$#
Number of command-line arguments [4] or positional parameters (see Example 36-2)

$*
All of the positional parameters, seen as a single word

"$*" must be quoted.

$@
Same as $*, but each parameter is a quoted string, that is, the parameters are passed on intact, without
interpretation or expansion. This means, among other things, that each parameter in the argument list
is seen as a separate word.

Of course, "$@" should be quoted.

Example 9-6. arglist: Listing arguments with $* and $@

 1 #!/bin/bash
 2 # arglist.sh
 3 # Invoke this script with several arguments, such as "one two three" ...
 4

 5 E_BADARGS=85
 6
 7 if [! -n "$1"]
 8 then
 9 echo "Usage: `basename $0` argument1 argument2 etc."
 10 exit $E_BADARGS
 11 fi
 12
 13 echo
 14
 15 index=1 # Initialize count.
 16
 17 echo "Listing args with \"\$*\":"
 18 for arg in "$*" # Doesn't work properly if "$*" isn't quoted.
 19 do
 20 echo "Arg #$index = $arg"
 21 let "index+=1"
 22 done # $* sees all arguments as single word.
 23 echo "Entire arg list seen as single word."
 24
 25 echo
 26
 27 index=1 # Reset count.
 28 # What happens if you forget to do this?
 29
 30 echo "Listing args with \"\$@\":"
 31 for arg in "$@"
 32 do
 33 echo "Arg #$index = $arg"
 34 let "index+=1"
 35 done # $@ sees arguments as separate words.
 36 echo "Arg list seen as separate words."
 37
 38 echo
 39
 40 index=1 # Reset count.
 41
 42 echo "Listing args with \$* (unquoted):"
 43 for arg in $*
 44 do
 45 echo "Arg #$index = $arg"
 46 let "index+=1"
 47 done # Unquoted $* sees arguments as separate words.
 48 echo "Arg list seen as separate words."
 49
 50 exit 0

Following a shift, the $@ holds the remaining command-line parameters, lacking the previous $1,
which was lost.

 1 #!/bin/bash
 2 # Invoke with ./scriptname 1 2 3 4 5
 3
 4 echo "$@" # 1 2 3 4 5
 5 shift
 6 echo "$@" # 2 3 4 5
 7 shift
 8 echo "$@" # 3 4 5
 9
 10 # Each "shift" loses parameter $1.
 11 # "$@" then contains the remaining parameters.

The $@ special parameter finds use as a tool for filtering input into shell scripts. The cat "$@"
construction accepts input to a script either from stdin or from files given as parameters to the
script. See Example 16-24 and Example 16-25.

The $* and $@ parameters sometimes display inconsistent and puzzling behavior,
depending on the setting of $IFS.

Example 9-7. Inconsistent $* and $@ behavior

 1 #!/bin/bash
 2
 3 # Erratic behavior of the "$*" and "$@" internal Bash variables,
 4 #+ depending on whether or not they are quoted.
 5 # Demonstrates inconsistent handling of word splitting and linefeeds.
 6
 7
 8 set -- "First one" "second" "third:one" "" "Fifth: :one"
 9 # Setting the script arguments, $1, $2, $3, etc.
 10
 11 echo
 12
 13 echo 'IFS unchanged, using "$*"'
 14 c=0
 15 for i in "$*" # quoted
 16 do echo "$((c+=1)): [$i]" # This line remains the same in every instance.
 17 # Echo args.
 18 done
 19 echo ---
 20
 21 echo 'IFS unchanged, using $*'
 22 c=0
 23 for i in $* # unquoted
 24 do echo "$((c+=1)): [$i]"
 25 done
 26 echo ---
 27
 28 echo 'IFS unchanged, using "$@"'
 29 c=0
 30 for i in "$@"
 31 do echo "$((c+=1)): [$i]"
 32 done
 33 echo ---
 34
 35 echo 'IFS unchanged, using $@'
 36 c=0
 37 for i in $@
 38 do echo "$((c+=1)): [$i]"
 39 done
 40 echo ---
 41
 42 IFS=:
 43 echo 'IFS=":", using "$*"'
 44 c=0
 45 for i in "$*"
 46 do echo "$((c+=1)): [$i]"
 47 done
 48 echo ---
 49
 50 echo 'IFS=":", using $*'
 51 c=0
 52 for i in $*
 53 do echo "$((c+=1)): [$i]"
 54 done
 55 echo ---
 56
 57 var=$*
 58 echo 'IFS=":", using "$var" (var=$*)'

 59 c=0
 60 for i in "$var"
 61 do echo "$((c+=1)): [$i]"
 62 done
 63 echo ---
 64
 65 echo 'IFS=":", using $var (var=$*)'
 66 c=0
 67 for i in $var
 68 do echo "$((c+=1)): [$i]"
 69 done
 70 echo ---
 71
 72 var="$*"
 73 echo 'IFS=":", using $var (var="$*")'
 74 c=0
 75 for i in $var
 76 do echo "$((c+=1)): [$i]"
 77 done
 78 echo ---
 79
 80 echo 'IFS=":", using "$var" (var="$*")'
 81 c=0
 82 for i in "$var"
 83 do echo "$((c+=1)): [$i]"
 84 done
 85 echo ---
 86
 87 echo 'IFS=":", using "$@"'
 88 c=0
 89 for i in "$@"
 90 do echo "$((c+=1)): [$i]"
 91 done
 92 echo ---
 93
 94 echo 'IFS=":", using $@'
 95 c=0
 96 for i in $@
 97 do echo "$((c+=1)): [$i]"
 98 done
 99 echo ---
 100
 101 var=$@
 102 echo 'IFS=":", using $var (var=$@)'
 103 c=0
 104 for i in $var
 105 do echo "$((c+=1)): [$i]"
 106 done
 107 echo ---
 108
 109 echo 'IFS=":", using "$var" (var=$@)'
 110 c=0
 111 for i in "$var"
 112 do echo "$((c+=1)): [$i]"
 113 done
 114 echo ---
 115
 116 var="$@"
 117 echo 'IFS=":", using "$var" (var="$@")'
 118 c=0
 119 for i in "$var"
 120 do echo "$((c+=1)): [$i]"
 121 done
 122 echo ---
 123
 124 echo 'IFS=":", using $var (var="$@")'

 125 c=0
 126 for i in $var
 127 do echo "$((c+=1)): [$i]"
 128 done
 129
 130 echo
 131
 132 # Try this script with ksh or zsh -y.
 133
 134 exit 0
 135
 136 # This example script written by Stephane Chazelas,
 137 #+ and slightly modified by the document author.

The $@ and $* parameters differ only when between double quotes.

Example 9-8. $* and $@ when $IFS is empty

 1 #!/bin/bash
 2
 3 # If $IFS set, but empty,
 4 #+ then "$*" and "$@" do not echo positional params as expected.
 5
 6 mecho () # Echo positional parameters.
 7 {
 8 echo "$1,$2,$3";
 9 }
 10
 11
 12 IFS="" # Set, but empty.
 13 set a b c # Positional parameters.
 14
 15 mecho "$*" # abc,,
 16 # ^^
 17 mecho $* # a,b,c
 18
 19 mecho $@ # a,b,c
 20 mecho "$@" # a,b,c
 21
 22 # The behavior of $* and $@ when $IFS is empty depends
 23 #+ on which Bash or sh version being run.
 24 # It is therefore inadvisable to depend on this "feature" in a script.
 25
 26
 27 # Thanks, Stephane Chazelas.
 28
 29 exit

Other Special Parameters

$-
Flags passed to script (using set). See Example 15-16.

This was originally a ksh construct adopted into Bash, and unfortunately it does
not seem to work reliably in Bash scripts. One possible use for it is to have a
script self-test whether it is interactive.

$!
PID (process ID) of last job run in background

 1 LOG=$0.log
 2
 3 COMMAND1="sleep 100"
 4
 5 echo "Logging PIDs background commands for script: $0" >> "$LOG"
 6 # So they can be monitored, and killed as necessary.
 7 echo >> "$LOG"
 8
 9 # Logging commands.
 10
 11 echo -n "PID of \"$COMMAND1\": " >> "$LOG"
 12 ${COMMAND1} &
 13 echo $! >> "$LOG"
 14 # PID of "sleep 100": 1506
 15
 16 # Thank you, Jacques Lederer, for suggesting this.

Using $! for job control:

 1 possibly_hanging_job & { sleep ${TIMEOUT}; eval 'kill -9 $!' &> /dev/null; }
 2 # Forces completion of an ill-behaved program.
 3 # Useful, for example, in init scripts.
 4
 5 # Thank you, Sylvain Fourmanoit, for this creative use of the "!" variable.

Or, alternately:

 1 # This example by Matthew Sage.
 2 # Used with permission.
 3
 4 TIMEOUT=30 # Timeout value in seconds
 5 count=0
 6
 7 possibly_hanging_job & {
 8 while ((count < TIMEOUT)); do
 9 eval '[! -d "/proc/$!"] && ((count = TIMEOUT))'
 10 # /proc is where information about running processes is found.
 11 # "-d" tests whether it exists (whether directory exists).
 12 # So, we're waiting for the job in question to show up.
 13 ((count++))
 14 sleep 1
 15 done
 16 eval '[-d "/proc/$!"] && kill -15 $!'
 17 # If the hanging job is running, kill it.
 18 }
 19
 20 # -- #
 21
 22 # However, this may not not work as specified if another process
 23 #+ begins to run after the "hanging_job" . . .
 24 # In such a case, the wrong job may be killed.
 25 # Ariel Meragelman suggests the following fix.
 26
 27 TIMEOUT=30
 28 count=0
 29 # Timeout value in seconds
 30 possibly_hanging_job & {
 31
 32 while ((count < TIMEOUT)); do
 33 eval '[! -d "/proc/$lastjob"] && ((count = TIMEOUT))'
 34 lastjob=$!
 35 ((count++))
 36 sleep 1
 37 done
 38 eval '[-d "/proc/$lastjob"] && kill -15 $lastjob'
 39
 40 }

 41
 42 exit

$_
Special variable set to final argument of previous command executed.

Example 9-9. Underscore variable

 1 #!/bin/bash
 2
 3 echo $_ # /bin/bash
 4 # Just called /bin/bash to run the script.
 5 # Note that this will vary according to
 6 #+ how the script is invoked.
 7
 8 du >/dev/null # So no output from command.
 9 echo $_ # du
 10
 11 ls -al >/dev/null # So no output from command.
 12 echo $_ # -al (last argument)
 13
 14 :
 15 echo $_ # :

$?
Exit status of a command, function, or the script itself (see Example 24-7)

$$
Process ID (PID) of the script itself. [5] The $$ variable often finds use in scripts to construct
"unique" temp file names (see Example 32-6, Example 16-31, and Example 15-27). This is usually
simpler than invoking mktemp.

Notes

[1] A stack register is a set of consecutive memory locations, such that the values stored (pushed) are
retrieved (popped) in reverse order. The last value stored is the first retrieved. This is sometimes called
a LIFO (last-in-first-out) or pushdown stack.

[2] The PID of the currently running script is $$, of course.
[3] Somewhat analogous to recursion, in this context nesting refers to a pattern embedded within a larger

pattern. One of the definitions of nest, according to the 1913 edition of Webster's Dictionary, illustrates
this beautifully: "A collection of boxes, cases, or the like, of graduated size, each put within the one next
larger."

[4] The words "argument" and "parameter" are often used interchangeably. In the context of this document,
they have the same precise meaning: a variable passed to a script or function.

[5] Within a script, inside a subshell, $$ returns the PID of the script, not the subshell.

Prev Home Next
Beyond the Basics Up Typing variables: declare or

typeset
Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting

Prev Chapter 9. Another Look at Variables Next

9.2. Typing variables: declare or typeset

The declare or typeset builtins, which are exact synonyms, permit modifying the properties of variables. This
is a very weak form of the typing [1] available in certain programming languages. The declare command is
specific to version 2 or later of Bash. The typeset command also works in ksh scripts.

declare/typeset options

-r readonly
(declare -r var1 works the same as readonly var1)

This is the rough equivalent of the C const type qualifier. An attempt to change the value of a
readonly variable fails with an error message.

 1 declare -r var1=1
 2 echo "var1 = $var1" # var1 = 1
 3
 4 ((var1++)) # x.sh: line 4: var1: readonly variable

-i integer

 1 declare -i number
 2 # The script will treat subsequent occurrences of "number" as an integer.
 3
 4 number=3
 5 echo "Number = $number" # Number = 3
 6
 7 number=three
 8 echo "Number = $number" # Number = 0
 9 # Tries to evaluate the string "three" as an integer.

Certain arithmetic operations are permitted for declared integer variables without the need for expr or
let.

 1 n=6/3
 2 echo "n = $n" # n = 6/3
 3
 4 declare -i n
 5 n=6/3
 6 echo "n = $n" # n = 2

-a array

 1 declare -a indices

The variable indices will be treated as an array.
-f function(s)

 1 declare -f

A declare -f line with no arguments in a script causes a listing of all the functions previously
defined in that script.

 1 declare -f function_name

A declare -f function_name in a script lists just the function named.
-x export

 1 declare -x var3

This declares a variable as available for exporting outside the environment of the script itself.
-x var=$value

 1 declare -x var3=373

The declare command permits assigning a value to a variable in the same statement as setting its
properties.

Example 9-10. Using declare to type variables

 1 #!/bin/bash
 2
 3 func1 ()
 4 {
 5 echo This is a function.
 6 }
 7
 8 declare -f # Lists the function above.
 9
 10 echo
 11
 12 declare -i var1 # var1 is an integer.
 13 var1=2367
 14 echo "var1 declared as $var1"
 15 var1=var1+1 # Integer declaration eliminates the need for 'let'.
 16 echo "var1 incremented by 1 is $var1."
 17 # Attempt to change variable declared as integer.
 18 echo "Attempting to change var1 to floating point value, 2367.1."
 19 var1=2367.1 # Results in error message, with no change to variable.
 20 echo "var1 is still $var1"
 21
 22 echo
 23
 24 declare -r var2=13.36 # 'declare' permits setting a variable property
 25 #+ and simultaneously assigning it a value.
 26 echo "var2 declared as $var2" # Attempt to change readonly variable.
 27 var2=13.37 # Generates error message, and exit from script.
 28
 29 echo "var2 is still $var2" # This line will not execute.
 30
 31 exit 0 # Script will not exit here.

Using the declare builtin restricts the scope of a variable.

 1 foo ()
 2 {
 3 FOO="bar"
 4 }
 5
 6 bar ()
 7 {
 8 foo
 9 echo $FOO
 10 }
 11
 12 bar # Prints bar.

However . . .

 1 foo (){
 2 declare FOO="bar"
 3 }
 4
 5 bar ()
 6 {
 7 foo

 8 echo $FOO
 9 }
 10
 11 bar # Prints nothing.
 12
 13
 14 # Thank you, Michael Iatrou, for pointing this out.

9.2.1. Another use for declare

The declare command can be helpful in identifying variables, environmental or otherwise. This can be
especially useful with arrays.

bash$ declare | grep HOME
HOME=/home/bozo

bash$ zzy=68
bash$ declare | grep zzy
zzy=68

bash$ Colors=([0]="purple" [1]="reddish-orange" [2]="light green")
bash$ echo ${Colors[@]}
purple reddish-orange light green
bash$ declare | grep Colors
Colors=([0]="purple" [1]="reddish-orange" [2]="light green")

Notes

[1] In this context, typing a variable means to classify it and restrict its properties. For example, a variable
declared or typed as an integer is no longer available for string operations.

 1 declare -i intvar
 2
 3 intvar=23
 4 echo "$intvar" # 23
 5 intvar=stringval
 6 echo "$intvar" # 0

Prev Home Next
Another Look at Variables Up $RANDOM: generate random

integer
Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting

Prev Chapter 9. Another Look at Variables Next

9.3. $RANDOM: generate random integer
Anyone who attempts to generate random
numbers by deterministic means is, of course,
living in a state of sin.

--John von Neumann

$RANDOM is an internal Bash function (not a constant) that returns a pseudorandom [1] integer in the range 0
- 32767. It should not be used to generate an encryption key.

Example 9-11. Generating random numbers

 1 #!/bin/bash
 2
 3 # $RANDOM returns a different random integer at each invocation.
 4 # Nominal range: 0 - 32767 (signed 16-bit integer).
 5
 6 MAXCOUNT=10
 7 count=1
 8
 9 echo
 10 echo "$MAXCOUNT random numbers:"
 11 echo "-----------------"
 12 while ["$count" -le $MAXCOUNT] # Generate 10 ($MAXCOUNT) random integers.
 13 do
 14 number=$RANDOM
 15 echo $number
 16 let "count += 1" # Increment count.
 17 done
 18 echo "-----------------"
 19
 20 # If you need a random int within a certain range, use the 'modulo' operator.
 21 # This returns the remainder of a division operation.
 22
 23 RANGE=500
 24
 25 echo
 26
 27 number=$RANDOM
 28 let "number %= $RANGE"
 29 # ^^
 30 echo "Random number less than $RANGE --- $number"
 31
 32 echo
 33
 34
 35
 36 # If you need a random integer greater than a lower bound,
 37 #+ then set up a test to discard all numbers below that.
 38
 39 FLOOR=200
 40
 41 number=0 #initialize
 42 while ["$number" -le $FLOOR]
 43 do
 44 number=$RANDOM
 45 done
 46 echo "Random number greater than $FLOOR --- $number"
 47 echo
 48

 49 # Let's examine a simple alternative to the above loop, namely
 50 # let "number = $RANDOM + $FLOOR"
 51 # That would eliminate the while-loop and run faster.
 52 # But, there might be a problem with that. What is it?
 53
 54
 55
 56 # Combine above two techniques to retrieve random number between two limits.
 57 number=0 #initialize
 58 while ["$number" -le $FLOOR]
 59 do
 60 number=$RANDOM
 61 let "number %= $RANGE" # Scales $number down within $RANGE.
 62 done
 63 echo "Random number between $FLOOR and $RANGE --- $number"
 64 echo
 65
 66
 67
 68 # Generate binary choice, that is, "true" or "false" value.
 69 BINARY=2
 70 T=1
 71 number=$RANDOM
 72
 73 let "number %= $BINARY"
 74 # Note that let "number >>= 14" gives a better random distribution
 75 #+ (right shifts out everything except last binary digit).
 76 if ["$number" -eq $T]
 77 then
 78 echo "TRUE"
 79 else
 80 echo "FALSE"
 81 fi
 82
 83 echo
 84
 85
 86 # Generate a toss of the dice.
 87 SPOTS=6 # Modulo 6 gives range 0 - 5.
 88 # Incrementing by 1 gives desired range of 1 - 6.
 89 # Thanks, Paulo Marcel Coelho Aragao, for the simplification.
 90 die1=0
 91 die2=0
 92 # Would it be better to just set SPOTS=7 and not add 1? Why or why not?
 93
 94 # Tosses each die separately, and so gives correct odds.
 95
 96 let "die1 = $RANDOM % $SPOTS +1" # Roll first one.
 97 let "die2 = $RANDOM % $SPOTS +1" # Roll second one.
 98 # Which arithmetic operation, above, has greater precedence --
 99 #+ modulo (%) or addition (+)?
 100
 101
 102 let "throw = $die1 + $die2"
 103 echo "Throw of the dice = $throw"
 104 echo
 105
 106
 107 exit 0

Example 9-12. Picking a random card from a deck

 1 #!/bin/bash
 2 # pick-card.sh
 3
 4 # This is an example of choosing random elements of an array.
 5
 6
 7 # Pick a card, any card.
 8
 9 Suites="Clubs
 10 Diamonds
 11 Hearts
 12 Spades"
 13
 14 Denominations="2
 15 3
 16 4
 17 5
 18 6
 19 7
 20 8
 21 9
 22 10
 23 Jack
 24 Queen
 25 King
 26 Ace"
 27
 28 # Note variables spread over multiple lines.
 29
 30
 31 suite=($Suites) # Read into array variable.
 32 denomination=($Denominations)
 33
 34 num_suites=${#suite[*]} # Count how many elements.
 35 num_denominations=${#denomination[*]}
 36
 37 echo -n "${denomination[$((RANDOM%num_denominations))]} of "
 38 echo ${suite[$((RANDOM%num_suites))]}
 39
 40
 41 # $bozo sh pick-cards.sh
 42 # Jack of Clubs
 43
 44
 45 # Thank you, "jipe," for pointing out this use of $RANDOM.
 46 exit 0

Example 9-13. Brownian Motion Simulation

 1 #!/bin/bash
 2 # brownian.sh
 3 # Author: Mendel Cooper
 4 # Reldate: 10/26/07
 5 # License: GPL3
 6
 7 # --
 8 # This script models Brownian motion:
 9 #+ the random wanderings of tiny particles in a fluid,
 10 #+ as they are buffeted by random currents and collisions.
 11 #+ This is colloquially known as the "Drunkard's Walk."
 12
 13 # It can also be considered as a stripped-down simulation of a

 14 #+ Galton Board, a slanted board with a pattern of pegs,
 15 #+ down which rolls a succession of marbles, one at a time.
 16 #+ At the bottom is a row of slots or catch basins in which
 17 #+ the marbles come to rest at the end of their journey.
 18 # Think of it as a kind of bare-bones Pachinko game.
 19 # As you see by running the script,
 20 #+ most of the marbles cluster around the center slot.
 21 #+ This is consistent with the expected binomial distribution.
 22 # As a Galton Board simulation, the script
 23 #+ disregards such parameters as
 24 #+ board tilt-angle, rolling friction of the marbles,
 25 #+ angles of impact, and elasticity of the pegs.
 26 # To what extent does this affect the accuracy of the simulation?
 27 # --
 28
 29 PASSES=500 # Number of particle interactions / marbles.
 30 ROWS=10 # Number of "collisions" (or horiz. peg rows).
 31 RANGE=3 # 0 - 2 output range from $RANDOM.
 32 POS=0 # Left/right position.
 33 RANDOM=$$ # Seeds the random number generator from PID
 34 #+ of script.
 35
 36 declare -a Slots # Array holding cumulative results of passes.
 37 NUMSLOTS=21 # Number of slots at bottom of board.
 38
 39
 40 Initialize_Slots () { # Zero out all elements of the array.
 41 for i in $(seq $NUMSLOTS)
 42 do
 43 Slots[$i]=0
 44 done
 45
 46 echo # Blank line at beginning of run.
 47 }
 48
 49
 50 Show_Slots () {
 51 echo; echo
 52 echo -n " "
 53 for i in $(seq $NUMSLOTS) # Pretty-print array elements.
 54 do
 55 printf "%3d" ${Slots[$i]} # Allot three spaces per result.
 56 done
 57
 58 echo # Row of slots:
 59 echo " |__|"
 60 echo " ||"
 61 echo # Note that if the count within any particular slot exceeds 99,
 62 #+ it messes up the display.
 63 # Running only(!) 500 passes usually avoids this.
 64 }
 65
 66
 67 Move () { # Move one unit right / left, or stay put.
 68 Move=$RANDOM # How random is $RANDOM? Well, let's see ...
 69 let "Move %= RANGE" # Normalize into range of 0 - 2.
 70 case "$Move" in
 71 0) ;; # Do nothing, i.e., stay in place.
 72 1) ((POS--));; # Left.
 73 2) ((POS++));; # Right.
 74 *) echo -n "Error ";; # Anomaly! (Should never occur.)
 75 esac
 76 }
 77
 78
 79 Play () { # Single pass (inner loop).

 80 i=0
 81 while ["$i" -lt "$ROWS"] # One event per row.
 82 do
 83 Move
 84 ((i++));
 85 done
 86
 87 SHIFT=11 # Why 11, and not 10?
 88 let "POS += $SHIFT" # Shift "zero position" to center.
 89 ((Slots[$POS]++)) # DEBUG: echo $POS
 90
 91 # echo -n "$POS "
 92
 93 }
 94
 95
 96 Run () { # Outer loop.
 97 p=0
 98 while ["$p" -lt "$PASSES"]
 99 do
 100 Play
 101 ((p++))
 102 POS=0 # Reset to zero. Why?
 103 done
 104 }
 105
 106
 107 # --------------
 108 # main ()
 109 Initialize_Slots
 110 Run
 111 Show_Slots
 112 # --------------
 113
 114 exit $?
 115
 116 # Exercises:
 117 # ---------
 118 # 1) Show the results in a vertical bar graph, or as an alternative,
 119 #+ a scattergram.
 120 # 2) Alter the script to use /dev/urandom instead of $RANDOM.
 121 # Will this make the results more random?
 122 # 3) Provide some sort of "animation" or graphic output
 123 # for each marble played.

Jipe points out a set of techniques for generating random numbers within a range.

 1 # Generate random number between 6 and 30.
 2 rnumber=$((RANDOM%25+6))
 3
 4 # Generate random number in the same 6 - 30 range,
 5 #+ but the number must be evenly divisible by 3.
 6 rnumber=$(((RANDOM%30/3+1)*3))
 7
 8 # Note that this will not work all the time.
 9 # It fails if $RANDOM%30 returns 0.
 10
 11 # Frank Wang suggests the following alternative:
 12 rnumber=$((RANDOM%27/3*3+6))

Bill Gradwohl came up with an improved formula that works for positive numbers.

 1 rnumber=$(((RANDOM%(max-min+divisibleBy))/divisibleBy*divisibleBy+min))

Here Bill presents a versatile function that returns a random number between two specified values.

Example 9-14. Random between values

 1 #!/bin/bash
 2 # random-between.sh
 3 # Random number between two specified values.
 4 # Script by Bill Gradwohl, with minor modifications by the document author.
 5 # Corrections in lines 187 and 189 by Anthony Le Clezio.
 6 # Used with permission.
 7
 8
 9 randomBetween() {
 10 # Generates a positive or negative random number
 11 #+ between $min and $max
 12 #+ and divisible by $divisibleBy.
 13 # Gives a "reasonably random" distribution of return values.
 14 #
 15 # Bill Gradwohl - Oct 1, 2003
 16
 17 syntax() {
 18 # Function embedded within function.
 19 echo
 20 echo "Syntax: randomBetween [min] [max] [multiple]"
 21 echo
 22 echo -n "Expects up to 3 passed parameters, "
 23 echo "but all are completely optional."
 24 echo "min is the minimum value"
 25 echo "max is the maximum value"
 26 echo -n "multiple specifies that the answer must be "
 27 echo "a multiple of this value."
 28 echo " i.e. answer must be evenly divisible by this number."
 29 echo
 30 echo "If any value is missing, defaults area supplied as: 0 32767 1"
 31 echo -n "Successful completion returns 0, "
 32 echo "unsuccessful completion returns"
 33 echo "function syntax and 1."
 34 echo -n "The answer is returned in the global variable "
 35 echo "randomBetweenAnswer"
 36 echo -n "Negative values for any passed parameter are "
 37 echo "handled correctly."
 38 }
 39
 40 local min=${1:-0}
 41 local max=${2:-32767}
 42 local divisibleBy=${3:-1}
 43 # Default values assigned, in case parameters not passed to function.
 44
 45 local x
 46 local spread
 47
 48 # Let's make sure the divisibleBy value is positive.
 49 [${divisibleBy} -lt 0] && divisibleBy=$((0-divisibleBy))
 50
 51 # Sanity check.
 52 if [$# -gt 3 -o ${divisibleBy} -eq 0 -o ${min} -eq ${max}]; then
 53 syntax
 54 return 1
 55 fi
 56
 57 # See if the min and max are reversed.
 58 if [${min} -gt ${max}]; then
 59 # Swap them.
 60 x=${min}
 61 min=${max}

 62 max=${x}
 63 fi
 64
 65 # If min is itself not evenly divisible by $divisibleBy,
 66 #+ then fix the min to be within range.
 67 if [$((min/divisibleBy*divisibleBy)) -ne ${min}]; then
 68 if [${min} -lt 0]; then
 69 min=$((min/divisibleBy*divisibleBy))
 70 else
 71 min=$((((min/divisibleBy)+1)*divisibleBy))
 72 fi
 73 fi
 74
 75 # If max is itself not evenly divisible by $divisibleBy,
 76 #+ then fix the max to be within range.
 77 if [$((max/divisibleBy*divisibleBy)) -ne ${max}]; then
 78 if [${max} -lt 0]; then
 79 max=$((((max/divisibleBy)-1)*divisibleBy))
 80 else
 81 max=$((max/divisibleBy*divisibleBy))
 82 fi
 83 fi
 84
 85 # ---
 86 # Now, to do the real work.
 87
 88 # Note that to get a proper distribution for the end points,
 89 #+ the range of random values has to be allowed to go between
 90 #+ 0 and abs(max-min)+divisibleBy, not just abs(max-min)+1.
 91
 92 # The slight increase will produce the proper distribution for the
 93 #+ end points.
 94
 95 # Changing the formula to use abs(max-min)+1 will still produce
 96 #+ correct answers, but the randomness of those answers is faulty in
 97 #+ that the number of times the end points ($min and $max) are returned
 98 #+ is considerably lower than when the correct formula is used.
 99 # ---
 100
 101 spread=$((max-min))
 102 # Omair Eshkenazi points out that this test is unnecessary,
 103 #+ since max and min have already been switched around.
 104 [${spread} -lt 0] && spread=$((0-spread))
 105 let spread+=divisibleBy
 106 randomBetweenAnswer=$(((RANDOM%spread)/divisibleBy*divisibleBy+min))
 107
 108 return 0
 109
 110 # However, Paulo Marcel Coelho Aragao points out that
 111 #+ when $max and $min are not divisible by $divisibleBy,
 112 #+ the formula fails.
 113 #
 114 # He suggests instead the following formula:
 115 # rnumber = $(((RANDOM%(max-min+1)+min)/divisibleBy*divisibleBy))
 116
 117 }
 118
 119 # Let's test the function.
 120 min=-14
 121 max=20
 122 divisibleBy=3
 123
 124
 125 # Generate an array of expected answers and check to make sure we get
 126 #+ at least one of each answer if we loop long enough.
 127

 128 declare -a answer
 129 minimum=${min}
 130 maximum=${max}
 131 if [$((minimum/divisibleBy*divisibleBy)) -ne ${minimum}]; then
 132 if [${minimum} -lt 0]; then
 133 minimum=$((minimum/divisibleBy*divisibleBy))
 134 else
 135 minimum=$((((minimum/divisibleBy)+1)*divisibleBy))
 136 fi
 137 fi
 138
 139
 140 # If max is itself not evenly divisible by $divisibleBy,
 141 #+ then fix the max to be within range.
 142
 143 if [$((maximum/divisibleBy*divisibleBy)) -ne ${maximum}]; then
 144 if [${maximum} -lt 0]; then
 145 maximum=$((((maximum/divisibleBy)-1)*divisibleBy))
 146 else
 147 maximum=$((maximum/divisibleBy*divisibleBy))
 148 fi
 149 fi
 150
 151
 152 # We need to generate only positive array subscripts,
 153 #+ so we need a displacement that that will guarantee
 154 #+ positive results.
 155
 156 disp=$((0-minimum))
 157 for ((i=${minimum}; i<=${maximum}; i+=divisibleBy)); do
 158 answer[i+disp]=0
 159 done
 160
 161
 162 # Now loop a large number of times to see what we get.
 163 loopIt=1000 # The script author suggests 100000,
 164 #+ but that takes a good long while.
 165
 166 for ((i=0; i<${loopIt}; ++i)); do
 167
 168 # Note that we are specifying min and max in reversed order here to
 169 #+ make the function correct for this case.
 170
 171 randomBetween ${max} ${min} ${divisibleBy}
 172
 173 # Report an error if an answer is unexpected.
 174 [${randomBetweenAnswer} -lt ${min} -o ${randomBetweenAnswer} -gt ${max}] \
 175 && echo MIN or MAX error - ${randomBetweenAnswer}!
 176 [$((randomBetweenAnswer%${divisibleBy})) -ne 0] \
 177 && echo DIVISIBLE BY error - ${randomBetweenAnswer}!
 178
 179 # Store the answer away statistically.
 180 answer[randomBetweenAnswer+disp]=$((answer[randomBetweenAnswer+disp]+1))
 181 done
 182
 183
 184
 185 # Let's check the results
 186
 187 for ((i=${minimum}; i<=${maximum}; i+=divisibleBy)); do
 188 [${answer[i+disp]} -eq 0] \
 189 && echo "We never got an answer of $i." \
 190 || echo "${i} occurred ${answer[i+disp]} times."
 191 done
 192
 193

 194 exit 0

Just how random is $RANDOM? The best way to test this is to write a script that tracks the distribution of
"random" numbers generated by $RANDOM. Let's roll a $RANDOM die a few times . . .

Example 9-15. Rolling a single die with RANDOM

 1 #!/bin/bash
 2 # How random is RANDOM?
 3
 4 RANDOM=$$ # Reseed the random number generator using script process ID.
 5
 6 PIPS=6 # A die has 6 pips.
 7 MAXTHROWS=600 # Increase this if you have nothing better to do with your time.
 8 throw=0 # Number of times the dice have been cast.
 9
 10 ones=0 # Must initialize counts to zero,
 11 twos=0 #+ since an uninitialized variable is null, NOT zero.
 12 threes=0
 13 fours=0
 14 fives=0
 15 sixes=0
 16
 17 print_result ()
 18 {
 19 echo
 20 echo "ones = $ones"
 21 echo "twos = $twos"
 22 echo "threes = $threes"
 23 echo "fours = $fours"
 24 echo "fives = $fives"
 25 echo "sixes = $sixes"
 26 echo
 27 }
 28
 29 update_count()
 30 {
 31 case "$1" in
 32 0) ((ones++));; # Since a die has no "zero", this corresponds to 1.
 33 1) ((twos++));; # And this to 2.
 34 2) ((threes++));; # And so forth.
 35 3) ((fours++));;
 36 4) ((fives++));;
 37 5) ((sixes++));;
 38 esac
 39 }
 40
 41 echo
 42
 43
 44 while ["$throw" -lt "$MAXTHROWS"]
 45 do
 46 let "die1 = RANDOM % $PIPS"
 47 update_count $die1
 48 let "throw += 1"
 49 done
 50
 51 print_result
 52
 53 exit $?
 54
 55 # The scores should distribute evenly, assuming RANDOM is random.
 56 # With $MAXTHROWS at 600, all should cluster around 100,

 57 #+ plus-or-minus 20 or so.
 58 #
 59 # Keep in mind that RANDOM is a ***pseudorandom*** generator,
 60 #+ and not a spectacularly good one at that.
 61
 62 # Randomness is a deep and complex subject.
 63 # Sufficiently long "random" sequences may exhibit
 64 #+ chaotic and other "non-random" behavior.
 65
 66 # Exercise (easy):
 67 # ---------------
 68 # Rewrite this script to flip a coin 1000 times.
 69 # Choices are "HEADS" and "TAILS."

As we have seen in the last example, it is best to reseed the RANDOM generator each time it is invoked. Using
the same seed for RANDOM repeats the same series of numbers. [2] (This mirrors the behavior of the
random() function in C.)

Example 9-16. Reseeding RANDOM

 1 #!/bin/bash
 2 # seeding-random.sh: Seeding the RANDOM variable.
 3 # v 1.1, reldate 09 Feb 2013
 4
 5 MAXCOUNT=25 # How many numbers to generate.
 6 SEED=
 7
 8 random_numbers ()
 9 {
 10 local count=0
 11 local number
 12
 13 while ["$count" -lt "$MAXCOUNT"]
 14 do
 15 number=$RANDOM
 16 echo -n "$number "
 17 let "count++"
 18 done
 19 }
 20
 21 echo; echo
 22
 23 SEED=1
 24 RANDOM=$SEED # Setting RANDOM seeds the random number generator.
 25 echo "Random seed = $SEED"
 26 random_numbers
 27
 28
 29 RANDOM=$SEED # Same seed for RANDOM . . .
 30 echo; echo "Again, with same random seed ..."
 31 echo "Random seed = $SEED"
 32 random_numbers # . . . reproduces the exact same number series.
 33 #
 34 # When is it useful to duplicate a "random" series?
 35
 36 echo; echo
 37
 38 SEED=2
 39 RANDOM=$SEED # Trying again, but with a different seed . . .
 40 echo "Random seed = $SEED"
 41 random_numbers # . . . gives a different number series.
 42
 43 echo; echo

 44
 45 # RANDOM=$$ seeds RANDOM from process id of script.
 46 # It is also possible to seed RANDOM from 'time' or 'date' commands.
 47
 48 # Getting fancy...
 49 SEED=$(head -1 /dev/urandom | od -N 1 | awk '{ print $2 }'| sed s/^0*//)
 50 # Pseudo-random output fetched
 51 #+ from /dev/urandom (system pseudo-random device-file),
 52 #+ then converted to line of printable (octal) numbers by "od",
 53 #+ then "awk" retrieves just one number for SEED,
 54 #+ finally "sed" removes any leading zeros.
 55 RANDOM=$SEED
 56 echo "Random seed = $SEED"
 57 random_numbers
 58
 59 echo; echo
 60
 61 exit 0

The /dev/urandom pseudo-device file provides a method of generating much more "random"
pseudorandom numbers than the $RANDOM variable. dd if=/dev/urandom of=targetfile
bs=1 count=XX creates a file of well-scattered pseudorandom numbers. However, assigning these
numbers to a variable in a script requires a workaround, such as filtering through od (as in above
example, Example 16-14, and Example A-36), or even piping to md5sum (see Example 36-16).

There are also other ways to generate pseudorandom numbers in a script. Awk provides a convenient
means of doing this.

Example 9-17. Pseudorandom numbers, using awk

 1 #!/bin/bash
 2 # random2.sh: Returns a pseudorandom number in the range 0 - 1,
 3 #+ to 6 decimal places. For example: 0.822725
 4 # Uses the awk rand() function.
 5
 6 AWKSCRIPT=' { srand(); print rand() } '
 7 # Command(s)/parameters passed to awk
 8 # Note that srand() reseeds awk's random number generator.
 9
 10
 11 echo -n "Random number between 0 and 1 = "
 12
 13 echo | awk "$AWKSCRIPT"
 14 # What happens if you leave out the 'echo'?
 15
 16 exit 0
 17
 18
 19 # Exercises:
 20 # ---------
 21
 22 # 1) Using a loop construct, print out 10 different random numbers.
 23 # (Hint: you must reseed the srand() function with a different seed
 24 #+ in each pass through the loop. What happens if you omit this?)
 25
 26 # 2) Using an integer multiplier as a scaling factor, generate random numbers
 27 #+ in the range of 10 to 100.
 28
 29 # 3) Same as exercise #2, above, but generate random integers this time.

The date command also lends itself to generating pseudorandom integer sequences.

Notes

[1] True "randomness," insofar as it exists at all, can only be found in certain incompletely understood
natural phenomena, such as radioactive decay. Computers only simulate randomness, and
computer-generated sequences of "random" numbers are therefore referred to as pseudorandom.

[2] The seed of a computer-generated pseudorandom number series can be considered an identification
label. For example, think of the pseudorandom series with a seed of 23 as Series #23.

A property of a pseurandom number series is the length of the cycle before it starts repeating itself. A
good pseurandom generator will produce series with very long cycles.

Prev Home Next
Typing variables: declare or
typeset

Up Manipulating Variables

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Next

Chapter 10. Manipulating Variables

10.1. Manipulating Strings

Bash supports a surprising number of string manipulation operations. Unfortunately, these tools lack a unified
focus. Some are a subset of parameter substitution, and others fall under the functionality of the UNIX expr
command. This results in inconsistent command syntax and overlap of functionality, not to mention
confusion.

String Length

${#string}
expr length $string

These are the equivalent of strlen() in C.
expr "$string" : '.*'

 1 stringZ=abcABC123ABCabc
 2
 3 echo ${#stringZ} # 15
 4 echo `expr length $stringZ` # 15
 5 echo `expr "$stringZ" : '.*'` # 15

Example 10-1. Inserting a blank line between paragraphs in a text file

 1 #!/bin/bash
 2 # paragraph-space.sh
 3 # Ver. 2.1, Reldate 29Jul12 [fixup]
 4
 5 # Inserts a blank line between paragraphs of a single-spaced text file.
 6 # Usage: $0 <FILENAME
 7
 8 MINLEN=60 # Change this value? It's a judgment call.
 9 # Assume lines shorter than $MINLEN characters ending in a period
 10 #+ terminate a paragraph. See exercises below.
 11
 12 while read line # For as many lines as the input file has ...
 13 do
 14 echo "$line" # Output the line itself.
 15
 16 len=${#line}
 17 if [["$len" -lt "$MINLEN" && "$line" =~ [*{\.}]$]]
 18 # if [["$len" -lt "$MINLEN" && "$line" =~ \[*\.\]]]
 19 # An update to Bash broke the previous version of this script. Ouch!
 20 # Thank you, Halim Srama, for pointing this out and suggesting a fix.
 21 then echo # Add a blank line immediately
 22 fi #+ after a short line terminated by a period.
 23 done
 24
 25 exit
 26
 27 # Exercises:
 28 # ---------
 29 # 1) The script usually inserts a blank line at the end
 30 #+ of the target file. Fix this.
 31 # 2) Line 17 only considers periods as sentence terminators.
 32 # Modify this to include other common end-of-sentence characters,
 33 #+ such as ?, !, and ".

Length of Matching Substring at Beginning of String

expr match "$string" '$substring'
$substring is a regular expression.

expr "$string" : '$substring'
$substring is a regular expression.

 1 stringZ=abcABC123ABCabc
 2 # |------|
 3 # 12345678
 4
 5 echo `expr match "$stringZ" 'abc[A-Z]*.2'` # 8
 6 echo `expr "$stringZ" : 'abc[A-Z]*.2'` # 8

Index

expr index $string $substring
Numerical position in $string of first character in $substring that matches.

 1 stringZ=abcABC123ABCabc
 2 # 123456 ...
 3 echo `expr index "$stringZ" C12` # 6
 4 # C position.
 5
 6 echo `expr index "$stringZ" 1c` # 3
 7 # 'c' (in #3 position) matches before '1'.

This is the near equivalent of strchr() in C.

Substring Extraction

${string:position}
Extracts substring from $string at $position.

If the $string parameter is "*" or "@", then this extracts the positional parameters, [1] starting at
$position.

${string:position:length}
Extracts $length characters of substring from $string at $position.

 1 stringZ=abcABC123ABCabc
 2 # 0123456789.....
 3 # 0-based indexing.
 4
 5 echo ${stringZ:0} # abcABC123ABCabc
 6 echo ${stringZ:1} # bcABC123ABCabc
 7 echo ${stringZ:7} # 23ABCabc
 8
 9 echo ${stringZ:7:3} # 23A
 10 # Three characters of substring.
 11
 12
 13
 14 # Is it possible to index from the right end of the string?
 15
 16 echo ${stringZ:-4} # abcABC123ABCabc
 17 # Defaults to full string, as in ${parameter:-default}.
 18 # However . . .
 19
 20 echo ${stringZ:(-4)} # Cabc
 21 echo ${stringZ: -4} # Cabc
 22 # Now, it works.

 23 # Parentheses or added space "escape" the position parameter.
 24
 25 # Thank you, Dan Jacobson, for pointing this out.

The position and length arguments can be "parameterized," that is, represented as a variable, rather
than as a numerical constant.

Example 10-2. Generating an 8-character "random" string

 1 #!/bin/bash
 2 # rand-string.sh
 3 # Generating an 8-character "random" string.
 4
 5 if [-n "$1"] # If command-line argument present,
 6 then #+ then set start-string to it.
 7 str0="$1"
 8 else # Else use PID of script as start-string.
 9 str0="$$"
 10 fi
 11
 12 POS=2 # Starting from position 2 in the string.
 13 LEN=8 # Extract eight characters.
 14
 15 str1=$(echo "$str0" | md5sum | md5sum)
 16 # Doubly scramble ^^^^^^ ^^^^^^
 17 #+ by piping and repiping to md5sum.
 18
 19 randstring="${str1:$POS:$LEN}"
 20 # Can parameterize ^^^^ ^^^^
 21
 22 echo "$randstring"
 23
 24 exit $?
 25
 26 # bozo$./rand-string.sh my-password
 27 # 1bdd88c4
 28
 29 # No, this is is not recommended
 30 #+ as a method of generating hack-proof passwords.

If the $string parameter is "*" or "@", then this extracts a maximum of $length positional
parameters, starting at $position.

 1 echo ${*:2} # Echoes second and following positional parameters.
 2 echo ${@:2} # Same as above.
 3
 4 echo ${*:2:3} # Echoes three positional parameters, starting at second.

expr substr $string $position $length
Extracts $length characters from $string starting at $position.

 1 stringZ=abcABC123ABCabc
 2 # 123456789......
 3 # 1-based indexing.
 4
 5 echo `expr substr $stringZ 1 2` # ab
 6 echo `expr substr $stringZ 4 3` # ABC

expr match "$string" '\($substring\)'
Extracts $substring at beginning of $string, where $substring is a regular expression.

expr "$string" : '\($substring\)'

Extracts $substring at beginning of $string, where $substring is a regular expression.

 1 stringZ=abcABC123ABCabc
 2 # =======
 3
 4 echo `expr match "$stringZ" '\(.[b-c]*[A-Z]..[0-9]\)'` # abcABC1
 5 echo `expr "$stringZ" : '\(.[b-c]*[A-Z]..[0-9]\)'` # abcABC1
 6 echo `expr "$stringZ" : '\(.......\)'` # abcABC1
 7 # All of the above forms give an identical result.

expr match "$string" '.*\($substring\)'
Extracts $substring at end of $string, where $substring is a regular expression.

expr "$string" : '.*\($substring\)'
Extracts $substring at end of $string, where $substring is a regular expression.

 1 stringZ=abcABC123ABCabc
 2 # ======
 3
 4 echo `expr match "$stringZ" '.*\([A-C][A-C][A-C][a-c]*\)'` # ABCabc
 5 echo `expr "$stringZ" : '.*\(......\)'` # ABCabc

Substring Removal

${string#substring}
Deletes shortest match of $substring from front of $string.

${string##substring}
Deletes longest match of $substring from front of $string.

 1 stringZ=abcABC123ABCabc
 2 # |----| shortest
 3 # |----------| longest
 4
 5 echo ${stringZ#a*C} # 123ABCabc
 6 # Strip out shortest match between 'a' and 'C'.
 7
 8 echo ${stringZ##a*C} # abc
 9 # Strip out longest match between 'a' and 'C'.
 10
 11
 12
 13 # You can parameterize the substrings.
 14
 15 X='a*C'
 16
 17 echo ${stringZ#$X} # 123ABCabc
 18 echo ${stringZ##$X} # abc
 19 # As above.

${string%substring}
Deletes shortest match of $substring from back of $string.

For example:

 1 # Rename all filenames in $PWD with "TXT" suffix to a "txt" suffix.
 2 # For example, "file1.TXT" becomes "file1.txt" . . .
 3
 4 SUFF=TXT
 5 suff=txt
 6
 7 for i in $(ls *.$SUFF)
 8 do
 9 mv -f $i ${i%.$SUFF}.$suff
 10 # Leave unchanged everything *except* the shortest pattern match

 11 #+ starting from the right-hand-side of the variable $i . . .
 12 done ### This could be condensed into a "one-liner" if desired.
 13
 14 # Thank you, Rory Winston.

${string%%substring}
Deletes longest match of $substring from back of $string.

 1 stringZ=abcABC123ABCabc
 2 # || shortest
 3 # |------------| longest
 4
 5 echo ${stringZ%b*c} # abcABC123ABCa
 6 # Strip out shortest match between 'b' and 'c', from back of $stringZ.
 7
 8 echo ${stringZ%%b*c} # a
 9 # Strip out longest match between 'b' and 'c', from back of $stringZ.

This operator is useful for generating filenames.

Example 10-3. Converting graphic file formats, with filename change

 1 #!/bin/bash
 2 # cvt.sh:
 3 # Converts all the MacPaint image files in a directory to "pbm" format.
 4
 5 # Uses the "macptopbm" binary from the "netpbm" package,
 6 #+ which is maintained by Brian Henderson (bryanh@giraffe-data.com).
 7 # Netpbm is a standard part of most Linux distros.
 8
 9 OPERATION=macptopbm
 10 SUFFIX=pbm # New filename suffix.
 11
 12 if [-n "$1"]
 13 then
 14 directory=$1 # If directory name given as a script argument...
 15 else
 16 directory=$PWD # Otherwise use current working directory.
 17 fi
 18
 19 # Assumes all files in the target directory are MacPaint image files,
 20 #+ with a ".mac" filename suffix.
 21
 22 for file in $directory/* # Filename globbing.
 23 do
 24 filename=${file%.*c} # Strip ".mac" suffix off filename
 25 #+ ('.*c' matches everything
 26 #+ between '.' and 'c', inclusive).
 27 $OPERATION $file > "$filename.$SUFFIX"
 28 # Redirect conversion to new filename.
 29 rm -f $file # Delete original files after converting.
 30 echo "$filename.$SUFFIX" # Log what is happening to stdout.
 31 done
 32
 33 exit 0
 34
 35 # Exercise:
 36 # --------
 37 # As it stands, this script converts *all* the files in the current
 38 #+ working directory.
 39 # Modify it to work *only* on files with a ".mac" suffix.
 40
 41
 42
 43 # *** And here's another way to do it. *** #

 44
 45 #!/bin/bash
 46 # Batch convert into different graphic formats.
 47 # Assumes imagemagick installed (standard in most Linux distros).
 48
 49 INFMT=png # Can be tif, jpg, gif, etc.
 50 OUTFMT=pdf # Can be tif, jpg, gif, pdf, etc.
 51
 52 for pic in *"$INFMT"
 53 do
 54 p2=$(ls "$pic" | sed -e s/\.$INFMT//)
 55 # echo $p2
 56 convert "$pic" $p2.$OUTFMT
 57 done
 58
 59 exit $?

Example 10-4. Converting streaming audio files to ogg

 1 #!/bin/bash
 2 # ra2ogg.sh: Convert streaming audio files (*.ra) to ogg.
 3
 4 # Uses the "mplayer" media player program:
 5 # http://www.mplayerhq.hu/homepage
 6 # Uses the "ogg" library and "oggenc":
 7 # http://www.xiph.org/
 8 #
 9 # This script may need appropriate codecs installed, such as sipr.so ...
 10 # Possibly also the compat-libstdc++ package.
 11
 12
 13 OFILEPREF=${1%%ra} # Strip off the "ra" suffix.
 14 OFILESUFF=wav # Suffix for wav file.
 15 OUTFILE="$OFILEPREF""$OFILESUFF"
 16 E_NOARGS=85
 17
 18 if [-z "$1"] # Must specify a filename to convert.
 19 then
 20 echo "Usage: `basename $0` [filename]"
 21 exit $E_NOARGS
 22 fi
 23
 24
 25 ##
 26 mplayer "$1" -ao pcm:file=$OUTFILE
 27 oggenc "$OUTFILE" # Correct file extension automatically added by oggenc.
 28 ##
 29
 30 rm "$OUTFILE" # Delete intermediate *.wav file.
 31 # If you want to keep it, comment out above line.
 32
 33 exit $?
 34
 35 # Note:
 36 # ----
 37 # On a Website, simply clicking on a *.ram streaming audio file
 38 #+ usually only downloads the URL of the actual *.ra audio file.
 39 # You can then use "wget" or something similar
 40 #+ to download the *.ra file itself.
 41
 42
 43 # Exercises:

 44 # ---------
 45 # As is, this script converts only *.ra filenames.
 46 # Add flexibility by permitting use of *.ram and other filenames.
 47 #
 48 # If you're really ambitious, expand the script
 49 #+ to do automatic downloads and conversions of streaming audio files.
 50 # Given a URL, batch download streaming audio files (using "wget")
 51 #+ and convert them on the fly.

A simple emulation of getopt using substring-extraction constructs.

Example 10-5. Emulating getopt

 1 #!/bin/bash
 2 # getopt-simple.sh
 3 # Author: Chris Morgan
 4 # Used in the ABS Guide with permission.
 5
 6
 7 getopt_simple()
 8 {
 9 echo "getopt_simple()"
 10 echo "Parameters are '$*'"
 11 until [-z "$1"]
 12 do
 13 echo "Processing parameter of: '$1'"
 14 if [${1:0:1} = '/']
 15 then
 16 tmp=${1:1} # Strip off leading '/' . . .
 17 parameter=${tmp%%=*} # Extract name.
 18 value=${tmp##*=} # Extract value.
 19 echo "Parameter: '$parameter', value: '$value'"
 20 eval $parameter=$value
 21 fi
 22 shift
 23 done
 24 }
 25
 26 # Pass all options to getopt_simple().
 27 getopt_simple $*
 28
 29 echo "test is '$test'"
 30 echo "test2 is '$test2'"
 31
 32 exit 0 # See also, UseGetOpt.sh, a modified version of this script.
 33
 34 ---
 35
 36 sh getopt_example.sh /test=value1 /test2=value2
 37
 38 Parameters are '/test=value1 /test2=value2'
 39 Processing parameter of: '/test=value1'
 40 Parameter: 'test', value: 'value1'
 41 Processing parameter of: '/test2=value2'
 42 Parameter: 'test2', value: 'value2'
 43 test is 'value1'
 44 test2 is 'value2'
 45

Substring Replacement

${string/substring/replacement}
Replace first match of $substring with $replacement. [2]

${string//substring/replacement}
Replace all matches of $substring with $replacement.

 1 stringZ=abcABC123ABCabc
 2
 3 echo ${stringZ/abc/xyz} # xyzABC123ABCabc
 4 # Replaces first match of 'abc' with 'xyz'.
 5
 6 echo ${stringZ//abc/xyz} # xyzABC123ABCxyz
 7 # Replaces all matches of 'abc' with # 'xyz'.
 8
 9 echo ---------------
 10 echo "$stringZ" # abcABC123ABCabc
 11 echo ---------------
 12 # The string itself is not altered!
 13
 14 # Can the match and replacement strings be parameterized?
 15 match=abc
 16 repl=000
 17 echo ${stringZ/$match/$repl} # 000ABC123ABCabc
 18 # ^ ^ ^^^
 19 echo ${stringZ//$match/$repl} # 000ABC123ABC000
 20 # Yes! ^ ^ ^^^ ^^^
 21
 22 echo
 23
 24 # What happens if no $replacement string is supplied?
 25 echo ${stringZ/abc} # ABC123ABCabc
 26 echo ${stringZ//abc} # ABC123ABC
 27 # A simple deletion takes place.

${string/#substring/replacement}
If $substring matches front end of $string, substitute $replacement for $substring.

${string/%substring/replacement}
If $substring matches back end of $string, substitute $replacement for $substring.

 1 stringZ=abcABC123ABCabc
 2
 3 echo ${stringZ/#abc/XYZ} # XYZABC123ABCabc
 4 # Replaces front-end match of 'abc' with 'XYZ'.
 5
 6 echo ${stringZ/%abc/XYZ} # abcABC123ABCXYZ
 7 # Replaces back-end match of 'abc' with 'XYZ'.

10.1.1. Manipulating strings using awk

A Bash script may invoke the string manipulation facilities of awk as an alternative to using its built-in
operations.

Example 10-6. Alternate ways of extracting and locating substrings

 1 #!/bin/bash
 2 # substring-extraction.sh
 3
 4 String=23skidoo1
 5 # 012345678 Bash
 6 # 123456789 awk

 7 # Note different string indexing system:
 8 # Bash numbers first character of string as 0.
 9 # Awk numbers first character of string as 1.
 10
 11 echo ${String:2:4} # position 3 (0-1-2), 4 characters long
 12 # skid
 13
 14 # The awk equivalent of ${string:pos:length} is substr(string,pos,length).
 15 echo | awk '
 16 { print substr("'"${String}"'",3,4) # skid
 17 }
 18 '
 19 # Piping an empty "echo" to awk gives it dummy input,
 20 #+ and thus makes it unnecessary to supply a filename.
 21
 22 echo "----"
 23
 24 # And likewise:
 25
 26 echo | awk '
 27 { print index("'"${String}"'", "skid") # 3
 28 } # (skid starts at position 3)
 29 ' # The awk equivalent of "expr index" ...
 30
 31 exit 0

10.1.2. Further Reference

For more on string manipulation in scripts, refer to Section 10.2 and the relevant section of the expr command
listing.

Script examples:

Example 16-91.
Example 10-92.
Example 10-103.
Example 10-114.
Example 10-135.
Example A-366.
Example A-417.

Notes

[1] This applies to either command-line arguments or parameters passed to a function.
[2] Note that $substring and $replacement may refer to either literal strings or variables,

depending on context. See the first usage example.

Prev Home Next
$RANDOM: generate random
integer

Up Parameter Substitution

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Chapter 10. Manipulating Variables Next

10.2. Parameter Substitution

Manipulating and/or expanding variables

${parameter}
Same as $parameter, i.e., value of the variable parameter. In certain contexts, only the less
ambiguous ${parameter} form works.

May be used for concatenating variables with strings.

 1 your_id=${USER}-on-${HOSTNAME}
 2 echo "$your_id"
 3 #
 4 echo "Old \$PATH = $PATH"
 5 PATH=${PATH}:/opt/bin # Add /opt/bin to $PATH for duration of script.
 6 echo "New \$PATH = $PATH"

${parameter-default}, ${parameter:-default}
If parameter not set, use default.

 1 var1=1
 2 var2=2
 3 # var3 is unset.
 4
 5 echo ${var1-$var2} # 1
 6 echo ${var3-$var2} # 2
 7 # ^ Note the $ prefix.
 8
 9
 10
 11 echo ${username-`whoami`}
 12 # Echoes the result of `whoami`, if variable $username is still unset.

${parameter-default} and ${parameter:-default} are almost
equivalent. The extra : makes a difference only when parameter has been declared,
but is null.

 1 #!/bin/bash
 2 # param-sub.sh
 3
 4 # Whether a variable has been declared
 5 #+ affects triggering of the default option
 6 #+ even if the variable is null.
 7
 8 username0=
 9 echo "username0 has been declared, but is set to null."
 10 echo "username0 = ${username0-`whoami`}"
 11 # Will not echo.
 12
 13 echo
 14
 15 echo username1 has not been declared.
 16 echo "username1 = ${username1-`whoami`}"
 17 # Will echo.
 18
 19 username2=
 20 echo "username2 has been declared, but is set to null."
 21 echo "username2 = ${username2:-`whoami`}"
 22 # ^
 23 # Will echo because of :- rather than just - in condition test.
 24 # Compare to first instance, above.

 25
 26
 27 #
 28
 29 # Once again:
 30
 31 variable=
 32 # variable has been declared, but is set to null.
 33
 34 echo "${variable-0}" # (no output)
 35 echo "${variable:-1}" # 1
 36 # ^
 37
 38 unset variable
 39
 40 echo "${variable-2}" # 2
 41 echo "${variable:-3}" # 3
 42
 43 exit 0

The default parameter construct finds use in providing "missing" command-line arguments in scripts.

 1 DEFAULT_FILENAME=generic.data
 2 filename=${1:-$DEFAULT_FILENAME}
 3 # If not otherwise specified, the following command block operates
 4 #+ on the file "generic.data".
 5 # Begin-Command-Block
 6 # ...
 7 # ...
 8 # ...
 9 # End-Command-Block
 10
 11
 12
 13 # From "hanoi2.bash" example:
 14 DISKS=${1:-E_NOPARAM} # Must specify how many disks.
 15 # Set $DISKS to $1 command-line-parameter,
 16 #+ or to $E_NOPARAM if that is unset.

See also Example 3-4, Example 31-2, and Example A-6.

Compare this method with using an and list to supply a default command-line argument.
${parameter=default}, ${parameter:=default}

If parameter not set, set it to default.

Both forms nearly equivalent. The : makes a difference only when $parameter has been declared
and is null, [1] as above.

 1 echo ${var=abc} # abc
 2 echo ${var=xyz} # abc
 3 # $var had already been set to abc, so it did not change.

${parameter+alt_value}, ${parameter:+alt_value}
If parameter set, use alt_value, else use null string.

Both forms nearly equivalent. The : makes a difference only when parameter has been declared
and is null, see below.

 1 echo "###### \${parameter+alt_value} ########"
 2 echo
 3
 4 a=${param1+xyz}
 5 echo "a = $a" # a =

 6
 7 param2=
 8 a=${param2+xyz}
 9 echo "a = $a" # a = xyz
 10
 11 param3=123
 12 a=${param3+xyz}
 13 echo "a = $a" # a = xyz
 14
 15 echo
 16 echo "###### \${parameter:+alt_value} ########"
 17 echo
 18
 19 a=${param4:+xyz}
 20 echo "a = $a" # a =
 21
 22 param5=
 23 a=${param5:+xyz}
 24 echo "a = $a" # a =
 25 # Different result from a=${param5+xyz}
 26
 27 param6=123
 28 a=${param6:+xyz}
 29 echo "a = $a" # a = xyz

${parameter?err_msg}, ${parameter:?err_msg}
If parameter set, use it, else print err_msg and abort the script with an exit status of 1.

Both forms nearly equivalent. The : makes a difference only when parameter has been declared
and is null, as above.

Example 10-7. Using parameter substitution and error messages

 1 #!/bin/bash
 2
 3 # Check some of the system's environmental variables.
 4 # This is good preventative maintenance.
 5 # If, for example, $USER, the name of the person at the console, is not set,
 6 #+ the machine will not recognize you.
 7
 8 : ${HOSTNAME?} ${USER?} ${HOME?} ${MAIL?}
 9 echo
 10 echo "Name of the machine is $HOSTNAME."
 11 echo "You are $USER."
 12 echo "Your home directory is $HOME."
 13 echo "Your mail INBOX is located in $MAIL."
 14 echo
 15 echo "If you are reading this message,"
 16 echo "critical environmental variables have been set."
 17 echo
 18 echo
 19
 20 # --
 21
 22 # The ${variablename?} construction can also check
 23 #+ for variables set within the script.
 24
 25 ThisVariable=Value-of-ThisVariable
 26 # Note, by the way, that string variables may be set
 27 #+ to characters disallowed in their names.
 28 : ${ThisVariable?}
 29 echo "Value of ThisVariable is $ThisVariable".
 30
 31 echo; echo

 32
 33
 34 : ${ZZXy23AB?"ZZXy23AB has not been set."}
 35 # Since ZZXy23AB has not been set,
 36 #+ then the script terminates with an error message.
 37
 38 # You can specify the error message.
 39 # : ${variablename?"ERROR MESSAGE"}
 40
 41
 42 # Same result with: dummy_variable=${ZZXy23AB?}
 43 # dummy_variable=${ZZXy23AB?"ZXy23AB has not been set."}
 44 #
 45 # echo ${ZZXy23AB?} >/dev/null
 46
 47 # Compare these methods of checking whether a variable has been set
 48 #+ with "set -u" . . .
 49
 50
 51
 52 echo "You will not see this message, because script already terminated."
 53
 54 HERE=0
 55 exit $HERE # Will NOT exit here.
 56
 57 # In fact, this script will return an exit status (echo $?) of 1.

Example 10-8. Parameter substitution and "usage" messages

 1 #!/bin/bash
 2 # usage-message.sh
 3
 4 : ${1?"Usage: $0 ARGUMENT"}
 5 # Script exits here if command-line parameter absent,
 6 #+ with following error message.
 7 # usage-message.sh: 1: Usage: usage-message.sh ARGUMENT
 8
 9 echo "These two lines echo only if command-line parameter given."
 10 echo "command-line parameter = \"$1\""
 11
 12 exit 0 # Will exit here only if command-line parameter present.
 13
 14 # Check the exit status, both with and without command-line parameter.
 15 # If command-line parameter present, then "$?" is 0.
 16 # If not, then "$?" is 1.

Parameter substitution and/or expansion. The following expressions are the complement to the match in
expr string operations (see Example 16-9). These particular ones are used mostly in parsing file path names.

Variable length / Substring removal

${#var}
String length (number of characters in $var). For an array, ${#array} is the length of the first
element in the array.

Exceptions:

${#*} and ${#@} give the number of positional parameters.
◊

For an array, ${#array[*]} and ${#array[@]} give the number of
elements in the array.

◊

Example 10-9. Length of a variable

 1 #!/bin/bash
 2 # length.sh
 3
 4 E_NO_ARGS=65
 5
 6 if [$# -eq 0] # Must have command-line args to demo script.
 7 then
 8 echo "Please invoke this script with one or more command-line arguments."
 9 exit $E_NO_ARGS
 10 fi
 11
 12 var01=abcdEFGH28ij
 13 echo "var01 = ${var01}"
 14 echo "Length of var01 = ${#var01}"
 15 # Now, let's try embedding a space.
 16 var02="abcd EFGH28ij"
 17 echo "var02 = ${var02}"
 18 echo "Length of var02 = ${#var02}"
 19
 20 echo "Number of command-line arguments passed to script = ${#@}"
 21 echo "Number of command-line arguments passed to script = ${#*}"
 22
 23 exit 0

${var#Pattern}, ${var##Pattern}

${var#Pattern} Remove from $var the shortest part of $Pattern that matches the front end
of $var.

${var##Pattern} Remove from $var the longest part of $Pattern that matches the front end
of $var.

A usage illustration from Example A-7:

 1 # Function from "days-between.sh" example.
 2 # Strips leading zero(s) from argument passed.
 3
 4 strip_leading_zero () # Strip possible leading zero(s)
 5 { #+ from argument passed.
 6 return=${1#0} # The "1" refers to "$1" -- passed arg.
 7 } # The "0" is what to remove from "$1" -- strips zeros.

Manfred Schwarb's more elaborate variation of the above:

 1 strip_leading_zero2 () # Strip possible leading zero(s), since otherwise
 2 { # Bash will interpret such numbers as octal values.
 3 shopt -s extglob # Turn on extended globbing.
 4 local val=${1##+(0)} # Use local variable, longest matching series of 0's.
 5 shopt -u extglob # Turn off extended globbing.
 6 _strip_leading_zero2=${val:-0}
 7 # If input was 0, return 0 instead of "".
 8 }

Another usage illustration:

 1 echo `basename $PWD` # Basename of current working directory.
 2 echo "${PWD##*/}" # Basename of current working directory.
 3 echo
 4 echo `basename $0` # Name of script.
 5 echo $0 # Name of script.
 6 echo "${0##*/}" # Name of script.
 7 echo
 8 filename=test.data
 9 echo "${filename##*.}" # data
 10 # Extension of filename.

${var%Pattern}, ${var%%Pattern}

${var%Pattern} Remove from $var the shortest part of $Pattern that matches the back end
of $var.

${var%%Pattern} Remove from $var the longest part of $Pattern that matches the back end
of $var.

Version 2 of Bash added additional options.

Example 10-10. Pattern matching in parameter substitution

 1 #!/bin/bash
 2 # patt-matching.sh
 3
 4 # Pattern matching using the # ## % %% parameter substitution operators.
 5
 6 var1=abcd12345abc6789
 7 pattern1=a*c # * (wild card) matches everything between a - c.
 8
 9 echo
 10 echo "var1 = $var1" # abcd12345abc6789
 11 echo "var1 = ${var1}" # abcd12345abc6789
 12 # (alternate form)
 13 echo "Number of characters in ${var1} = ${#var1}"
 14 echo
 15
 16 echo "pattern1 = $pattern1" # a*c (everything between 'a' and 'c')
 17 echo "--------------"
 18 echo '${var1#$pattern1} =' "${var1#$pattern1}" # d12345abc6789
 19 # Shortest possible match, strips out first 3 characters abcd12345abc6789
 20 # ^^^^^ |-|
 21 echo '${var1##$pattern1} =' "${var1##$pattern1}" # 6789
 22 # Longest possible match, strips out first 12 characters abcd12345abc6789
 23 # ^^^^^ |----------|
 24
 25 echo; echo; echo
 26
 27 pattern2=b*9 # everything between 'b' and '9'
 28 echo "var1 = $var1" # Still abcd12345abc6789
 29 echo
 30 echo "pattern2 = $pattern2"
 31 echo "--------------"
 32 echo '${var1%pattern2} =' "${var1%$pattern2}" # abcd12345a
 33 # Shortest possible match, strips out last 6 characters abcd12345abc6789
 34 # ^^^^ |----|
 35 echo '${var1%%pattern2} =' "${var1%%$pattern2}" # a
 36 # Longest possible match, strips out last 12 characters abcd12345abc6789
 37 # ^^^^ |-------------|
 38
 39 # Remember, # and ## work from the left end (beginning) of string,

 40 # % and %% work from the right end.
 41
 42 echo
 43
 44 exit 0

Example 10-11. Renaming file extensions:

 1 #!/bin/bash
 2 # rfe.sh: Renaming file extensions.
 3 #
 4 # rfe old_extension new_extension
 5 #
 6 # Example:
 7 # To rename all *.gif files in working directory to *.jpg,
 8 # rfe gif jpg
 9
 10
 11 E_BADARGS=65
 12
 13 case $# in
 14 0|1) # The vertical bar means "or" in this context.
 15 echo "Usage: `basename $0` old_file_suffix new_file_suffix"
 16 exit $E_BADARGS # If 0 or 1 arg, then bail out.
 17 ;;
 18 esac
 19
 20
 21 for filename in *.$1
 22 # Traverse list of files ending with 1st argument.
 23 do
 24 mv $filename ${filename%$1}$2
 25 # Strip off part of filename matching 1st argument,
 26 #+ then append 2nd argument.
 27 done
 28
 29 exit 0

Variable expansion / Substring replacement
These constructs have been adopted from ksh.

${var:pos}
Variable var expanded, starting from offset pos.

${var:pos:len}
Expansion to a max of len characters of variable var, from offset pos. See Example A-13 for an
example of the creative use of this operator.

${var/Pattern/Replacement}
First match of Pattern, within var replaced with Replacement.

If Replacement is omitted, then the first match of Pattern is replaced by nothing, that is,
deleted.

${var//Pattern/Replacement}
Global replacement. All matches of Pattern, within var replaced with Replacement.

As above, if Replacement is omitted, then all occurrences of Pattern are replaced by nothing,
that is, deleted.

Example 10-12. Using pattern matching to parse arbitrary strings

 1 #!/bin/bash
 2
 3 var1=abcd-1234-defg
 4 echo "var1 = $var1"
 5
 6 t=${var1#*-*}
 7 echo "var1 (with everything, up to and including first - stripped out) = $t"
 8 # t=${var1#*-} works just the same,
 9 #+ since # matches the shortest string,
 10 #+ and * matches everything preceding, including an empty string.
 11 # (Thanks, Stephane Chazelas, for pointing this out.)
 12
 13 t=${var1##*-*}
 14 echo "If var1 contains a \"-\", returns empty string... var1 = $t"
 15
 16
 17 t=${var1%*-*}
 18 echo "var1 (with everything from the last - on stripped out) = $t"
 19
 20 echo
 21
 22 # ---
 23 path_name=/home/bozo/ideas/thoughts.for.today
 24 # ---
 25 echo "path_name = $path_name"
 26 t=${path_name##/*/}
 27 echo "path_name, stripped of prefixes = $t"
 28 # Same effect as t=`basename $path_name` in this particular case.
 29 # t=${path_name%/}; t=${t##*/} is a more general solution,
 30 #+ but still fails sometimes.
 31 # If $path_name ends with a newline, then `basename $path_name` will not work,
 32 #+ but the above expression will.
 33 # (Thanks, S.C.)
 34
 35 t=${path_name%/*.*}
 36 # Same effect as t=`dirname $path_name`
 37 echo "path_name, stripped of suffixes = $t"
 38 # These will fail in some cases, such as "../", "/foo////", # "foo/", "/".
 39 # Removing suffixes, especially when the basename has no suffix,
 40 #+ but the dirname does, also complicates matters.
 41 # (Thanks, S.C.)
 42
 43 echo
 44
 45 t=${path_name:11}
 46 echo "$path_name, with first 11 chars stripped off = $t"
 47 t=${path_name:11:5}
 48 echo "$path_name, with first 11 chars stripped off, length 5 = $t"
 49
 50 echo
 51
 52 t=${path_name/bozo/clown}
 53 echo "$path_name with \"bozo\" replaced by \"clown\" = $t"
 54 t=${path_name/today/}
 55 echo "$path_name with \"today\" deleted = $t"
 56 t=${path_name//o/O}
 57 echo "$path_name with all o's capitalized = $t"
 58 t=${path_name//o/}
 59 echo "$path_name with all o's deleted = $t"
 60
 61 exit 0

${var/#Pattern/Replacement}

If prefix of var matches Pattern, then substitute Replacement for Pattern.
${var/%Pattern/Replacement}

If suffix of var matches Pattern, then substitute Replacement for Pattern.

Example 10-13. Matching patterns at prefix or suffix of string

 1 #!/bin/bash
 2 # var-match.sh:
 3 # Demo of pattern replacement at prefix / suffix of string.
 4
 5 v0=abc1234zip1234abc # Original variable.
 6 echo "v0 = $v0" # abc1234zip1234abc
 7 echo
 8
 9 # Match at prefix (beginning) of string.
 10 v1=${v0/#abc/ABCDEF} # abc1234zip1234abc
 11 # |-|
 12 echo "v1 = $v1" # ABCDEF1234zip1234abc
 13 # |----|
 14
 15 # Match at suffix (end) of string.
 16 v2=${v0/%abc/ABCDEF} # abc1234zip123abc
 17 # |-|
 18 echo "v2 = $v2" # abc1234zip1234ABCDEF
 19 # |----|
 20
 21 echo
 22
 23 # --
 24 # Must match at beginning / end of string,
 25 #+ otherwise no replacement results.
 26 # --
 27 v3=${v0/#123/000} # Matches, but not at beginning.
 28 echo "v3 = $v3" # abc1234zip1234abc
 29 # NO REPLACEMENT.
 30 v4=${v0/%123/000} # Matches, but not at end.
 31 echo "v4 = $v4" # abc1234zip1234abc
 32 # NO REPLACEMENT.
 33
 34 exit 0

${!varprefix*}, ${!varprefix@}
Matches names of all previously declared variables beginning with varprefix.

 1 # This is a variation on indirect reference, but with a * or @.
 2 # Bash, version 2.04, adds this feature.
 3
 4 xyz23=whatever
 5 xyz24=
 6
 7 a=${!xyz*} # Expands to *names* of declared variables
 8 # ^ ^ ^ + beginning with "xyz".
 9 echo "a = $a" # a = xyz23 xyz24
 10 a=${!xyz@} # Same as above.
 11 echo "a = $a" # a = xyz23 xyz24
 12
 13 echo "---"
 14
 15 abc23=something_else
 16 b=${!abc*}
 17 echo "b = $b" # b = abc23
 18 c=${!b} # Now, the more familiar type of indirect reference.

 19 echo $c # something_else

Notes

[1] If $parameter is null in a non-interactive script, it will terminate with a 127 exit status (the Bash error
code for "command not found").

Prev Home Next
Manipulating Variables Up Loops and Branches

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Next

Chapter 11. Loops and Branches
What needs this iteration, woman?

--Shakespeare, Othello

Operations on code blocks are the key to structured and organized shell scripts. Looping and branching
constructs provide the tools for accomplishing this.

11.1. Loops
A loop is a block of code that iterates [1] a list of commands as long as the loop control condition is true.

for loops

for arg in [list]
This is the basic looping construct. It differs significantly from its C counterpart.

for arg in [list]
do
 command(s)...
done

During each pass through the loop, arg takes on the value of each successive variable
in the list.

 1 for arg in "$var1" "$var2" "$var3" ... "$varN"
 2 # In pass 1 of the loop, arg = $var1
 3 # In pass 2 of the loop, arg = $var2
 4 # In pass 3 of the loop, arg = $var3
 5 # ...
 6 # In pass N of the loop, arg = $varN
 7
 8 # Arguments in [list] quoted to prevent possible word splitting.

The argument list may contain wild cards.

If do is on same line as for, there needs to be a semicolon after list.

for arg in [list] ; do

Example 11-1. Simple for loops

 1 #!/bin/bash
 2 # Listing the planets.
 3
 4 for planet in Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune Pluto
 5 do
 6 echo $planet # Each planet on a separate line.
 7 done
 8
 9 echo; echo
 10
 11 for planet in "Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune Pluto"
 12 # All planets on same line.
 13 # Entire 'list' enclosed in quotes creates a single variable.
 14 # Why? Whitespace incorporated into the variable.
 15 do
 16 echo $planet
 17 done
 18
 19 echo; echo "Whoops! Pluto is no longer a planet!"
 20
 21 exit 0

Each [list] element may contain multiple parameters. This is useful when processing parameters
in groups. In such cases, use the set command (see Example 15-16) to force parsing of each [list]
element and assignment of each component to the positional parameters.

Example 11-2. for loop with two parameters in each [list] element

 1 #!/bin/bash
 2 # Planets revisited.
 3
 4 # Associate the name of each planet with its distance from the sun.
 5
 6 for planet in "Mercury 36" "Venus 67" "Earth 93" "Mars 142" "Jupiter 483"
 7 do
 8 set -- $planet # Parses variable "planet"
 9 #+ and sets positional parameters.
 10 # The "--" prevents nasty surprises if $planet is null or
 11 #+ begins with a dash.
 12
 13 # May need to save original positional parameters,
 14 #+ since they get overwritten.
 15 # One way of doing this is to use an array,
 16 # original_params=("$@")
 17
 18 echo "$1 $2,000,000 miles from the sun"
 19 #-------two tabs---concatenate zeroes onto parameter $2
 20 done
 21
 22 # (Thanks, S.C., for additional clarification.)
 23
 24 exit 0

A variable may supply the [list] in a for loop.

Example 11-3. Fileinfo: operating on a file list contained in a variable

 1 #!/bin/bash
 2 # fileinfo.sh
 3
 4 FILES="/usr/sbin/accept
 5 /usr/sbin/pwck
 6 /usr/sbin/chroot
 7 /usr/bin/fakefile
 8 /sbin/badblocks
 9 /sbin/ypbind" # List of files you are curious about.
 10 # Threw in a dummy file, /usr/bin/fakefile.
 11
 12 echo
 13
 14 for file in $FILES
 15 do
 16
 17 if [! -e "$file"] # Check if file exists.
 18 then
 19 echo "$file does not exist."; echo
 20 continue # On to next.
 21 fi
 22
 23 ls -l $file | awk '{ print $8 " file size: " $5 }' # Print 2 fields.
 24 whatis `basename $file` # File info.

 25 # Note that the whatis database needs to have been set up for this to work.
 26 # To do this, as root run /usr/bin/makewhatis.
 27 echo
 28 done
 29
 30 exit 0

The [list] in a for loop may be parameterized.

Example 11-4. Operating on a parameterized file list

 1 #!/bin/bash
 2
 3 filename="*txt"
 4
 5 for file in $filename
 6 do
 7 echo "Contents of $file"
 8 echo "---"
 9 cat "$file"
 10 echo
 11 done

If the [list] in a for loop contains wild cards (* and ?) used in filename expansion, then globbing
takes place.

Example 11-5. Operating on files with a for loop

 1 #!/bin/bash
 2 # list-glob.sh: Generating [list] in a for-loop, using "globbing" ...
 3 # Globbing = filename expansion.
 4
 5 echo
 6
 7 for file in *
 8 # ^ Bash performs filename expansion
 9 #+ on expressions that globbing recognizes.
 10 do
 11 ls -l "$file" # Lists all files in $PWD (current directory).
 12 # Recall that the wild card character "*" matches every filename,
 13 #+ however, in "globbing," it doesn't match dot-files.
 14
 15 # If the pattern matches no file, it is expanded to itself.
 16 # To prevent this, set the nullglob option
 17 #+ (shopt -s nullglob).
 18 # Thanks, S.C.
 19 done
 20
 21 echo; echo
 22
 23 for file in [jx]*
 24 do
 25 rm -f $file # Removes only files beginning with "j" or "x" in $PWD.
 26 echo "Removed file \"$file\"".
 27 done
 28
 29 echo

 30
 31 exit 0

Omitting the in [list] part of a for loop causes the loop to operate on $@ -- the positional
parameters. A particularly clever illustration of this is Example A-15. See also Example 15-17.

Example 11-6. Missing in [list] in a for loop

 1 #!/bin/bash
 2
 3 # Invoke this script both with and without arguments,
 4 #+ and see what happens.
 5
 6 for a
 7 do
 8 echo -n "$a "
 9 done
 10
 11 # The 'in list' missing, therefore the loop operates on '$@'
 12 #+ (command-line argument list, including whitespace).
 13
 14 echo
 15
 16 exit 0

It is possible to use command substitution to generate the [list] in a for loop. See also Example
16-54, Example 11-11 and Example 16-48.

Example 11-7. Generating the [list] in a for loop with command substitution

 1 #!/bin/bash
 2 # for-loopcmd.sh: for-loop with [list]
 3 #+ generated by command substitution.
 4
 5 NUMBERS="9 7 3 8 37.53"
 6
 7 for number in `echo $NUMBERS` # for number in 9 7 3 8 37.53
 8 do
 9 echo -n "$number "
 10 done
 11
 12 echo
 13 exit 0

Here is a somewhat more complex example of using command substitution to create the [list].

Example 11-8. A grep replacement for binary files

 1 #!/bin/bash
 2 # bin-grep.sh: Locates matching strings in a binary file.
 3
 4 # A "grep" replacement for binary files.
 5 # Similar effect to "grep -a"
 6

 7 E_BADARGS=65
 8 E_NOFILE=66
 9
 10 if [$# -ne 2]
 11 then
 12 echo "Usage: `basename $0` search_string filename"
 13 exit $E_BADARGS
 14 fi
 15
 16 if [! -f "$2"]
 17 then
 18 echo "File \"$2\" does not exist."
 19 exit $E_NOFILE
 20 fi
 21
 22
 23 IFS=$'\012' # Per suggestion of Anton Filippov.
 24 # was: IFS="\n"
 25 for word in $(strings "$2" | grep "$1")
 26 # The "strings" command lists strings in binary files.
 27 # Output then piped to "grep", which tests for desired string.
 28 do
 29 echo $word
 30 done
 31
 32 # As S.C. points out, lines 23 - 30 could be replaced with the simpler
 33 # strings "$2" | grep "$1" | tr -s "$IFS" '[\n*]'
 34
 35
 36 # Try something like "./bin-grep.sh mem /bin/ls"
 37 #+ to exercise this script.
 38
 39 exit 0

More of the same.

Example 11-9. Listing all users on the system

 1 #!/bin/bash
 2 # userlist.sh
 3
 4 PASSWORD_FILE=/etc/passwd
 5 n=1 # User number
 6
 7 for name in $(awk 'BEGIN{FS=":"}{print $1}' < "$PASSWORD_FILE")
 8 # Field separator = : ^^^^^^
 9 # Print first field ^^^^^^^^
 10 # Get input from password file /etc/passwd ^^^^^^^^^^^^^^^^^
 11 do
 12 echo "USER #$n = $name"
 13 let "n += 1"
 14 done
 15
 16
 17 # USER #1 = root
 18 # USER #2 = bin
 19 # USER #3 = daemon
 20 # ...
 21 # USER #33 = bozo
 22
 23 exit $?
 24
 25 # Discussion:

 26 # ----------
 27 # How is it that an ordinary user, or a script run by same,
 28 #+ can read /etc/passwd? (Hint: Check the /etc/passwd file permissions.)
 29 # Is this a security hole? Why or why not?

Yet another example of the [list] resulting from command substitution.

Example 11-10. Checking all the binaries in a directory for authorship

 1 #!/bin/bash
 2 # findstring.sh:
 3 # Find a particular string in the binaries in a specified directory.
 4
 5 directory=/usr/bin/
 6 fstring="Free Software Foundation" # See which files come from the FSF.
 7
 8 for file in $(find $directory -type f -name '*' | sort)
 9 do
 10 strings -f $file | grep "$fstring" | sed -e "s%$directory%%"
 11 # In the "sed" expression,
 12 #+ it is necessary to substitute for the normal "/" delimiter
 13 #+ because "/" happens to be one of the characters filtered out.
 14 # Failure to do so gives an error message. (Try it.)
 15 done
 16
 17 exit $?
 18
 19 # Exercise (easy):
 20 # ---------------
 21 # Convert this script to take command-line parameters
 22 #+ for $directory and $fstring.

A final example of [list] / command substitution, but this time the "command" is a function.

 1 generate_list ()
 2 {
 3 echo "one two three"
 4 }
 5
 6 for word in $(generate_list) # Let "word" grab output of function.
 7 do
 8 echo "$word"
 9 done
 10
 11 # one
 12 # two
 13 # three

The output of a for loop may be piped to a command or commands.

Example 11-11. Listing the symbolic links in a directory

 1 #!/bin/bash
 2 # symlinks.sh: Lists symbolic links in a directory.
 3
 4
 5 directory=${1-`pwd`}
 6 # Defaults to current working directory,
 7 #+ if not otherwise specified.

 8 # Equivalent to code block below.
 9 # --
 10 # ARGS=1 # Expect one command-line argument.
 11 #
 12 # if [$# -ne "$ARGS"] # If not 1 arg...
 13 # then
 14 # directory=`pwd` # current working directory
 15 # else
 16 # directory=$1
 17 # fi
 18 # --
 19
 20 echo "symbolic links in directory \"$directory\""
 21
 22 for file in "$(find $directory -type l)" # -type l = symbolic links
 23 do
 24 echo "$file"
 25 done | sort # Otherwise file list is unsorted.
 26 # Strictly speaking, a loop isn't really necessary here,
 27 #+ since the output of the "find" command is expanded into a single word.
 28 # However, it's easy to understand and illustrative this way.
 29
 30 # As Dominik 'Aeneas' Schnitzer points out,
 31 #+ failing to quote $(find $directory -type l)
 32 #+ will choke on filenames with embedded whitespace.
 33 # containing whitespace.
 34
 35 exit 0
 36
 37
 38 # --
 39 # Jean Helou proposes the following alternative:
 40
 41 echo "symbolic links in directory \"$directory\""
 42 # Backup of the current IFS. One can never be too cautious.
 43 OLDIFS=$IFS
 44 IFS=:
 45
 46 for file in $(find $directory -type l -printf "%p$IFS")
 47 do # ^^^^^^^^^^^^^^^^
 48 echo "$file"
 49 done|sort
 50
 51 # And, James "Mike" Conley suggests modifying Helou's code thusly:
 52
 53 OLDIFS=$IFS
 54 IFS='' # Null IFS means no word breaks
 55 for file in $(find $directory -type l)
 56 do
 57 echo $file
 58 done | sort
 59
 60 # This works in the "pathological" case of a directory name having
 61 #+ an embedded colon.
 62 # "This also fixes the pathological case of the directory name having
 63 #+ a colon (or space in earlier example) as well."
 64

The stdout of a loop may be redirected to a file, as this slight modification to the previous example
shows.

Example 11-12. Symbolic links in a directory, saved to a file

 1 #!/bin/bash
 2 # symlinks.sh: Lists symbolic links in a directory.
 3
 4 OUTFILE=symlinks.list # save-file
 5
 6 directory=${1-`pwd`}
 7 # Defaults to current working directory,
 8 #+ if not otherwise specified.
 9
 10
 11 echo "symbolic links in directory \"$directory\"" > "$OUTFILE"
 12 echo "---------------------------" >> "$OUTFILE"
 13
 14 for file in "$(find $directory -type l)" # -type l = symbolic links
 15 do
 16 echo "$file"
 17 done | sort >> "$OUTFILE" # stdout of loop
 18 # ^^^^^^^^^^^^^ redirected to save file.
 19
 20 # echo "Output file = $OUTFILE"
 21
 22 exit $?

There is an alternative syntax to a for loop that will look very familiar to C programmers. This
requires double parentheses.

Example 11-13. A C-style for loop

 1 #!/bin/bash
 2 # Multiple ways to count up to 10.
 3
 4 echo
 5
 6 # Standard syntax.
 7 for a in 1 2 3 4 5 6 7 8 9 10
 8 do
 9 echo -n "$a "
 10 done
 11
 12 echo; echo
 13
 14 # +==+
 15
 16 # Using "seq" ...
 17 for a in `seq 10`
 18 do
 19 echo -n "$a "
 20 done
 21
 22 echo; echo
 23
 24 # +==+
 25
 26 # Using brace expansion ...
 27 # Bash, version 3+.
 28 for a in {1..10}
 29 do
 30 echo -n "$a "
 31 done
 32
 33 echo; echo
 34

 35 # +==+
 36
 37 # Now, let's do the same, using C-like syntax.
 38
 39 LIMIT=10
 40
 41 for ((a=1; a <= LIMIT ; a++)) # Double parentheses, and naked "LIMIT"
 42 do
 43 echo -n "$a "
 44 done # A construct borrowed from ksh93.
 45
 46 echo; echo
 47
 48 # +===+
 49
 50 # Let's use the C "comma operator" to increment two variables simultaneously.
 51
 52 for ((a=1, b=1; a <= LIMIT ; a++, b++))
 53 do # The comma concatenates operations.
 54 echo -n "$a-$b "
 55 done
 56
 57 echo; echo
 58
 59 exit 0

See also Example 27-16, Example 27-17, and Example A-6.

Now, a for loop used in a "real-life" context.

Example 11-14. Using efax in batch mode

 1 #!/bin/bash
 2 # Faxing (must have 'efax' package installed).
 3
 4 EXPECTED_ARGS=2
 5 E_BADARGS=85
 6 MODEM_PORT="/dev/ttyS2" # May be different on your machine.
 7 # ^^^^^ PCMCIA modem card default port.
 8
 9 if [$# -ne $EXPECTED_ARGS]
 10 # Check for proper number of command-line args.
 11 then
 12 echo "Usage: `basename $0` phone# text-file"
 13 exit $E_BADARGS
 14 fi
 15
 16
 17 if [! -f "$2"]
 18 then
 19 echo "File $2 is not a text file."
 20 # File is not a regular file, or does not exist.
 21 exit $E_BADARGS
 22 fi
 23
 24
 25 fax make $2 # Create fax-formatted files from text files.
 26
 27 for file in $(ls $2.0*) # Concatenate the converted files.
 28 # Uses wild card (filename "globbing")

 29 #+ in variable list.
 30 do
 31 fil="$fil $file"
 32 done
 33
 34 efax -d "$MODEM_PORT" -t "T$1" $fil # Finally, do the work.
 35 # Trying adding -o1 if above line fails.
 36
 37
 38 # As S.C. points out, the for-loop can be eliminated with
 39 # efax -d /dev/ttyS2 -o1 -t "T$1" $2.0*
 40 #+ but it's not quite as instructive [grin].
 41
 42 exit $? # Also, efax sends diagnostic messages to stdout.

The keywords do and done delineate the for-loop command block. However, these
may, in certain contexts, be omitted by framing the command block within curly
brackets

 1 for((n=1; n<=10; n++))
 2 # No do!
 3 {
 4 echo -n "* $n *"
 5 }
 6 # No done!
 7
 8
 9 # Outputs:
 10 # * 1 ** 2 ** 3 ** 4 ** 5 ** 6 ** 7 ** 8 ** 9 ** 10 *
 11 # And, echo $? returns 0, so Bash does not register an error.
 12
 13
 14 echo
 15
 16
 17 # But, note that in a classic for-loop: for n in [list] ...
 18 #+ a terminal semicolon is required.
 19
 20 for n in 1 2 3
 21 { echo -n "$n "; }
 22 # ^
 23
 24
 25 # Thank you, YongYe, for pointing this out.

while
This construct tests for a condition at the top of a loop, and keeps looping as long as that condition is
true (returns a 0 exit status). In contrast to a for loop, a while loop finds use in situations where the
number of loop repetitions is not known beforehand.

while [condition]
do
 command(s)...
done

The bracket construct in a while loop is nothing more than our old friend, the test brackets used in an
if/then test. In fact, a while loop can legally use the more versatile double-brackets construct (while [[
condition]]).

As is the case with for loops, placing the do on the same line as the condition test requires a

semicolon.

while [condition] ; do

Note that the test brackets are not mandatory in a while loop. See, for example, the getopts construct.

Example 11-15. Simple while loop

 1 #!/bin/bash
 2
 3 var0=0
 4 LIMIT=10
 5
 6 while ["$var0" -lt "$LIMIT"]
 7 # ^ ^
 8 # Spaces, because these are "test-brackets" . . .
 9 do
 10 echo -n "$var0 " # -n suppresses newline.
 11 # ^ Space, to separate printed out numbers.
 12
 13 var0=`expr $var0 + 1` # var0=$(($var0+1)) also works.
 14 # var0=$((var0 + 1)) also works.
 15 # let "var0 += 1" also works.
 16 done # Various other methods also work.
 17
 18 echo
 19
 20 exit 0

Example 11-16. Another while loop

 1 #!/bin/bash
 2
 3 echo
 4 # Equivalent to:
 5 while ["$var1" != "end"] # while test "$var1" != "end"
 6 do
 7 echo "Input variable #1 (end to exit) "
 8 read var1 # Not 'read $var1' (why?).
 9 echo "variable #1 = $var1" # Need quotes because of "#" . . .
 10 # If input is 'end', echoes it here.
 11 # Does not test for termination condition until top of loop.
 12 echo
 13 done
 14
 15 exit 0

A while loop may have multiple conditions. Only the final condition determines when the loop
terminates. This necessitates a slightly different loop syntax, however.

Example 11-17. while loop with multiple conditions

 1 #!/bin/bash
 2
 3 var1=unset

 4 previous=$var1
 5
 6 while echo "previous-variable = $previous"
 7 echo
 8 previous=$var1
 9 ["$var1" != end] # Keeps track of what $var1 was previously.
 10 # Four conditions on *while*, but only the final one controls loop.
 11 # The *last* exit status is the one that counts.
 12 do
 13 echo "Input variable #1 (end to exit) "
 14 read var1
 15 echo "variable #1 = $var1"
 16 done
 17
 18 # Try to figure out how this all works.
 19 # It's a wee bit tricky.
 20
 21 exit 0

As with a for loop, a while loop may employ C-style syntax by using the double-parentheses construct
(see also Example 8-5).

Example 11-18. C-style syntax in a while loop

 1 #!/bin/bash
 2 # wh-loopc.sh: Count to 10 in a "while" loop.
 3
 4 LIMIT=10 # 10 iterations.
 5 a=1
 6
 7 while ["$a" -le $LIMIT]
 8 do
 9 echo -n "$a "
 10 let "a+=1"
 11 done # No surprises, so far.
 12
 13 echo; echo
 14
 15 # +===+
 16
 17 # Now, we'll repeat with C-like syntax.
 18
 19 ((a = 1)) # a=1
 20 # Double parentheses permit space when setting a variable, as in C.
 21
 22 while ((a <= LIMIT)) # Double parentheses,
 23 do #+ and no "$" preceding variables.
 24 echo -n "$a "
 25 ((a += 1)) # let "a+=1"
 26 # Yes, indeed.
 27 # Double parentheses permit incrementing a variable with C-like syntax.
 28 done
 29
 30 echo
 31
 32 # C and Java programmers can feel right at home in Bash.
 33
 34 exit 0

Inside its test brackets, a while loop can call a function.

 1 t=0
 2
 3 condition ()
 4 {
 5 ((t++))
 6
 7 if [$t -lt 5]
 8 then
 9 return 0 # true
 10 else
 11 return 1 # false
 12 fi
 13 }
 14
 15 while condition
 16 # ^^^^^^^^^
 17 # Function call -- four loop iterations.
 18 do
 19 echo "Still going: t = $t"
 20 done
 21
 22 # Still going: t = 1
 23 # Still going: t = 2
 24 # Still going: t = 3
 25 # Still going: t = 4

Similar to the if-test construct, a while loop can omit the test brackets.

 1 while condition
 2 do
 3 command(s) ...
 4 done

By coupling the power of the read command with a while loop, we get the handy while read construct,
useful for reading and parsing files.

 1 cat $filename | # Supply input from a file.
 2 while read line # As long as there is another line to read ...
 3 do
 4 ...
 5 done
 6
 7 # =========== Snippet from "sd.sh" example script ========== #
 8
 9 while read value # Read one data point at a time.
 10 do
 11 rt=$(echo "scale=$SC; $rt + $value" | bc)
 12 ((ct++))
 13 done
 14
 15 am=$(echo "scale=$SC; $rt / $ct" | bc)
 16
 17 echo $am; return $ct # This function "returns" TWO values!
 18 # Caution: This little trick will not work if $ct > 255!
 19 # To handle a larger number of data points,
 20 #+ simply comment out the "return $ct" above.
 21 } <"$datafile" # Feed in data file.

A while loop may have its stdin redirected to a file by a < at its end.

A while loop may have its stdin supplied by a pipe.

until
This construct tests for a condition at the top of a loop, and keeps looping as long as that condition is
false (opposite of while loop).

until [condition-is-true]
do
 command(s)...
done

Note that an until loop tests for the terminating condition at the top of the loop, differing from a
similar construct in some programming languages.

As is the case with for loops, placing the do on the same line as the condition test requires a
semicolon.

until [condition-is-true] ; do

Example 11-19. until loop

 1 #!/bin/bash
 2
 3 END_CONDITION=end
 4
 5 until ["$var1" = "$END_CONDITION"]
 6 # Tests condition here, at top of loop.
 7 do
 8 echo "Input variable #1 "
 9 echo "($END_CONDITION to exit)"
 10 read var1
 11 echo "variable #1 = $var1"
 12 echo
 13 done
 14
 15 # --- #
 16
 17 # As with "for" and "while" loops,
 18 #+ an "until" loop permits C-like test constructs.
 19
 20 LIMIT=10
 21 var=0
 22
 23 until ((var > LIMIT))
 24 do # ^^ ^ ^ ^^ No brackets, no $ prefixing variables.
 25 echo -n "$var "
 26 ((var++))
 27 done # 0 1 2 3 4 5 6 7 8 9 10
 28
 29
 30 exit 0

How to choose between a for loop or a while loop or until loop? In C, you would typically use a for loop
when the number of loop iterations is known beforehand. With Bash, however, the situation is fuzzier. The
Bash for loop is more loosely structured and more flexible than its equivalent in other languages. Therefore,
feel free to use whatever type of loop gets the job done in the simplest way.

Notes

[1] Iteration: Repeated execution of a command or group of commands, usually -- but not always, while a
given condition holds, or until a given condition is met.

Prev Home Next
Parameter Substitution Up Nested Loops

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Chapter 11. Loops and Branches Next

11.2. Nested Loops
A nested loop is a loop within a loop, an inner loop within the body of an outer one. How this works is that
the first pass of the outer loop triggers the inner loop, which executes to completion. Then the second pass of
the outer loop triggers the inner loop again. This repeats until the outer loop finishes. Of course, a break
within either the inner or outer loop would interrupt this process.

Example 11-20. Nested Loop

 1 #!/bin/bash
 2 # nested-loop.sh: Nested "for" loops.
 3
 4 outer=1 # Set outer loop counter.
 5
 6 # Beginning of outer loop.
 7 for a in 1 2 3 4 5
 8 do
 9 echo "Pass $outer in outer loop."
 10 echo "---------------------"
 11 inner=1 # Reset inner loop counter.
 12
 13 # ===
 14 # Beginning of inner loop.
 15 for b in 1 2 3 4 5
 16 do
 17 echo "Pass $inner in inner loop."
 18 let "inner+=1" # Increment inner loop counter.
 19 done
 20 # End of inner loop.
 21 # ===
 22
 23 let "outer+=1" # Increment outer loop counter.
 24 echo # Space between output blocks in pass of outer loop.
 25 done
 26 # End of outer loop.
 27
 28 exit 0

See Example 27-11 for an illustration of nested while loops, and Example 27-13 to see a while loop nested
inside an until loop.

Prev Home Next
Loops and Branches Up Loop Control

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Chapter 11. Loops and Branches Next

11.3. Loop Control
Tournez cent tours, tournez mille tours,

Tournez souvent et tournez toujours . . .

--Verlaine, "Chevaux de bois"
Commands affecting loop behavior

break, continue
The break and continue loop control commands [1] correspond exactly to their counterparts in other
programming languages. The break command terminates the loop (breaks out of it), while continue
causes a jump to the next iteration of the loop, skipping all the remaining commands in that particular
loop cycle.

Example 11-21. Effects of break and continue in a loop

 1 #!/bin/bash
 2
 3 LIMIT=19 # Upper limit
 4
 5 echo
 6 echo "Printing Numbers 1 through 20 (but not 3 and 11)."
 7
 8 a=0
 9
 10 while [$a -le "$LIMIT"]
 11 do
 12 a=$(($a+1))
 13
 14 if ["$a" -eq 3] || ["$a" -eq 11] # Excludes 3 and 11.
 15 then
 16 continue # Skip rest of this particular loop iteration.
 17 fi
 18
 19 echo -n "$a " # This will not execute for 3 and 11.
 20 done
 21
 22 # Exercise:
 23 # Why does the loop print up to 20?
 24
 25 echo; echo
 26
 27 echo Printing Numbers 1 through 20, but something happens after 2.
 28
 29 ##
 30
 31 # Same loop, but substituting 'break' for 'continue'.
 32
 33 a=0
 34
 35 while ["$a" -le "$LIMIT"]
 36 do
 37 a=$(($a+1))
 38
 39 if ["$a" -gt 2]
 40 then
 41 break # Skip entire rest of loop.
 42 fi
 43

 44 echo -n "$a "
 45 done
 46
 47 echo; echo; echo
 48
 49 exit 0

The break command may optionally take a parameter. A plain break terminates only the innermost
loop in which it is embedded, but a break N breaks out of N levels of loop.

Example 11-22. Breaking out of multiple loop levels

 1 #!/bin/bash
 2 # break-levels.sh: Breaking out of loops.
 3
 4 # "break N" breaks out of N level loops.
 5
 6 for outerloop in 1 2 3 4 5
 7 do
 8 echo -n "Group $outerloop: "
 9
 10 # --
 11 for innerloop in 1 2 3 4 5
 12 do
 13 echo -n "$innerloop "
 14
 15 if ["$innerloop" -eq 3]
 16 then
 17 break # Try break 2 to see what happens.
 18 # ("Breaks" out of both inner and outer loops.)
 19 fi
 20 done
 21 # --
 22
 23 echo
 24 done
 25
 26 echo
 27
 28 exit 0

The continue command, similar to break, optionally takes a parameter. A plain continue cuts short
the current iteration within its loop and begins the next. A continue N terminates all remaining
iterations at its loop level and continues with the next iteration at the loop, N levels above.

Example 11-23. Continuing at a higher loop level

 1 #!/bin/bash
 2 # The "continue N" command, continuing at the Nth level loop.
 3
 4 for outer in I II III IV V # outer loop
 5 do
 6 echo; echo -n "Group $outer: "
 7
 8 # --
 9 for inner in 1 2 3 4 5 6 7 8 9 10 # inner loop
 10 do
 11

 12 if [["$inner" -eq 7 && "$outer" = "III"]]
 13 then
 14 continue 2 # Continue at loop on 2nd level, that is "outer loop".
 15 # Replace above line with a simple "continue"
 16 # to see normal loop behavior.
 17 fi
 18
 19 echo -n "$inner " # 7 8 9 10 will not echo on "Group III."
 20 done
 21 # --
 22
 23 done
 24
 25 echo; echo
 26
 27 # Exercise:
 28 # Come up with a meaningful use for "continue N" in a script.
 29
 30 exit 0

Example 11-24. Using continue N in an actual task

 1 # Albert Reiner gives an example of how to use "continue N":
 2 # ---
 3
 4 # Suppose I have a large number of jobs that need to be run, with
 5 #+ any data that is to be treated in files of a given name pattern
 6 #+ in a directory. There are several machines that access
 7 #+ this directory, and I want to distribute the work over these
 8 #+ different boxen.
 9 # Then I usually nohup something like the following on every box:
 10
 11 while true
 12 do
 13 for n in .iso.*
 14 do
 15 ["$n" = ".iso.opts"] && continue
 16 beta=${n#.iso.}
 17 [-r .Iso.$beta] && continue
 18 [-r .lock.$beta] && sleep 10 && continue
 19 lockfile -r0 .lock.$beta || continue
 20 echo -n "$beta: " `date`
 21 run-isotherm $beta
 22 date
 23 ls -alF .Iso.$beta
 24 [-r .Iso.$beta] && rm -f .lock.$beta
 25 continue 2
 26 done
 27 break
 28 done
 29
 30 exit 0
 31
 32 # The details, in particular the sleep N, are particular to my
 33 #+ application, but the general pattern is:
 34
 35 while true
 36 do
 37 for job in {pattern}
 38 do
 39 {job already done or running} && continue
 40 {mark job as running, do job, mark job as done}

 41 continue 2
 42 done
 43 break # Or something like `sleep 600' to avoid termination.
 44 done
 45
 46 # This way the script will stop only when there are no more jobs to do
 47 #+ (including jobs that were added during runtime). Through the use
 48 #+ of appropriate lockfiles it can be run on several machines
 49 #+ concurrently without duplication of calculations [which run a couple
 50 #+ of hours in my case, so I really want to avoid this]. Also, as search
 51 #+ always starts again from the beginning, one can encode priorities in
 52 #+ the file names. Of course, one could also do this without `continue 2',
 53 #+ but then one would have to actually check whether or not some job
 54 #+ was done (so that we should immediately look for the next job) or not
 55 #+ (in which case we terminate or sleep for a long time before checking
 56 #+ for a new job).

The continue N construct is difficult to understand and tricky to use in any
meaningful context. It is probably best avoided.

Notes

[1] These are shell builtins, whereas other loop commands, such as while and case, are keywords.

Prev Home Next
Nested Loops Up Testing and Branching

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Chapter 11. Loops and Branches Next

11.4. Testing and Branching
The case and select constructs are technically not loops, since they do not iterate the execution of a code
block. Like loops, however, they direct program flow according to conditions at the top or bottom of the
block.

Controlling program flow in a code block

case (in) / esac
The case construct is the shell scripting analog to switch in C/C++. It permits branching to one of a
number of code blocks, depending on condition tests. It serves as a kind of shorthand for multiple
if/then/else statements and is an appropriate tool for creating menus.

case "$variable" in

 "$condition1")
command...
 ;;

 "$condition2")
command...
 ;;

esac

Quoting the variables is not mandatory, since word splitting does not take
place.

◊

Each test line ends with a right paren). [1]◊
Each condition block ends with a double semicolon ;;.◊
If a condition tests true, then the associated commands execute and the case
block terminates.

◊

The entire case block ends with an esac (case spelled backwards).◊

Example 11-25. Using case

 1 #!/bin/bash
 2 # Testing ranges of characters.
 3
 4 echo; echo "Hit a key, then hit return."
 5 read Keypress
 6
 7 case "$Keypress" in
 8 [[:lower:]]) echo "Lowercase letter";;
 9 [[:upper:]]) echo "Uppercase letter";;
 10 [0-9]) echo "Digit";;
 11 *) echo "Punctuation, whitespace, or other";;
 12 esac # Allows ranges of characters in [square brackets],
 13 #+ or POSIX ranges in [[double square brackets.
 14
 15 # In the first version of this example,
 16 #+ the tests for lowercase and uppercase characters were
 17 #+ [a-z] and [A-Z].
 18 # This no longer works in certain locales and/or Linux distros.

 19 # POSIX is more portable.
 20 # Thanks to Frank Wang for pointing this out.
 21
 22 # Exercise:
 23 # --------
 24 # As the script stands, it accepts a single keystroke, then terminates.
 25 # Change the script so it accepts repeated input,
 26 #+ reports on each keystroke, and terminates only when "X" is hit.
 27 # Hint: enclose everything in a "while" loop.
 28
 29 exit 0

Example 11-26. Creating menus using case

 1 #!/bin/bash
 2
 3 # Crude address database
 4
 5 clear # Clear the screen.
 6
 7 echo " Contact List"
 8 echo " ------- ----"
 9 echo "Choose one of the following persons:"
 10 echo
 11 echo "[E]vans, Roland"
 12 echo "[J]ones, Mildred"
 13 echo "[S]mith, Julie"
 14 echo "[Z]ane, Morris"
 15 echo
 16
 17 read person
 18
 19 case "$person" in
 20 # Note variable is quoted.
 21
 22 "E" | "e")
 23 # Accept upper or lowercase input.
 24 echo
 25 echo "Roland Evans"
 26 echo "4321 Flash Dr."
 27 echo "Hardscrabble, CO 80753"
 28 echo "(303) 734-9874"
 29 echo "(303) 734-9892 fax"
 30 echo "revans@zzy.net"
 31 echo "Business partner & old friend"
 32 ;;
 33 # Note double semicolon to terminate each option.
 34
 35 "J" | "j")
 36 echo
 37 echo "Mildred Jones"
 38 echo "249 E. 7th St., Apt. 19"
 39 echo "New York, NY 10009"
 40 echo "(212) 533-2814"
 41 echo "(212) 533-9972 fax"
 42 echo "milliej@loisaida.com"
 43 echo "Ex-girlfriend"
 44 echo "Birthday: Feb. 11"
 45 ;;
 46
 47 # Add info for Smith & Zane later.
 48

 49 *)
 50 # Default option.
 51 # Empty input (hitting RETURN) fits here, too.
 52 echo
 53 echo "Not yet in database."
 54 ;;
 55
 56 esac
 57
 58 echo
 59
 60 # Exercise:
 61 # --------
 62 # Change the script so it accepts multiple inputs,
 63 #+ instead of terminating after displaying just one address.
 64
 65 exit 0

An exceptionally clever use of case involves testing for command-line parameters.

 1 #! /bin/bash
 2
 3 case "$1" in
 4 "") echo "Usage: ${0##*/} <filename>"; exit $E_PARAM;;
 5 # No command-line parameters,
 6 # or first parameter empty.
 7 # Note that ${0##*/} is ${var##pattern} param substitution.
 8 # Net result is $0.
 9
 10 -*) FILENAME=./$1;; # If filename passed as argument ($1)
 11 #+ starts with a dash,
 12 #+ replace it with ./$1
 13 #+ so further commands don't interpret it
 14 #+ as an option.
 15
 16 *) FILENAME=$1;; # Otherwise, $1.
 17 esac

Here is a more straightforward example of command-line parameter handling:

 1 #! /bin/bash
 2
 3
 4 while [$# -gt 0]; do # Until you run out of parameters . . .
 5 case "$1" in
 6 -d|--debug)
 7 # "-d" or "--debug" parameter?
 8 DEBUG=1
 9 ;;
 10 -c|--conf)
 11 CONFFILE="$2"
 12 shift
 13 if [! -f $CONFFILE]; then
 14 echo "Error: Supplied file doesn't exist!"
 15 exit $E_CONFFILE # File not found error.
 16 fi
 17 ;;
 18 esac
 19 shift # Check next set of parameters.
 20 done
 21
 22 # From Stefano Falsetto's "Log2Rot" script,
 23 #+ part of his "rottlog" package.
 24 # Used with permission.

Example 11-27. Using command substitution to generate the case variable

 1 #!/bin/bash
 2 # case-cmd.sh: Using command substitution to generate a "case" variable.
 3
 4 case $(arch) in # $(arch) returns machine architecture.
 5 # Equivalent to 'uname -m' ...
 6 i386) echo "80386-based machine";;
 7 i486) echo "80486-based machine";;
 8 i586) echo "Pentium-based machine";;
 9 i686) echo "Pentium2+-based machine";;
 10 *) echo "Other type of machine";;
 11 esac
 12
 13 exit 0

A case construct can filter strings for globbing patterns.

Example 11-28. Simple string matching

 1 #!/bin/bash
 2 # match-string.sh: Simple string matching
 3 # using a 'case' construct.
 4
 5 match_string ()
 6 { # Exact string match.
 7 MATCH=0
 8 E_NOMATCH=90
 9 PARAMS=2 # Function requires 2 arguments.
 10 E_BAD_PARAMS=91
 11
 12 [$# -eq $PARAMS] || return $E_BAD_PARAMS
 13
 14 case "$1" in
 15 "$2") return $MATCH;;
 16 *) return $E_NOMATCH;;
 17 esac
 18
 19 }
 20
 21
 22 a=one
 23 b=two
 24 c=three
 25 d=two
 26
 27
 28 match_string $a # wrong number of parameters
 29 echo $? # 91
 30
 31 match_string $a $b # no match
 32 echo $? # 90
 33
 34 match_string $b $d # match
 35 echo $? # 0
 36
 37
 38 exit 0

Example 11-29. Checking for alphabetic input

 1 #!/bin/bash
 2 # isalpha.sh: Using a "case" structure to filter a string.
 3
 4 SUCCESS=0
 5 FAILURE=1 # Was FAILURE=-1,
 6 #+ but Bash no longer allows negative return value.
 7
 8 isalpha () # Tests whether *first character* of input string is alphabetic.
 9 {
 10 if [-z "$1"] # No argument passed?
 11 then
 12 return $FAILURE
 13 fi
 14
 15 case "$1" in
 16 [a-zA-Z]*) return $SUCCESS;; # Begins with a letter?
 17 *) return $FAILURE;;
 18 esac
 19 } # Compare this with "isalpha ()" function in C.
 20
 21
 22 isalpha2 () # Tests whether *entire string* is alphabetic.
 23 {
 24 [$# -eq 1] || return $FAILURE
 25
 26 case $1 in
 27 *[!a-zA-Z]*|"") return $FAILURE;;
 28 *) return $SUCCESS;;
 29 esac
 30 }
 31
 32 isdigit () # Tests whether *entire string* is numerical.
 33 { # In other words, tests for integer variable.
 34 [$# -eq 1] || return $FAILURE
 35
 36 case $1 in
 37 *[!0-9]*|"") return $FAILURE;;
 38 *) return $SUCCESS;;
 39 esac
 40 }
 41
 42
 43
 44 check_var () # Front-end to isalpha ().
 45 {
 46 if isalpha "$@"
 47 then
 48 echo "\"$*\" begins with an alpha character."
 49 if isalpha2 "$@"
 50 then # No point in testing if first char is non-alpha.
 51 echo "\"$*\" contains only alpha characters."
 52 else
 53 echo "\"$*\" contains at least one non-alpha character."
 54 fi
 55 else
 56 echo "\"$*\" begins with a non-alpha character."
 57 # Also "non-alpha" if no argument passed.
 58 fi
 59
 60 echo

 61
 62 }
 63
 64 digit_check () # Front-end to isdigit ().
 65 {
 66 if isdigit "$@"
 67 then
 68 echo "\"$*\" contains only digits [0 - 9]."
 69 else
 70 echo "\"$*\" has at least one non-digit character."
 71 fi
 72
 73 echo
 74
 75 }
 76
 77 a=23skidoo
 78 b=H3llo
 79 c=-What?
 80 d=What?
 81 e=$(echo $b) # Command substitution.
 82 f=AbcDef
 83 g=27234
 84 h=27a34
 85 i=27.34
 86
 87 check_var $a
 88 check_var $b
 89 check_var $c
 90 check_var $d
 91 check_var $e
 92 check_var $f
 93 check_var # No argument passed, so what happens?
 94 #
 95 digit_check $g
 96 digit_check $h
 97 digit_check $i
 98
 99
 100 exit 0 # Script improved by S.C.
 101
 102 # Exercise:
 103 # --------
 104 # Write an 'isfloat ()' function that tests for floating point numbers.
 105 # Hint: The function duplicates 'isdigit ()',
 106 #+ but adds a test for a mandatory decimal point.

select
The select construct, adopted from the Korn Shell, is yet another tool for building menus.

select variable [in list]
do
command...
 break
done

This prompts the user to enter one of the choices presented in the variable list. Note that select uses
the $PS3 prompt (#?) by default, but this may be changed.

Example 11-30. Creating menus using select

 1 #!/bin/bash
 2
 3 PS3='Choose your favorite vegetable: ' # Sets the prompt string.
 4 # Otherwise it defaults to #? .
 5
 6 echo
 7
 8 select vegetable in "beans" "carrots" "potatoes" "onions" "rutabagas"
 9 do
 10 echo
 11 echo "Your favorite veggie is $vegetable."
 12 echo "Yuck!"
 13 echo
 14 break # What happens if there is no 'break' here?
 15 done
 16
 17 exit
 18
 19 # Exercise:
 20 # --------
 21 # Fix this script to accept user input not specified in
 22 #+ the "select" statement.
 23 # For example, if the user inputs "peas,"
 24 #+ the script would respond "Sorry. That is not on the menu."

If in list is omitted, then select uses the list of command line arguments ($@) passed to the script
or the function containing the select construct.

Compare this to the behavior of a

for variable [in list]

construct with the in list omitted.

Example 11-31. Creating menus using select in a function

 1 #!/bin/bash
 2
 3 PS3='Choose your favorite vegetable: '
 4
 5 echo
 6
 7 choice_of()
 8 {
 9 select vegetable
 10 # [in list] omitted, so 'select' uses arguments passed to function.
 11 do
 12 echo
 13 echo "Your favorite veggie is $vegetable."
 14 echo "Yuck!"
 15 echo
 16 break
 17 done
 18 }
 19
 20 choice_of beans rice carrots radishes rutabaga spinach
 21 # $1 $2 $3 $4 $5 $6
 22 # passed to choice_of() function
 23
 24 exit 0

See also Example 37-3.

Notes

[1] Pattern-match lines may also start with a (left paren to give the layout a more structured appearance.

 1 case $(arch) in # $(arch) returns machine architecture.
 2 (i386) echo "80386-based machine";;
 3 # ^ ^
 4 (i486) echo "80486-based machine";;
 5 (i586) echo "Pentium-based machine";;
 6 (i686) echo "Pentium2+-based machine";;
 7 (*) echo "Other type of machine";;
 8 esac

Prev Home Next
Loop Control Up Command Substitution

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Next

Chapter 12. Command Substitution
Command substitution reassigns the output of a command [1] or even multiple commands; it literally plugs
the command output into another context. [2]

The classic form of command substitution uses backquotes (`...`). Commands within backquotes (backticks)
generate command-line text.

 1 script_name=`basename $0`
 2 echo "The name of this script is $script_name."

The output of commands can be used as arguments to another command, to set a variable, and even for
generating the argument list in a for loop.

 1 rm `cat filename` # "filename" contains a list of files to delete.
 2 #
 3 # S. C. points out that "arg list too long" error might result.
 4 # Better is xargs rm -- < filename
 5 # (-- covers those cases where "filename" begins with a "-")
 6
 7 textfile_listing=`ls *.txt`
 8 # Variable contains names of all *.txt files in current working directory.
 9 echo $textfile_listing
 10
 11 textfile_listing2=$(ls *.txt) # The alternative form of command substitution.
 12 echo $textfile_listing2
 13 # Same result.
 14
 15 # A possible problem with putting a list of files into a single string
 16 # is that a newline may creep in.
 17 #
 18 # A safer way to assign a list of files to a parameter is with an array.
 19 # shopt -s nullglob # If no match, filename expands to nothing.
 20 # textfile_listing=(*.txt)
 21 #
 22 # Thanks, S.C.

Command substitution invokes a subshell.

Command substitution may result in word splitting.

 1 COMMAND `echo a b` # 2 args: a and b
 2
 3 COMMAND "`echo a b`" # 1 arg: "a b"
 4
 5 COMMAND `echo` # no arg
 6
 7 COMMAND "`echo`" # one empty arg
 8
 9
 10 # Thanks, S.C.

Even when there is no word splitting, command substitution can remove trailing newlines.

 1 # cd "`pwd`" # This should always work.
 2 # However...
 3
 4 mkdir 'dir with trailing newline
 5 '
 6
 7 cd 'dir with trailing newline
 8 '
 9

 10 cd "`pwd`" # Error message:
 11 # bash: cd: /tmp/file with trailing newline: No such file or directory
 12
 13 cd "$PWD" # Works fine.
 14
 15
 16
 17
 18
 19 old_tty_setting=$(stty -g) # Save old terminal setting.
 20 echo "Hit a key "
 21 stty -icanon -echo # Disable "canonical" mode for terminal.
 22 # Also, disable *local* echo.
 23 key=$(dd bs=1 count=1 2> /dev/null) # Using 'dd' to get a keypress.
 24 stty "$old_tty_setting" # Restore old setting.
 25 echo "You hit ${#key} key." # ${#variable} = number of characters in $variable
 26 #
 27 # Hit any key except RETURN, and the output is "You hit 1 key."
 28 # Hit RETURN, and it's "You hit 0 key."
 29 # The newline gets eaten in the command substitution.
 30
 31 #Code snippet by Stéphane Chazelas.

Using echo to output an unquoted variable set with command substitution removes trailing newlines
characters from the output of the reassigned command(s). This can cause unpleasant surprises.

 1 dir_listing=`ls -l`
 2 echo $dir_listing # unquoted
 3
 4 # Expecting a nicely ordered directory listing.
 5
 6 # However, what you get is:
 7 # total 3 -rw-rw-r-- 1 bozo bozo 30 May 13 17:15 1.txt -rw-rw-r-- 1 bozo
 8 # bozo 51 May 15 20:57 t2.sh -rwxr-xr-x 1 bozo bozo 217 Mar 5 21:13 wi.sh
 9
 10 # The newlines disappeared.
 11
 12
 13 echo "$dir_listing" # quoted
 14 # -rw-rw-r-- 1 bozo 30 May 13 17:15 1.txt
 15 # -rw-rw-r-- 1 bozo 51 May 15 20:57 t2.sh
 16 # -rwxr-xr-x 1 bozo 217 Mar 5 21:13 wi.sh

Command substitution even permits setting a variable to the contents of a file, using either redirection or the
cat command.

 1 variable1=`<file1` # Set "variable1" to contents of "file1".
 2 variable2=`cat file2` # Set "variable2" to contents of "file2".
 3 # This, however, forks a new process,
 4 #+ so the line of code executes slower than the above version.
 5
 6 # Note that the variables may contain embedded whitespace,
 7 #+ or even (horrors), control characters.
 8
 9 # It is not necessary to explicitly assign a variable.
 10 echo "` <$0`" # Echoes the script itself to stdout.

 1 # Excerpts from system file, /etc/rc.d/rc.sysinit
 2 #+ (on a Red Hat Linux installation)
 3
 4
 5 if [-f /fsckoptions]; then
 6 fsckoptions=`cat /fsckoptions`
 7 ...
 8 fi

 9 #
 10 #
 11 if [-e "/proc/ide/${disk[$device]}/media"] ; then
 12 hdmedia=`cat /proc/ide/${disk[$device]}/media`
 13 ...
 14 fi
 15 #
 16 #
 17 if [! -n "`uname -r | grep -- "-"`"]; then
 18 ktag="`cat /proc/version`"
 19 ...
 20 fi
 21 #
 22 #
 23 if [$usb = "1"]; then
 24 sleep 5
 25 mouseoutput=`cat /proc/bus/usb/devices 2>/dev/null|grep -E "^I.*Cls=03.*Prot=02"`
 26 kbdoutput=`cat /proc/bus/usb/devices 2>/dev/null|grep -E "^I.*Cls=03.*Prot=01"`
 27 ...
 28 fi

Do not set a variable to the contents of a long text file unless you have a very good reason for doing so.
Do not set a variable to the contents of a binary file, even as a joke.

Example 12-1. Stupid script tricks

 1 #!/bin/bash
 2 # stupid-script-tricks.sh: Don't try this at home, folks.
 3 # From "Stupid Script Tricks," Volume I.
 4
 5 exit 99 ### Comment out this line if you dare.
 6
 7 dangerous_variable=`cat /boot/vmlinuz` # The compressed Linux kernel itself.
 8
 9 echo "string-length of \$dangerous_variable = ${#dangerous_variable}"
 10 # string-length of $dangerous_variable = 794151
 11 # (Newer kernels are bigger.)
 12 # Does not give same count as 'wc -c /boot/vmlinuz'.
 13
 14 # echo "$dangerous_variable"
 15 # Don't try this! It would hang the script.
 16
 17
 18 # The document author is aware of no useful applications for
 19 #+ setting a variable to the contents of a binary file.
 20
 21 exit 0

Notice that a buffer overrun does not occur. This is one instance where an interpreted language, such as
Bash, provides more protection from programmer mistakes than a compiled language.

Command substitution permits setting a variable to the output of a loop. The key to this is grabbing the output
of an echo command within the loop.

Example 12-2. Generating a variable from a loop

 1 #!/bin/bash
 2 # csubloop.sh: Setting a variable to the output of a loop.
 3
 4 variable1=`for i in 1 2 3 4 5

 5 do
 6 echo -n "$i" # The 'echo' command is critical
 7 done` #+ to command substitution here.
 8
 9 echo "variable1 = $variable1" # variable1 = 12345
 10
 11
 12 i=0
 13 variable2=`while ["$i" -lt 10]
 14 do
 15 echo -n "$i" # Again, the necessary 'echo'.
 16 let "i += 1" # Increment.
 17 done`
 18
 19 echo "variable2 = $variable2" # variable2 = 0123456789
 20
 21 # Demonstrates that it's possible to embed a loop
 22 #+ inside a variable declaration.
 23
 24 exit 0

Command substitution makes it possible to extend the toolset available to Bash. It is simply a matter of
writing a program or script that outputs to stdout (like a well-behaved UNIX tool should) and assigning
that output to a variable.

 1 #include <stdio.h>
 2
 3 /* "Hello, world." C program */
 4
 5 int main()
 6 {
 7 printf("Hello, world.\n");
 8 return (0);
 9 }

bash$ gcc -o hello hello.c

 1 #!/bin/bash
 2 # hello.sh
 3
 4 greeting=`./hello`
 5 echo $greeting

bash$ sh hello.sh
Hello, world.

The $(...) form has superseded backticks for command substitution.

 1 output=$(sed -n /"$1"/p $file) # From "grp.sh" example.
 2
 3 # Setting a variable to the contents of a text file.
 4 File_contents1=$(cat $file1)
 5 File_contents2=$(<$file2) # Bash permits this also.

The $(...) form of command substitution treats a double backslash in a different way than `...`.

bash$ echo `echo \\`

bash$ echo $(echo \\)
\

The $(...) form of command substitution permits nesting. [3]

 1 word_count=$(wc -w $(echo * | awk '{print $8}'))

Or, for something a bit more elaborate . . .

Example 12-3. Finding anagrams

 1 #!/bin/bash
 2 # agram2.sh
 3 # Example of nested command substitution.
 4
 5 # Uses "anagram" utility
 6 #+ that is part of the author's "yawl" word list package.
 7 # http://ibiblio.org/pub/Linux/libs/yawl-0.3.2.tar.gz
 8 # http://bash.deta.in/yawl-0.3.2.tar.gz
 9
 10 E_NOARGS=86
 11 E_BADARG=87
 12 MINLEN=7
 13
 14 if [-z "$1"]
 15 then
 16 echo "Usage $0 LETTERSET"
 17 exit $E_NOARGS # Script needs a command-line argument.
 18 elif [${#1} -lt $MINLEN]
 19 then
 20 echo "Argument must have at least $MINLEN letters."
 21 exit $E_BADARG
 22 fi
 23
 24
 25
 26 FILTER='.......' # Must have at least 7 letters.
 27 # 1234567
 28 Anagrams=($(echo $(anagram $1 | grep $FILTER)))
 29 # $($(nested command sub.))
 30 # (array assignment)
 31
 32 echo
 33 echo "${#Anagrams[*]} 7+ letter anagrams found"
 34 echo
 35 echo ${Anagrams[0]} # First anagram.
 36 echo ${Anagrams[1]} # Second anagram.
 37 # Etc.
 38
 39 # echo "${Anagrams[*]}" # To list all the anagrams in a single line . . .
 40
 41 # Look ahead to the Arrays chapter for enlightenment on
 42 #+ what's going on here.
 43
 44 # See also the agram.sh script for an exercise in anagram finding.
 45
 46 exit $?

Examples of command substitution in shell scripts:

Example 11-81.
Example 11-272.
Example 9-163.

Example 16-34.
Example 16-225.
Example 16-176.
Example 16-547.
Example 11-148.
Example 11-119.
Example 16-3210.
Example 20-811.
Example A-1612.
Example 29-313.
Example 16-4714.
Example 16-4815.
Example 16-4916.

Notes

[1] For purposes of command substitution, a command may be an external system command, an internal
scripting builtin, or even a script function.

[2] In a more technically correct sense, command substitution extracts the stdout of a command, then
assigns it to a variable using the = operator.

[3] In fact, nesting with backticks is also possible, but only by escaping the inner backticks, as John Default
points out.

 1 word_count=` wc -w \`echo * | awk '{print $8}'\` `

Prev Home Next
Testing and Branching Up Arithmetic Expansion

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Next

Chapter 13. Arithmetic Expansion
Arithmetic expansion provides a powerful tool for performing (integer) arithmetic operations in scripts.
Translating a string into a numerical expression is relatively straightforward using backticks, double
parentheses, or let.

Variations

Arithmetic expansion with backticks (often used in conjunction with expr)

 1 z=`expr $z + 3` # The 'expr' command performs the expansion.

Arithmetic expansion with double parentheses, and using let
The use of backticks (backquotes) in arithmetic expansion has been superseded by double parentheses
-- ((...)) and $((...)) -- and also by the very convenient let construction.

 1 z=$(($z+3))
 2 z=$((z+3)) # Also correct.
 3 # Within double parentheses,
 4 #+ parameter dereferencing
 5 #+ is optional.
 6
 7 # $((EXPRESSION)) is arithmetic expansion. # Not to be confused with
 8 #+ command substitution.
 9
 10
 11
 12 # You may also use operations within double parentheses without assignment.
 13
 14 n=0
 15 echo "n = $n" # n = 0
 16
 17 ((n += 1)) # Increment.
 18 # (($n += 1)) is incorrect!
 19 echo "n = $n" # n = 1
 20
 21
 22 let z=z+3
 23 let "z += 3" # Quotes permit the use of spaces in variable assignment.
 24 # The 'let' operator actually performs arithmetic evaluation,
 25 #+ rather than expansion.

Examples of arithmetic expansion in scripts:

Example 16-91.
Example 11-152.
Example 27-13.
Example 27-114.
Example A-165.

Prev Home Next
Command Substitution Up Recess Time

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Next

Chapter 14. Recess Time
This bizarre little intermission gives the reader a chance to relax and maybe laugh a bit.

 Fellow Linux user, greetings! You are reading something which
 will bring you luck and good fortune. Just e-mail a copy of
 this document to 10 of your friends. Before making the copies,
 send a 100-line Bash script to the first person on the list
 at the bottom of this letter. Then delete their name and add
 yours to the bottom of the list.

 Don't break the chain! Make the copies within 48 hours.
 Wilfred P. of Brooklyn failed to send out his ten copies and
 woke the next morning to find his job description changed
 to "COBOL programmer." Howard L. of Newport News sent
 out his ten copies and within a month had enough hardware
 to build a 100-node Beowulf cluster dedicated to playing
Tuxracer. Amelia V. of Chicago laughed at this letter

 and broke the chain. Shortly thereafter, a fire broke out
 in her terminal and she now spends her days writing
 documentation for MS Windows.

 Don't break the chain! Send out your ten copies today!

Courtesy 'NIX "fortune cookies", with some alterations and many apologies

Prev Home Next
Arithmetic Expansion Up Commands

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Next

Part 4. Commands

Mastering the commands on your Linux machine is an indispensable prelude to writing effective shell scripts.

This section covers the following commands:

. (See also source)•
ac•
adduser•
agetty•
agrep•
ar•
arch•
at•
autoload•
awk (See also Using awk for math operations)•
badblocks•
banner•
basename•
batch•
bc•
bg•
bind•
bison•
builtin•
bzgrep•
bzip2•
cal•
caller•
cat•
cd•
chattr•
chfn•
chgrp•
chkconfig•
chmod•
chown•
chroot•
cksum•
clear•
clock•
cmp•
col•
colrm•
column•
comm•
command•
compgen•
complete•
compress•
coproc•

cp•
cpio•
cron•
crypt•
csplit•
cu•
cut•
date•
dc•
dd•
debugfs•
declare•
depmod•
df•
dialog•
diff•
diff3•
diffstat•
dig•
dirname•
dirs•
disown•
dmesg•
doexec•
dos2unix•
du•
dump•
dumpe2fs•
e2fsck•
echo•
egrep•
enable•
enscript•
env•
eqn•
eval•
exec•
exit (Related topic: exit status)•
expand•
export•
expr•
factor•
false•
fdformat•
fdisk•
fg•
fgrep•
file•
find•
finger•
flex•
flock•
fmt•
fold•

free•
fsck•
ftp•
fuser•
getfacl•
getopt•
getopts•
gettext•
getty•
gnome-mount•
grep•
groff•
groupmod•
groups (Related topic: the $GROUPS variable)•
gs•
gzip•
halt•
hash•
hdparm•
head•
help•
hexdump•
host•
hostid•
hostname (Related topic: the $HOSTNAME variable)•
hwclock•
iconv•
id (Related topic: the $UID variable)•
ifconfig•
info•
infocmp•
init•
insmod•
install•
ip•
ipcalc•
iptables•
iwconfig•
jobs•
join•
jot•
kill•
killall•
last•
lastcomm•
lastlog•
ldd•
less•
let•
lex•
lid•
ln•
locate•
lockfile•

logger•
logname•
logout•
logrotate•
look•
losetup•
lp•
ls•
lsdev•
lsmod•
lsof•
lspci•
lsusb•
ltrace•
lynx•
lzcat•
lzma•
m4•
mail•
mailstats•
mailto•
make•
MAKEDEV•
man•
mapfile•
mcookie•
md5sum•
merge•
mesg•
mimencode•
mkbootdisk•
mkdir•
mkdosfs•
mke2fs•
mkfifo•
mkisofs•
mknod•
mkswap•
mktemp•
mmencode•
modinfo•
modprobe•
more•
mount•
msgfmt•
mv•
nc•
netconfig•
netstat•
newgrp•
nice•
nl•
nm•
nmap•

nohup•
nslookup•
objdump•
od•
openssl•
passwd•
paste•
patch (Related topic: diff)•
pathchk•
pax•
pgrep•
pidof•
ping•
pkill•
popd•
pr•
printenv•
printf•
procinfo•
ps•
pstree•
ptx•
pushd•
pwd (Related topic: the $PWD variable)•
quota•
rcp•
rdev•
rdist•
read•
readelf•
readlink•
readonly•
reboot•
recode•
renice•
reset•
resize•
restore•
rev•
rlogin•
rm•
rmdir•
rmmod•
route•
rpm•
rpm2cpio•
rsh•
rsync•
runlevel•
run-parts•
rx•
rz•
sar•
scp•

script•
sdiff•
sed•
seq•
service•
set•
setfacl•
setquota•
setserial•
setterm•
sha1sum•
shar•
shopt•
shred•
shutdown•
size•
skill•
sleep•
slocate•
snice•
sort•
source•
sox•
split•
sq•
ssh•
stat•
strace•
strings•
strip•
stty•
su•
sudo•
sum•
suspend•
swapoff•
swapon•
sx•
sync•
sz•
tac•
tail•
tar•
tbl•
tcpdump•
tee•
telinit•
telnet•
Tex•
texexec•
time•
times•
tmpwatch•
top•

touch•
tput•
tr•
traceroute•
true•
tset•
tsort•
tty•
tune2fs•
type•
typeset•
ulimit•
umask•
umount•
uname•
unarc•
unarj•
uncompress•
unexpand•
uniq•
units•
unlzma•
unrar•
unset•
unsq•
unzip•
uptime•
usbmodules•
useradd•
userdel•
usermod•
users•
usleep•
uucp•
uudecode•
uuencode•
uux•
vacation•
vdir•
vmstat•
vrfy•
w•
wait•
wall•
watch•
wc•
wget•
whatis•
whereis•
which•
who•
whoami•
whois•
write•

xargs•
xrandr•
xz•
yacc•
yes•
zcat•
zdiff•
zdump•
zegrep•
zfgrep•
zgrep•
zip•

Table of Contents
15. Internal Commands and Builtins
16. External Filters, Programs and Commands
17. System and Administrative Commands

Prev Home Next
Recess Time Internal Commands and Builtins

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Next

Chapter 15. Internal Commands and Builtins
A builtin is a command contained within the Bash tool set, literally built in. This is either for performance
reasons -- builtins execute faster than external commands, which usually require forking off [1] a separate
process -- or because a particular builtin needs direct access to the shell internals.

When a command or the shell itself initiates (or spawns) a new subprocess to carry out a task, this is called
forking. This new process is the child, and the process that forked it off is the parent. While the child
process is doing its work, the parent process is still executing.

Note that while a parent process gets the process ID of the child process, and can thus pass arguments to it,
the reverse is not true. This can create problems that are subtle and hard to track down.

Example 15-1. A script that spawns multiple instances of itself

 1 #!/bin/bash
 2 # spawn.sh
 3
 4
 5 PIDS=$(pidof sh $0) # Process IDs of the various instances of this script.
 6 P_array=($PIDS) # Put them in an array (why?).
 7 echo $PIDS # Show process IDs of parent and child processes.
 8 let "instances = ${#P_array[*]} - 1" # Count elements, less 1.
 9 # Why subtract 1?
 10 echo "$instances instance(s) of this script running."
 11 echo "[Hit Ctl-C to exit.]"; echo
 12
 13
 14 sleep 1 # Wait.
 15 sh $0 # Play it again, Sam.
 16
 17 exit 0 # Not necessary; script will never get to here.
 18 # Why not?
 19
 20 # After exiting with a Ctl-C,
 21 #+ do all the spawned instances of the script die?
 22 # If so, why?
 23
 24 # Note:
 25 # ----
 26 # Be careful not to run this script too long.
 27 # It will eventually eat up too many system resources.
 28
 29 # Is having a script spawn multiple instances of itself
 30 #+ an advisable scripting technique.
 31 # Why or why not?

Generally, a Bash builtin does not fork a subprocess when it executes within a script. An external system
command or filter in a script usually will fork a subprocess.

A builtin may be a synonym to a system command of the same name, but Bash reimplements it internally. For
example, the Bash echo command is not the same as /bin/echo, although their behavior is almost
identical.

 1 #!/bin/bash
 2
 3 echo "This line uses the \"echo\" builtin."
 4 /bin/echo "This line uses the /bin/echo system command."

A keyword is a reserved word, token or operator. Keywords have a special meaning to the shell, and indeed
are the building blocks of the shell's syntax. As examples, for, while, do, and ! are keywords. Similar to a
builtin, a keyword is hard-coded into Bash, but unlike a builtin, a keyword is not in itself a command, but a
subunit of a command construct. [2]

I/O

echo
prints (to stdout) an expression or variable (see Example 4-1).

 1 echo Hello
 2 echo $a

An echo requires the -e option to print escaped characters. See Example 5-2.

Normally, each echo command prints a terminal newline, but the -n option suppresses this.

An echo can be used to feed a sequence of commands down a pipe.

 1 if echo "$VAR" | grep -q txt # if [[$VAR = *txt*]]
 2 then
 3 echo "$VAR contains the substring sequence \"txt\""
 4 fi

An echo, in combination with command substitution can set a variable.

a=`echo "HELLO" | tr A-Z a-z`

See also Example 16-22, Example 16-3, Example 16-47, and Example 16-48.
Be aware that echo `command` deletes any linefeeds that the output of command generates.

The $IFS (internal field separator) variable normally contains \n (linefeed) as one of its set of
whitespace characters. Bash therefore splits the output of command at linefeeds into arguments to
echo. Then echo outputs these arguments, separated by spaces.

bash$ ls -l /usr/share/apps/kjezz/sounds
-rw-r--r-- 1 root root 1407 Nov 7 2000 reflect.au

 -rw-r--r-- 1 root root 362 Nov 7 2000 seconds.au

bash$ echo `ls -l /usr/share/apps/kjezz/sounds`
total 40 -rw-r--r-- 1 root root 716 Nov 7 2000 reflect.au -rw-r--r-- 1 root root ...

So, how can we embed a linefeed within an echoed character string?

 1 # Embedding a linefeed?
 2 echo "Why doesn't this string \n split on two lines?"
 3 # Doesn't split.
 4
 5 # Let's try something else.
 6
 7 echo

 8
 9 echo $"A line of text containing
 10 a linefeed."
 11 # Prints as two distinct lines (embedded linefeed).
 12 # But, is the "$" variable prefix really necessary?
 13
 14 echo
 15
 16 echo "This string splits
 17 on two lines."
 18 # No, the "$" is not needed.
 19
 20 echo
 21 echo "---------------"
 22 echo
 23
 24 echo -n $"Another line of text containing
 25 a linefeed."
 26 # Prints as two distinct lines (embedded linefeed).
 27 # Even the -n option fails to suppress the linefeed here.
 28
 29 echo
 30 echo
 31 echo "---------------"
 32 echo
 33 echo
 34
 35 # However, the following doesn't work as expected.
 36 # Why not? Hint: Assignment to a variable.
 37 string1=$"Yet another line of text containing
 38 a linefeed (maybe)."
 39
 40 echo $string1
 41 # Yet another line of text containing a linefeed (maybe).
 42 # ^
 43 # Linefeed becomes a space.
 44
 45 # Thanks, Steve Parker, for pointing this out.

This command is a shell builtin, and not the same as /bin/echo, although its
behavior is similar.

bash$ type -a echo
echo is a shell builtin

 echo is /bin/echo

printf
The printf, formatted print, command is an enhanced echo. It is a limited variant of the C language
printf() library function, and its syntax is somewhat different.

printf format-string... parameter...

This is the Bash builtin version of the /bin/printf or /usr/bin/printf command. See the
printf manpage (of the system command) for in-depth coverage.

Older versions of Bash may not support printf.

Example 15-2. printf in action

 1 #!/bin/bash
 2 # printf demo
 3
 4 declare -r PI=3.14159265358979 # Read-only variable, i.e., a constant.
 5 declare -r DecimalConstant=31373
 6
 7 Message1="Greetings,"
 8 Message2="Earthling."
 9
 10 echo
 11
 12 printf "Pi to 2 decimal places = %1.2f" $PI
 13 echo
 14 printf "Pi to 9 decimal places = %1.9f" $PI # It even rounds off correctly.
 15
 16 printf "\n" # Prints a line feed,
 17 # Equivalent to 'echo' . . .
 18
 19 printf "Constant = \t%d\n" $DecimalConstant # Inserts tab (\t).
 20
 21 printf "%s %s \n" $Message1 $Message2
 22
 23 echo
 24
 25 # ==#
 26 # Simulation of C function, sprintf().
 27 # Loading a variable with a formatted string.
 28
 29 echo
 30
 31 Pi12=$(printf "%1.12f" $PI)
 32 echo "Pi to 12 decimal places = $Pi12" # Roundoff error!
 33
 34 Msg=`printf "%s %s \n" $Message1 $Message2`
 35 echo $Msg; echo $Msg
 36
 37 # As it happens, the 'sprintf' function can now be accessed
 38 #+ as a loadable module to Bash,
 39 #+ but this is not portable.
 40
 41 exit 0

Formatting error messages is a useful application of printf

 1 E_BADDIR=85
 2
 3 var=nonexistent_directory
 4
 5 error()
 6 {
 7 printf "$@" >&2
 8 # Formats positional params passed, and sends them to stderr.
 9 echo
 10 exit $E_BADDIR
 11 }
 12
 13 cd $var || error $"Can't cd to %s." "$var"
 14
 15 # Thanks, S.C.

See also Example 36-17.
read

"Reads" the value of a variable from stdin, that is, interactively fetches input from the keyboard.
The -a option lets read get array variables (see Example 27-6).

Example 15-3. Variable assignment, using read

 1 #!/bin/bash
 2 # "Reading" variables.
 3
 4 echo -n "Enter the value of variable 'var1': "
 5 # The -n option to echo suppresses newline.
 6
 7 read var1
 8 # Note no '$' in front of var1, since it is being set.
 9
 10 echo "var1 = $var1"
 11
 12
 13 echo
 14
 15 # A single 'read' statement can set multiple variables.
 16 echo -n "Enter the values of variables 'var2' and 'var3' "
 17 echo =n "(separated by a space or tab): "
 18 read var2 var3
 19 echo "var2 = $var2 var3 = $var3"
 20 # If you input only one value,
 21 #+ the other variable(s) will remain unset (null).
 22
 23 exit 0

A read without an associated variable assigns its input to the dedicated variable $REPLY.

Example 15-4. What happens when read has no variable

 1 #!/bin/bash
 2 # read-novar.sh
 3
 4 echo
 5
 6 # -------------------------- #
 7 echo -n "Enter a value: "
 8 read var
 9 echo "\"var\" = "$var""
 10 # Everything as expected here.
 11 # -------------------------- #
 12
 13 echo
 14
 15 # --- #
 16 echo -n "Enter another value: "
 17 read # No variable supplied for 'read', therefore...
 18 #+ Input to 'read' assigned to default variable, $REPLY.
 19 var="$REPLY"
 20 echo "\"var\" = "$var""
 21 # This is equivalent to the first code block.
 22 # --- #
 23
 24 echo
 25 echo "========================="
 26 echo
 27
 28
 29 # This example is similar to the "reply.sh" script.
 30 # However, this one shows that $REPLY is available

 31 #+ even after a 'read' to a variable in the conventional way.
 32
 33
 34 # === #
 35
 36 # In some instances, you might wish to discard the first value read.
 37 # In such cases, simply ignore the $REPLY variable.
 38
 39 { # Code block.
 40 read # Line 1, to be discarded.
 41 read line2 # Line 2, saved in variable.
 42 } <$0
 43 echo "Line 2 of this script is:"
 44 echo "$line2" # # read-novar.sh
 45 echo # #!/bin/bash line discarded.
 46
 47 # See also the soundcard-on.sh script.
 48
 49 exit 0

Normally, inputting a \ suppresses a newline during input to a read. The -r option causes an
inputted \ to be interpreted literally.

Example 15-5. Multi-line input to read

 1 #!/bin/bash
 2
 3 echo
 4
 5 echo "Enter a string terminated by a \\, then press <ENTER>."
 6 echo "Then, enter a second string (no \\ this time), and again press <ENTER>."
 7
 8 read var1 # The "\" suppresses the newline, when reading $var1.
 9 # first line \
 10 # second line
 11
 12 echo "var1 = $var1"
 13 # var1 = first line second line
 14
 15 # For each line terminated by a "\"
 16 #+ you get a prompt on the next line to continue feeding characters into var1.
 17
 18 echo; echo
 19
 20 echo "Enter another string terminated by a \\ , then press <ENTER>."
 21 read -r var2 # The -r option causes the "\" to be read literally.
 22 # first line \
 23
 24 echo "var2 = $var2"
 25 # var2 = first line \
 26
 27 # Data entry terminates with the first <ENTER>.
 28
 29 echo
 30
 31 exit 0

The read command has some interesting options that permit echoing a prompt and even reading
keystrokes without hitting ENTER.

 1 # Read a keypress without hitting ENTER.
 2
 3 read -s -n1 -p "Hit a key " keypress
 4 echo; echo "Keypress was "\"$keypress\""."
 5
 6 # -s option means do not echo input.
 7 # -n N option means accept only N characters of input.
 8 # -p option means echo the following prompt before reading input.
 9
 10 # Using these options is tricky, since they need to be in the correct order.

The -n option to read also allows detection of the arrow keys and certain of the other unusual keys.

Example 15-6. Detecting the arrow keys

 1 #!/bin/bash
 2 # arrow-detect.sh: Detects the arrow keys, and a few more.
 3 # Thank you, Sandro Magi, for showing me how.
 4
 5 # --
 6 # Character codes generated by the keypresses.
 7 arrowup='\[A'
 8 arrowdown='\[B'
 9 arrowrt='\[C'
 10 arrowleft='\[D'
 11 insert='\[2'
 12 delete='\[3'
 13 # --
 14
 15 SUCCESS=0
 16 OTHER=65
 17
 18 echo -n "Press a key... "
 19 # May need to also press ENTER if a key not listed above pressed.
 20 read -n3 key # Read 3 characters.
 21
 22 echo -n "$key" | grep "$arrowup" #Check if character code detected.
 23 if ["$?" -eq $SUCCESS]
 24 then
 25 echo "Up-arrow key pressed."
 26 exit $SUCCESS
 27 fi
 28
 29 echo -n "$key" | grep "$arrowdown"
 30 if ["$?" -eq $SUCCESS]
 31 then
 32 echo "Down-arrow key pressed."
 33 exit $SUCCESS
 34 fi
 35
 36 echo -n "$key" | grep "$arrowrt"
 37 if ["$?" -eq $SUCCESS]
 38 then
 39 echo "Right-arrow key pressed."
 40 exit $SUCCESS
 41 fi
 42
 43 echo -n "$key" | grep "$arrowleft"
 44 if ["$?" -eq $SUCCESS]
 45 then
 46 echo "Left-arrow key pressed."
 47 exit $SUCCESS
 48 fi

 49
 50 echo -n "$key" | grep "$insert"
 51 if ["$?" -eq $SUCCESS]
 52 then
 53 echo "\"Insert\" key pressed."
 54 exit $SUCCESS
 55 fi
 56
 57 echo -n "$key" | grep "$delete"
 58 if ["$?" -eq $SUCCESS]
 59 then
 60 echo "\"Delete\" key pressed."
 61 exit $SUCCESS
 62 fi
 63
 64
 65 echo " Some other key pressed."
 66
 67 exit $OTHER
 68
 69 # === #
 70
 71 # Mark Alexander came up with a simplified
 72 #+ version of the above script (Thank you!).
 73 # It eliminates the need for grep.
 74
 75 #!/bin/bash
 76
 77 uparrow=$'\x1b[A'
 78 downarrow=$'\x1b[B'
 79 leftarrow=$'\x1b[D'
 80 rightarrow=$'\x1b[C'
 81
 82 read -s -n3 -p "Hit an arrow key: " x
 83
 84 case "$x" in
 85 $uparrow)
 86 echo "You pressed up-arrow"
 87 ;;
 88 $downarrow)
 89 echo "You pressed down-arrow"
 90 ;;
 91 $leftarrow)
 92 echo "You pressed left-arrow"
 93 ;;
 94 $rightarrow)
 95 echo "You pressed right-arrow"
 96 ;;
 97 esac
 98
 99 exit $?
 100
 101 # === #
 102
 103 # Antonio Macchi has a simpler alternative.
 104
 105 #!/bin/bash
 106
 107 while true
 108 do
 109 read -sn1 a
 110 test "$a" == `echo -en "\e"` || continue
 111 read -sn1 a
 112 test "$a" == "[" || continue
 113 read -sn1 a
 114 case "$a" in

 115 A) echo "up";;
 116 B) echo "down";;
 117 C) echo "right";;
 118 D) echo "left";;
 119 esac
 120 done
 121
 122 # === #
 123
 124 # Exercise:
 125 # --------
 126 # 1) Add detection of the "Home," "End," "PgUp," and "PgDn" keys.

The -n option to read will not detect the ENTER (newline) key.

The -t option to read permits timed input (see Example 9-4 and Example A-41).

The -u option takes the file descriptor of the target file.

The read command may also "read" its variable value from a file redirected to stdin. If the file
contains more than one line, only the first line is assigned to the variable. If read has more than one
parameter, then each of these variables gets assigned a successive whitespace-delineated string.
Caution!

Example 15-7. Using read with file redirection

 1 #!/bin/bash
 2
 3 read var1 <data-file
 4 echo "var1 = $var1"
 5 # var1 set to the entire first line of the input file "data-file"
 6
 7 read var2 var3 <data-file
 8 echo "var2 = $var2 var3 = $var3"
 9 # Note non-intuitive behavior of "read" here.
 10 # 1) Rewinds back to the beginning of input file.
 11 # 2) Each variable is now set to a corresponding string,
 12 # separated by whitespace, rather than to an entire line of text.
 13 # 3) The final variable gets the remainder of the line.
 14 # 4) If there are more variables to be set than whitespace-terminated strings
 15 # on the first line of the file, then the excess variables remain empty.
 16
 17 echo "--"
 18
 19 # How to resolve the above problem with a loop:
 20 while read line
 21 do
 22 echo "$line"
 23 done <data-file
 24 # Thanks, Heiner Steven for pointing this out.
 25
 26 echo "--"
 27
 28 # Use $IFS (Internal Field Separator variable) to split a line of input to
 29 # "read", if you do not want the default to be whitespace.
 30
 31 echo "List of all users:"
 32 OIFS=$IFS; IFS=: # /etc/passwd uses ":" for field separator.
 33 while read name passwd uid gid fullname ignore

 34 do
 35 echo "$name ($fullname)"
 36 done </etc/passwd # I/O redirection.
 37 IFS=$OIFS # Restore original $IFS.
 38 # This code snippet also by Heiner Steven.
 39
 40
 41
 42 # Setting the $IFS variable within the loop itself
 43 #+ eliminates the need for storing the original $IFS
 44 #+ in a temporary variable.
 45 # Thanks, Dim Segebart, for pointing this out.
 46 echo "--"
 47 echo "List of all users:"
 48
 49 while IFS=: read name passwd uid gid fullname ignore
 50 do
 51 echo "$name ($fullname)"
 52 done </etc/passwd # I/O redirection.
 53
 54 echo
 55 echo "\$IFS still $IFS"
 56
 57 exit 0

Piping output to a read, using echo to set variables will fail.

Yet, piping the output of cat seems to work.

 1 cat file1 file2 |
 2 while read line
 3 do
 4 echo $line
 5 done

However, as Bjön Eriksson shows:

Example 15-8. Problems reading from a pipe

 1 #!/bin/sh
 2 # readpipe.sh
 3 # This example contributed by Bjon Eriksson.
 4
 5 ### shopt -s lastpipe
 6
 7 last="(null)"
 8 cat $0 |
 9 while read line
 10 do
 11 echo "{$line}"
 12 last=$line
 13 done
 14
 15 echo
 16 echo "++++++++++++++++++++++"
 17 printf "\nAll done, last: $last\n" # The output of this line
 18 #+ changes if you uncomment line 5.
 19 # (Bash, version -ge 4.2 required.)
 20
 21 exit 0 # End of code.

 22 # (Partial) output of script follows.
 23 # The 'echo' supplies extra brackets.
 24
 25 ###
 26
 27 ./readpipe.sh
 28
 29 {#!/bin/sh}
 30 {last="(null)"}
 31 {cat $0 |}
 32 {while read line}
 33 {do}
 34 {echo "{$line}"}
 35 {last=$line}
 36 {done}
 37 {printf "nAll done, last: $lastn"}
 38
 39
 40 All done, last: (null)
 41
 42 The variable (last) is set within the loop/subshell
 43 but its value does not persist outside the loop.

The gendiff script, usually found in /usr/bin on many Linux distros, pipes the output of
find to a while read construct.

 1 find $1 \(-name "*$2" -o -name ".*$2" \) -print |
 2 while read f; do
 3 . . .

It is possible to paste text into the input field of a read (but not multiple lines!). See
Example A-38.

Filesystem

cd
The familiar cd change directory command finds use in scripts where execution of a command
requires being in a specified directory.

 1 (cd /source/directory && tar cf - .) | (cd /dest/directory && tar xpvf -)

[from the previously cited example by Alan Cox]

The -P (physical) option to cd causes it to ignore symbolic links.

cd - changes to $OLDPWD, the previous working directory.

The cd command does not function as expected when presented with two forward
slashes.

bash$ cd //
bash$ pwd
//

The output should, of course, be /. This is a problem both from the command-line and
in a script.

pwd
Print Working Directory. This gives the user's (or script's) current directory (see Example 15-9). The
effect is identical to reading the value of the builtin variable $PWD.

pushd, popd, dirs
This command set is a mechanism for bookmarking working directories, a means of moving back and
forth through directories in an orderly manner. A pushdown stack is used to keep track of directory
names. Options allow various manipulations of the directory stack.

pushd dir-name pushes the path dir-name onto the directory stack (to the top of the stack) and
simultaneously changes the current working directory to dir-name

popd removes (pops) the top directory path name off the directory stack and simultaneously changes
the current working directory to the directory now at the top of the stack.

dirs lists the contents of the directory stack (compare this with the $DIRSTACK variable). A
successful pushd or popd will automatically invoke dirs.

Scripts that require various changes to the current working directory without hard-coding the
directory name changes can make good use of these commands. Note that the implicit $DIRSTACK
array variable, accessible from within a script, holds the contents of the directory stack.

Example 15-9. Changing the current working directory

 1 #!/bin/bash
 2
 3 dir1=/usr/local
 4 dir2=/var/spool
 5
 6 pushd $dir1
 7 # Will do an automatic 'dirs' (list directory stack to stdout).
 8 echo "Now in directory `pwd`." # Uses back-quoted 'pwd'.
 9
 10 # Now, do some stuff in directory 'dir1'.
 11 pushd $dir2
 12 echo "Now in directory `pwd`."
 13
 14 # Now, do some stuff in directory 'dir2'.
 15 echo "The top entry in the DIRSTACK array is $DIRSTACK."
 16 popd
 17 echo "Now back in directory `pwd`."
 18
 19 # Now, do some more stuff in directory 'dir1'.
 20 popd
 21 echo "Now back in original working directory `pwd`."
 22
 23 exit 0
 24
 25 # What happens if you don't 'popd' -- then exit the script?
 26 # Which directory do you end up in? Why?

Variables

let
The let command carries out arithmetic operations on variables. [3] In many cases, it functions as a
less complex version of expr.

Example 15-10. Letting let do arithmetic.

 1 #!/bin/bash
 2
 3 echo
 4
 5 let a=11 # Same as 'a=11'
 6 let a=a+5 # Equivalent to let "a = a + 5"
 7 # (Double quotes and spaces make it more readable.)
 8 echo "11 + 5 = $a" # 16
 9
 10 let "a <<= 3" # Equivalent to let "a = a << 3"
 11 echo "\"\$a\" (=16) left-shifted 3 places = $a"
 12 # 128
 13
 14 let "a /= 4" # Equivalent to let "a = a / 4"
 15 echo "128 / 4 = $a" # 32
 16
 17 let "a -= 5" # Equivalent to let "a = a - 5"
 18 echo "32 - 5 = $a" # 27
 19
 20 let "a *= 10" # Equivalent to let "a = a * 10"
 21 echo "27 * 10 = $a" # 270
 22
 23 let "a %= 8" # Equivalent to let "a = a % 8"
 24 echo "270 modulo 8 = $a (270 / 8 = 33, remainder $a)"
 25 # 6
 26
 27
 28 # Does "let" permit C-style operators?
 29 # Yes, just as the ((...)) double-parentheses construct does.
 30
 31 let a++ # C-style (post) increment.
 32 echo "6++ = $a" # 6++ = 7
 33 let a-- # C-style decrement.
 34 echo "7-- = $a" # 7-- = 6
 35 # Of course, ++a, etc., also allowed . . .
 36 echo
 37
 38
 39 # Trinary operator.
 40
 41 # Note that $a is 6, see above.
 42 let "t = a<7?7:11" # True
 43 echo $t # 7
 44
 45 let a++
 46 let "t = a<7?7:11" # False
 47 echo $t # 11
 48
 49 exit

The let command can, in certain contexts, return a surprising exit status.

 1 # Evgeniy Ivanov points out:
 2
 3 var=0
 4 echo $? # 0
 5 # As expected.
 6
 7 let var++
 8 echo $? # 1
 9 # The command was successful, so why isn't $?=0 ???
 10 # Anomaly!
 11

 12 let var++
 13 echo $? # 0
 14 # As expected.
 15
 16
 17 # Likewise . . .
 18
 19 let var=0
 20 echo $? # 1
 21 # The command was successful, so why isn't $?=0 ???
 22
 23 # However, as Jeff Gorak points out,
 24 #+ this is part of the design spec for 'let' . . .
 25 # "If the last ARG evaluates to 0, let returns 1;
 26 # let returns 0 otherwise." ['help let']

eval
eval arg1 [arg2] ... [argN]

Combines the arguments in an expression or list of expressions and evaluates them. Any variables
within the expression are expanded. The net result is to convert a string into a command.

The eval command can be used for code generation from the command-line or
within a script.

bash$ command_string="ps ax"
bash$ process="ps ax"
bash$ eval "$command_string" | grep "$process"
26973 pts/3 R+ 0:00 grep --color ps ax

 26974 pts/3 R+ 0:00 ps ax

Each invocation of eval forces a re-evaluation of its arguments.

 1 a='$b'
 2 b='$c'
 3 c=d
 4
 5 echo $a # $b
 6 # First level.
 7 eval echo $a # $c
 8 # Second level.
 9 eval eval echo $a # d
 10 # Third level.
 11
 12 # Thank you, E. Choroba.

Example 15-11. Showing the effect of eval

 1 #!/bin/bash
 2 # Exercising "eval" ...
 3
 4 y=`eval ls -l` # Similar to y=`ls -l`
 5 echo $y #+ but linefeeds removed because "echoed" variable is unquoted.
 6 echo
 7 echo "$y" # Linefeeds preserved when variable is quoted.
 8
 9 echo; echo
 10
 11 y=`eval df` # Similar to y=`df`
 12 echo $y #+ but linefeeds removed.

 13
 14 # When LF's not preserved, it may make it easier to parse output,
 15 #+ using utilities such as "awk".
 16
 17 echo
 18 echo "==="
 19 echo
 20
 21 eval "`seq 3 | sed -e 's/.*/echo var&=ABCDEFGHIJ/'`"
 22 # var1=ABCDEFGHIJ
 23 # var2=ABCDEFGHIJ
 24 # var3=ABCDEFGHIJ
 25
 26 echo
 27 echo "==="
 28 echo
 29
 30
 31 # Now, showing how to do something useful with "eval" . . .
 32 # (Thank you, E. Choroba!)
 33
 34 version=3.4 # Can we split the version into major and minor
 35 #+ part in one command?
 36 echo "version = $version"
 37 eval major=${version/./;minor=} # Replaces '.' in version by ';minor='
 38 # The substitution yields '3; minor=4'
 39 #+ so eval does minor=4, major=3
 40 echo Major: $major, minor: $minor # Major: 3, minor: 4

Example 15-12. Using eval to select among variables

 1 #!/bin/bash
 2 # arr-choice.sh
 3
 4 # Passing arguments to a function to select
 5 #+ one particular variable out of a group.
 6
 7 arr0=(10 11 12 13 14 15)
 8 arr1=(20 21 22 23 24 25)
 9 arr2=(30 31 32 33 34 35)
 10 # 0 1 2 3 4 5 Element number (zero-indexed)
 11
 12
 13 choose_array ()
 14 {
 15 eval array_member=\${arr${array_number}[element_number]}
 16 # ^ ^^^^^^^^^^^^
 17 # Using eval to construct the name of a variable,
 18 #+ in this particular case, an array name.
 19
 20 echo "Element $element_number of array $array_number is $array_member"
 21 } # Function can be rewritten to take parameters.
 22
 23 array_number=0 # First array.
 24 element_number=3
 25 choose_array # 13
 26
 27 array_number=2 # Third array.
 28 element_number=4
 29 choose_array # 34
 30
 31 array_number=3 # Null array (arr3 not allocated).

 32 element_number=4
 33 choose_array # (null)
 34
 35 # Thank you, Antonio Macchi, for pointing this out.

Example 15-13. Echoing the command-line parameters

 1 #!/bin/bash
 2 # echo-params.sh
 3
 4 # Call this script with a few command-line parameters.
 5 # For example:
 6 # sh echo-params.sh first second third fourth fifth
 7
 8 params=$# # Number of command-line parameters.
 9 param=1 # Start at first command-line param.
 10
 11 while ["$param" -le "$params"]
 12 do
 13 echo -n "Command-line parameter "
 14 echo -n \$$param # Gives only the *name* of variable.
 15 # ^^^ # $1, $2, $3, etc.
 16 # Why?
 17 # \$ escapes the first "$"
 18 #+ so it echoes literally,
 19 #+ and $param dereferences "$param" . . .
 20 #+ . . . as expected.
 21 echo -n " = "
 22 eval echo \$$param # Gives the *value* of variable.
 23 # ^^^^ ^^^ # The "eval" forces the *evaluation*
 24 #+ of \$$
 25 #+ as an indirect variable reference.
 26
 27 ((param ++)) # On to the next.
 28 done
 29
 30 exit $?
 31
 32 # ===
 33
 34 $ sh echo-params.sh first second third fourth fifth
 35 Command-line parameter $1 = first
 36 Command-line parameter $2 = second
 37 Command-line parameter $3 = third
 38 Command-line parameter $4 = fourth
 39 Command-line parameter $5 = fifth

Example 15-14. Forcing a log-off

 1 #!/bin/bash
 2 # Killing ppp to force a log-off.
 3 # For dialup connection, of course.
 4
 5 # Script should be run as root user.
 6
 7 SERPORT=ttyS3
 8 # Depending on the hardware and even the kernel version,
 9 #+ the modem port on your machine may be different --
 10 #+ /dev/ttyS1 or /dev/ttyS2.

 11
 12
 13 killppp="eval kill -9 `ps ax | awk '/ppp/ { print $1 }'`"
 14 # -------- process ID of ppp -------
 15
 16 $killppp # This variable is now a command.
 17
 18
 19 # The following operations must be done as root user.
 20
 21 chmod 666 /dev/$SERPORT # Restore r+w permissions, or else what?
 22 # Since doing a SIGKILL on ppp changed the permissions on the serial port,
 23 #+ we restore permissions to previous state.
 24
 25 rm /var/lock/LCK..$SERPORT # Remove the serial port lock file. Why?
 26
 27 exit $?
 28
 29 # Exercises:
 30 # ---------
 31 # 1) Have script check whether root user is invoking it.
 32 # 2) Do a check on whether the process to be killed
 33 #+ is actually running before attempting to kill it.
 34 # 3) Write an alternate version of this script based on 'fuser':
 35 #+ if [fuser -s /dev/modem]; then . . .

Example 15-15. A version of rot13

 1 #!/bin/bash
 2 # A version of "rot13" using 'eval'.
 3 # Compare to "rot13.sh" example.
 4
 5 setvar_rot_13() # "rot13" scrambling
 6 {
 7 local varname=$1 varvalue=$2
 8 eval $varname='$(echo "$varvalue" | tr a-z n-za-m)'
 9 }
 10
 11
 12 setvar_rot_13 var "foobar" # Run "foobar" through rot13.
 13 echo $var # sbbone
 14
 15 setvar_rot_13 var "$var" # Run "sbbone" through rot13.
 16 # Back to original variable.
 17 echo $var # foobar
 18
 19 # This example by Stephane Chazelas.
 20 # Modified by document author.
 21
 22 exit 0

Here is another example of using eval to evaluate a complex expression, this one from an earlier
version of YongYe's Tetris game script.

 1 eval ${1}+=\"${x} ${y} \"

Example A-53 uses eval to convert array elements into a command list.

The eval command occurs in the older version of indirect referencing.

https://github.com/yongye/shell/blob/master/Tetris_Game.sh

 1 eval var=\$$var

The eval command can be used to parameterize brace expansion.

The eval command can be risky, and normally should be avoided when there exists a
reasonable alternative. An eval $COMMANDS executes the contents of COMMANDS,
which may contain such unpleasant surprises as rm -rf *. Running an eval on
unfamiliar code written by persons unknown is living dangerously.

set
The set command changes the value of internal script variables/options. One use for this is to toggle
option flags which help determine the behavior of the script. Another application for it is to reset the
positional parameters that a script sees as the result of a command (set `command`). The script
can then parse the fields of the command output.

Example 15-16. Using set with positional parameters

 1 #!/bin/bash
 2 # ex34.sh
 3 # Script "set-test"
 4
 5 # Invoke this script with three command-line parameters,
 6 # for example, "sh ex34.sh one two three".
 7
 8 echo
 9 echo "Positional parameters before set \`uname -a\` :"
 10 echo "Command-line argument #1 = $1"
 11 echo "Command-line argument #2 = $2"
 12 echo "Command-line argument #3 = $3"
 13
 14
 15 set `uname -a` # Sets the positional parameters to the output
 16 # of the command `uname -a`
 17
 18 echo
 19 echo +++++
 20 echo $_ # +++++
 21 # Flags set in script.
 22 echo $- # hB
 23 # Anomalous behavior?
 24 echo
 25
 26 echo "Positional parameters after set \`uname -a\` :"
 27 # $1, $2, $3, etc. reinitialized to result of `uname -a`
 28 echo "Field #1 of 'uname -a' = $1"
 29 echo "Field #2 of 'uname -a' = $2"
 30 echo "Field #3 of 'uname -a' = $3"
 31 echo \#\#\#
 32 echo $_ # ###
 33 echo
 34
 35 exit 0

More fun with positional parameters.

Example 15-17. Reversing the positional parameters

 1 #!/bin/bash
 2 # revposparams.sh: Reverse positional parameters.

 3 # Script by Dan Jacobson, with stylistic revisions by document author.
 4
 5
 6 set a\ b c d\ e;
 7 # ^ ^ Spaces escaped
 8 # ^ ^ Spaces not escaped
 9 OIFS=$IFS; IFS=:;
 10 # ^ Saving old IFS and setting new one.
 11
 12 echo
 13
 14 until [$# -eq 0]
 15 do # Step through positional parameters.
 16 echo "### k0 = "$k"" # Before
 17 k=$1:$k; # Append each pos param to loop variable.
 18 # ^
 19 echo "### k = "$k"" # After
 20 echo
 21 shift;
 22 done
 23
 24 set $k # Set new positional parameters.
 25 echo -
 26 echo $# # Count of positional parameters.
 27 echo -
 28 echo
 29
 30 for i # Omitting the "in list" sets the variable -- i --
 31 #+ to the positional parameters.
 32 do
 33 echo $i # Display new positional parameters.
 34 done
 35
 36 IFS=$OIFS # Restore IFS.
 37
 38 # Question:
 39 # Is it necessary to set an new IFS, internal field separator,
 40 #+ in order for this script to work properly?
 41 # What happens if you don't? Try it.
 42 # And, why use the new IFS -- a colon -- in line 17,
 43 #+ to append to the loop variable?
 44 # What is the purpose of this?
 45
 46 exit 0
 47
 48 $./revposparams.sh
 49
 50 ### k0 =
 51 ### k = a b
 52
 53 ### k0 = a b
 54 ### k = c a b
 55
 56 ### k0 = c a b
 57 ### k = d e c a b
 58
 59 -
 60 3
 61 -
 62
 63 d e
 64 c
 65 a b

Invoking set without any options or arguments simply lists all the environmental and other variables
that have been initialized.

bash$ set
AUTHORCOPY=/home/bozo/posts

 BASH=/bin/bash
 BASH_VERSION=$'2.05.8(1)-release'
 ...
 XAUTHORITY=/home/bozo/.Xauthority
 _=/etc/bashrc
 variable22=abc
 variable23=xzy

Using set with the -- option explicitly assigns the contents of a variable to the positional parameters.
If no variable follows the -- it unsets the positional parameters.

Example 15-18. Reassigning the positional parameters

 1 #!/bin/bash
 2
 3 variable="one two three four five"
 4
 5 set -- $variable
 6 # Sets positional parameters to the contents of "$variable".
 7
 8 first_param=$1
 9 second_param=$2
 10 shift; shift # Shift past first two positional params.
 11 # shift 2 also works.
 12 remaining_params="$*"
 13
 14 echo
 15 echo "first parameter = $first_param" # one
 16 echo "second parameter = $second_param" # two
 17 echo "remaining parameters = $remaining_params" # three four five
 18
 19 echo; echo
 20
 21 # Again.
 22 set -- $variable
 23 first_param=$1
 24 second_param=$2
 25 echo "first parameter = $first_param" # one
 26 echo "second parameter = $second_param" # two
 27
 28 # ==
 29
 30 set --
 31 # Unsets positional parameters if no variable specified.
 32
 33 first_param=$1
 34 second_param=$2
 35 echo "first parameter = $first_param" # (null value)
 36 echo "second parameter = $second_param" # (null value)
 37
 38 exit 0

See also Example 11-2 and Example 16-56.
unset

The unset command deletes a shell variable, effectively setting it to null. Note that this command
does not affect positional parameters.

bash$ unset PATH

bash$ echo $PATH

bash$

Example 15-19. "Unsetting" a variable

 1 #!/bin/bash
 2 # unset.sh: Unsetting a variable.
 3
 4 variable=hello # Initialized.
 5 echo "variable = $variable"
 6
 7 unset variable # Unset.
 8 # In this particular context,
 9 #+ same effect as: variable=
 10 echo "(unset) variable = $variable" # $variable is null.
 11
 12 if [-z "$variable"] # Try a string-length test.
 13 then
 14 echo "\$variable has zero length."
 15 fi
 16
 17 exit 0

In most contexts, an undeclared variable and one that has been unset are equivalent.
However, the ${parameter:-default} parameter substitution construct can distinguish
between the two.

export

The export [4] command makes available variables to all child processes of the running script or
shell. One important use of the export command is in startup files, to initialize and make accessible
environmental variables to subsequent user processes.

Unfortunately, there is no way to export variables back to the parent process, to the
process that called or invoked the script or shell.

Example 15-20. Using export to pass a variable to an embedded awk script

 1 #!/bin/bash
 2
 3 # Yet another version of the "column totaler" script (col-totaler.sh)
 4 #+ that adds up a specified column (of numbers) in the target file.
 5 # This uses the environment to pass a script variable to 'awk' . . .
 6 #+ and places the awk script in a variable.
 7
 8
 9 ARGS=2
 10 E_WRONGARGS=85
 11
 12 if [$# -ne "$ARGS"] # Check for proper number of command-line args.
 13 then
 14 echo "Usage: `basename $0` filename column-number"
 15 exit $E_WRONGARGS
 16 fi
 17
 18 filename=$1

 19 column_number=$2
 20
 21 #===== Same as original script, up to this point =====#
 22
 23 export column_number
 24 # Export column number to environment, so it's available for retrieval.
 25
 26
 27 # ---
 28 awkscript='{ total += $ENVIRON["column_number"] }
 29 END { print total }'
 30 # Yes, a variable can hold an awk script.
 31 # ---
 32
 33 # Now, run the awk script.
 34 awk "$awkscript" "$filename"
 35
 36 # Thanks, Stephane Chazelas.
 37
 38 exit 0

It is possible to initialize and export variables in the same operation, as in export
var1=xxx.

However, as Greg Keraunen points out, in certain situations this may have a different
effect than setting a variable, then exporting it.

bash$ export var=(a b); echo ${var[0]}
(a b)

bash$ var=(a b); export var; echo ${var[0]}
a

A variable to be exported may require special treatment. See Example M-2.

declare, typeset
The declare and typeset commands specify and/or restrict properties of variables.

readonly
Same as declare -r, sets a variable as read-only, or, in effect, as a constant. Attempts to change the
variable fail with an error message. This is the shell analog of the C language const type qualifier.

getopts
This powerful tool parses command-line arguments passed to the script. This is the Bash analog of the
getopt external command and the getopt library function familiar to C programmers. It permits
passing and concatenating multiple options [5] and associated arguments to a script (for example
scriptname -abc -e /usr/local).

The getopts construct uses two implicit variables. $OPTIND is the argument pointer (OPTion INDex)
and $OPTARG (OPTion ARGument) the (optional) argument attached to an option. A colon following
the option name in the declaration tags that option as having an associated argument.

A getopts construct usually comes packaged in a while loop, which processes the options and
arguments one at a time, then increments the implicit $OPTIND variable to point to the next.

The arguments passed from the command-line to the script must be preceded
by a dash (-). It is the prefixed - that lets getopts recognize command-line

1.

arguments as options. In fact, getopts will not process arguments without the
prefixed -, and will terminate option processing at the first argument
encountered lacking them.
The getopts template differs slightly from the standard while loop, in that it
lacks condition brackets.

2.

The getopts construct is a highly functional replacement for the traditional
getopt external command.

3.

 1 while getopts ":abcde:fg" Option
 2 # Initial declaration.
 3 # a, b, c, d, e, f, and g are the options (flags) expected.
 4 # The : after option 'e' shows it will have an argument passed with it.
 5 do
 6 case $Option in
 7 a) # Do something with variable 'a'.
 8 b) # Do something with variable 'b'.
 9 ...
 10 e) # Do something with 'e', and also with $OPTARG,
 11 # which is the associated argument passed with option 'e'.
 12 ...
 13 g) # Do something with variable 'g'.
 14 esac
 15 done
 16 shift $(($OPTIND - 1))
 17 # Move argument pointer to next.
 18
 19 # All this is not nearly as complicated as it looks <grin>.

Example 15-21. Using getopts to read the options/arguments passed to a script

 1 #!/bin/bash
 2 # ex33.sh: Exercising getopts and OPTIND
 3 # Script modified 10/09/03 at the suggestion of Bill Gradwohl.
 4
 5
 6 # Here we observe how 'getopts' processes command-line arguments to script.
 7 # The arguments are parsed as "options" (flags) and associated arguments.
 8
 9 # Try invoking this script with:
 10 # 'scriptname -mn'
 11 # 'scriptname -oq qOption' (qOption can be some arbitrary string.)
 12 # 'scriptname -qXXX -r'
 13 #
 14 # 'scriptname -qr'
 15 #+ - Unexpected result, takes "r" as the argument to option "q"
 16 # 'scriptname -q -r'
 17 #+ - Unexpected result, same as above
 18 # 'scriptname -mnop -mnop' - Unexpected result
 19 # (OPTIND is unreliable at stating where an option came from.)
 20 #
 21 # If an option expects an argument ("flag:"), then it will grab
 22 #+ whatever is next on the command-line.
 23
 24 NO_ARGS=0
 25 E_OPTERROR=85
 26
 27 if [$# -eq "$NO_ARGS"] # Script invoked with no command-line args?
 28 then
 29 echo "Usage: `basename $0` options (-mnopqrs)"
 30 exit $E_OPTERROR # Exit and explain usage.
 31 # Usage: scriptname -options
 32 # Note: dash (-) necessary

 33 fi
 34
 35
 36 while getopts ":mnopq:rs" Option
 37 do
 38 case $Option in
 39 m) echo "Scenario #1: option -m- [OPTIND=${OPTIND}]";;
 40 n | o) echo "Scenario #2: option -$Option- [OPTIND=${OPTIND}]";;
 41 p) echo "Scenario #3: option -p- [OPTIND=${OPTIND}]";;
 42 q) echo "Scenario #4: option -q-\
 43 with argument \"$OPTARG\" [OPTIND=${OPTIND}]";;
 44 # Note that option 'q' must have an associated argument,
 45 #+ otherwise it falls through to the default.
 46 r | s) echo "Scenario #5: option -$Option-";;
 47 *) echo "Unimplemented option chosen.";; # Default.
 48 esac
 49 done
 50
 51 shift $(($OPTIND - 1))
 52 # Decrements the argument pointer so it points to next argument.
 53 # $1 now references the first non-option item supplied on the command-line
 54 #+ if one exists.
 55
 56 exit $?
 57
 58 # As Bill Gradwohl states,
 59 # "The getopts mechanism allows one to specify: scriptname -mnop -mnop
 60 #+ but there is no reliable way to differentiate what came
 61 #+ from where by using OPTIND."
 62 # There are, however, workarounds.

Script Behavior

source, . (dot command)
This command, when invoked from the command-line, executes a script. Within a script, a source
file-name loads the file file-name. Sourcing a file (dot-command) imports code into the script,
appending to the script (same effect as the #include directive in a C program). The net result is the
same as if the "sourced" lines of code were physically present in the body of the script. This is useful
in situations when multiple scripts use a common data file or function library.

Example 15-22. "Including" a data file

 1 #!/bin/bash
 2 # Note that this example must be invoked with bash, i.e., bash ex38.sh
 3 #+ not sh ex38.sh !
 4
 5 . data-file # Load a data file.
 6 # Same effect as "source data-file", but more portable.
 7
 8 # The file "data-file" must be present in current working directory,
 9 #+ since it is referred to by its basename.
 10
 11 # Now, let's reference some data from that file.
 12
 13 echo "variable1 (from data-file) = $variable1"
 14 echo "variable3 (from data-file) = $variable3"
 15
 16 let "sum = $variable2 + $variable4"
 17 echo "Sum of variable2 + variable4 (from data-file) = $sum"
 18 echo "message1 (from data-file) is \"$message1\""

 19 # Escaped quotes
 20 echo "message2 (from data-file) is \"$message2\""
 21
 22 print_message This is the message-print function in the data-file.
 23
 24
 25 exit $?

File data-file for Example 15-22, above. Must be present in same directory.

 1 # This is a data file loaded by a script.
 2 # Files of this type may contain variables, functions, etc.
 3 # It loads with a 'source' or '.' command from a shell script.
 4
 5 # Let's initialize some variables.
 6
 7 variable1=23
 8 variable2=474
 9 variable3=5
 10 variable4=97
 11
 12 message1="Greetings from *** line $LINENO *** of the data file!"
 13 message2="Enough for now. Goodbye."
 14
 15 print_message ()
 16 { # Echoes any message passed to it.
 17
 18 if [-z "$1"]
 19 then
 20 return 1 # Error, if argument missing.
 21 fi
 22
 23 echo
 24
 25 until [-z "$1"]
 26 do # Step through arguments passed to function.
 27 echo -n "$1" # Echo args one at a time, suppressing line feeds.
 28 echo -n " " # Insert spaces between words.
 29 shift # Next one.
 30 done
 31
 32 echo
 33
 34 return 0
 35 }

If the sourced file is itself an executable script, then it will run, then return control to the script that
called it. A sourced executable script may use a return for this purpose.

Arguments may be (optionally) passed to the sourced file as positional parameters.

 1 source $filename $arg1 arg2

It is even possible for a script to source itself, though this does not seem to have any practical
applications.

Example 15-23. A (useless) script that sources itself

 1 #!/bin/bash
 2 # self-source.sh: a script sourcing itself "recursively."
 3 # From "Stupid Script Tricks," Volume II.
 4

 5 MAXPASSCNT=100 # Maximum number of execution passes.
 6
 7 echo -n "$pass_count "
 8 # At first execution pass, this just echoes two blank spaces,
 9 #+ since $pass_count still uninitialized.
 10
 11 let "pass_count += 1"
 12 # Assumes the uninitialized variable $pass_count
 13 #+ can be incremented the first time around.
 14 # This works with Bash and pdksh, but
 15 #+ it relies on non-portable (and possibly dangerous) behavior.
 16 # Better would be to initialize $pass_count to 0 before incrementing.
 17
 18 while ["$pass_count" -le $MAXPASSCNT]
 19 do
 20 . $0 # Script "sources" itself, rather than calling itself.
 21 # ./$0 (which would be true recursion) doesn't work here. Why?
 22 done
 23
 24 # What occurs here is not actually recursion,
 25 #+ since the script effectively "expands" itself, i.e.,
 26 #+ generates a new section of code
 27 #+ with each pass through the 'while' loop',
 28 # with each 'source' in line 20.
 29 #
 30 # Of course, the script interprets each newly 'sourced' "#!" line
 31 #+ as a comment, and not as the start of a new script.
 32
 33 echo
 34
 35 exit 0 # The net effect is counting from 1 to 100.
 36 # Very impressive.
 37
 38 # Exercise:
 39 # --------
 40 # Write a script that uses this trick to actually do something useful.

exit
Unconditionally terminates a script. [6] The exit command may optionally take an integer argument,
which is returned to the shell as the exit status of the script. It is good practice to end all but the
simplest scripts with an exit 0, indicating a successful run.

If a script terminates with an exit lacking an argument, the exit status of the script is
the exit status of the last command executed in the script, not counting the exit. This is
equivalent to an exit $?.
An exit command may also be used to terminate a subshell.

exec
This shell builtin replaces the current process with a specified command. Normally, when the shell
encounters a command, it forks off a child process to actually execute the command. Using the exec
builtin, the shell does not fork, and the command exec'ed replaces the shell. When used in a script,
therefore, it forces an exit from the script when the exec'ed command terminates. [7]

Example 15-24. Effects of exec

 1 #!/bin/bash
 2
 3 exec echo "Exiting \"$0\" at line $LINENO." # Exit from script here.
 4 # $LINENO is an internal Bash variable set to the line number it's on.
 5

 6 # ----------------------------------
 7 # The following lines never execute.
 8
 9 echo "This echo fails to echo."
 10
 11 exit 99 # This script will not exit here.
 12 # Check exit value after script terminates
 13 #+ with an 'echo $?'.
 14 # It will *not* be 99.

Example 15-25. A script that exec's itself

 1 #!/bin/bash
 2 # self-exec.sh
 3
 4 # Note: Set permissions on this script to 555 or 755,
 5 # then call it with ./self-exec.sh or sh ./self-exec.sh.
 6
 7 echo
 8
 9 echo "This line appears ONCE in the script, yet it keeps echoing."
 10 echo "The PID of this instance of the script is still $$."
 11 # Demonstrates that a subshell is not forked off.
 12
 13 echo "==================== Hit Ctl-C to exit ===================="
 14
 15 sleep 1
 16
 17 exec $0 # Spawns another instance of this same script
 18 #+ that replaces the previous one.
 19
 20 echo "This line will never echo!" # Why not?
 21
 22 exit 99 # Will not exit here!
 23 # Exit code will not be 99!

An exec also serves to reassign file descriptors. For example, exec <zzz-file replaces stdin
with the file zzz-file.

The -exec option to find is not the same as the exec shell builtin.

shopt
This command permits changing shell options on the fly (see Example 25-1 and Example 25-2). It
often appears in the Bash startup files, but also has its uses in scripts. Needs version 2 or later of Bash.

 1 shopt -s cdspell
 2 # Allows minor misspelling of directory names with 'cd'
 3 # Option -s sets, -u unsets.
 4
 5 cd /hpme # Oops! Mistyped '/home'.
 6 pwd # /home
 7 # The shell corrected the misspelling.

caller
Putting a caller command inside a function echoes to stdout information about the caller of that
function.

 1 #!/bin/bash
 2
 3 function1 ()

 4 {
 5 # Inside function1 ().
 6 caller 0 # Tell me about it.
 7 }
 8
 9 function1 # Line 9 of script.
 10
 11 # 9 main test.sh
 12 # ^ Line number that the function was called from.
 13 # ^^^^ Invoked from "main" part of script.
 14 # ^^^^^^^ Name of calling script.
 15
 16 caller 0 # Has no effect because it's not inside a function.

A caller command can also return caller information from a script sourced within another script.
Analogous to a function, this is a "subroutine call."

You may find this command useful in debugging.

Commands

true
A command that returns a successful (zero) exit status, but does nothing else.

bash$ true
bash$ echo $?
0

 1 # Endless loop
 2 while true # alias for ":"
 3 do
 4 operation-1
 5 operation-2
 6 ...
 7 operation-n
 8 # Need a way to break out of loop or script will hang.
 9 done

false
A command that returns an unsuccessful exit status, but does nothing else.

bash$ false
bash$ echo $?
1

 1 # Testing "false"
 2 if false
 3 then
 4 echo "false evaluates \"true\""
 5 else
 6 echo "false evaluates \"false\""
 7 fi
 8 # false evaluates "false"
 9
 10
 11 # Looping while "false" (null loop)
 12 while false
 13 do
 14 # The following code will not execute.
 15 operation-1
 16 operation-2
 17 ...

 18 operation-n
 19 # Nothing happens!
 20 done

type [cmd]
Similar to the which external command, type cmd identifies "cmd." Unlike which, type is a Bash
builtin. The useful -a option to type identifies keywords and builtins, and also locates system
commands with identical names.

bash$ type '['
[is a shell builtin
bash$ type -a '['
[is a shell builtin

 [is /usr/bin/[

bash$ type type
type is a shell builtin

The type command can be useful for testing whether a certain command exists.
hash [cmds]

Records the path name of specified commands -- in the shell hash table [8] -- so the shell or script
will not need to search the $PATH on subsequent calls to those commands. When hash is called with
no arguments, it simply lists the commands that have been hashed. The -r option resets the hash
table.

bind
The bind builtin displays or modifies readline [9] key bindings.

help
Gets a short usage summary of a shell builtin. This is the counterpart to whatis, but for builtins. The
display of help information got a much-needed update in the version 4 release of Bash.

bash$ help exit
exit: exit [n]

 Exit the shell with a status of N. If N is omitted, the exit status
 is that of the last command executed.

15.1. Job Control Commands
Certain of the following job control commands take a job identifier as an argument. See the table at end of the
chapter.

jobs
Lists the jobs running in the background, giving the job number. Not as useful as ps.

It is all too easy to confuse jobs and processes. Certain builtins, such as kill, disown,
and wait accept either a job number or a process number as an argument. The fg, bg
and jobs commands accept only a job number.

bash$ sleep 100 &
[1] 1384

bash $ jobs
[1]+ Running sleep 100 &

"1" is the job number (jobs are maintained by the current shell). "1384" is the PID or
process ID number (processes are maintained by the system). To kill this job/process,
either a kill %1 or a kill 1384 works.

Thanks, S.C.
disown

Remove job(s) from the shell's table of active jobs.
fg, bg

The fg command switches a job running in the background into the foreground. The bg command
restarts a suspended job, and runs it in the background. If no job number is specified, then the fg or bg
command acts upon the currently running job.

wait
Suspend script execution until all jobs running in background have terminated, or until the job number
or process ID specified as an option terminates. Returns the exit status of waited-for command.

You may use the wait command to prevent a script from exiting before a background job finishes
executing (this would create a dreaded orphan process).

Example 15-26. Waiting for a process to finish before proceeding

 1 #!/bin/bash
 2
 3 ROOT_UID=0 # Only users with $UID 0 have root privileges.
 4 E_NOTROOT=65
 5 E_NOPARAMS=66
 6
 7 if ["$UID" -ne "$ROOT_UID"]
 8 then
 9 echo "Must be root to run this script."
 10 # "Run along kid, it's past your bedtime."
 11 exit $E_NOTROOT
 12 fi
 13
 14 if [-z "$1"]
 15 then
 16 echo "Usage: `basename $0` find-string"
 17 exit $E_NOPARAMS
 18 fi
 19

 20
 21 echo "Updating 'locate' database..."
 22 echo "This may take a while."
 23 updatedb /usr & # Must be run as root.
 24
 25 wait
 26 # Don't run the rest of the script until 'updatedb' finished.
 27 # You want the the database updated before looking up the file name.
 28
 29 locate $1
 30
 31 # Without the 'wait' command, in the worse case scenario,
 32 #+ the script would exit while 'updatedb' was still running,
 33 #+ leaving it as an orphan process.
 34
 35 exit 0

Optionally, wait can take a job identifier as an argument, for example, wait%1 or wait $PPID.
[10] See the job id table.

Within a script, running a command in the background with an ampersand (&) may
cause the script to hang until ENTER is hit. This seems to occur with commands that
write to stdout. It can be a major annoyance.

 1 #!/bin/bash
 2 # test.sh
 3
 4 ls -l &
 5 echo "Done."

bash$./test.sh
Done.

 [bozo@localhost test-scripts]$ total 1
 -rwxr-xr-x 1 bozo bozo 34 Oct 11 15:09 test.sh
 _

 As Walter Brameld IV explains it:

 As far as I can tell, such scripts don't actually hang. It just
 seems that they do because the background command writes text to
 the console after the prompt. The user gets the impression that
 the prompt was never displayed. Here's the sequence of events:

 1. Script launches background command.
 2. Script exits.
 3. Shell displays the prompt.
 4. Background command continues running and writing text to the
 console.
 5. Background command finishes.
 6. User doesn't see a prompt at the bottom of the output, thinks script
 is hanging.

Placing a wait after the background command seems to remedy this.

 1 #!/bin/bash
 2 # test.sh
 3
 4 ls -l &

 5 echo "Done."
 6 wait

bash$./test.sh
Done.
 [bozo@localhost test-scripts]$ total 1
 -rwxr-xr-x 1 bozo bozo 34 Oct 11 15:09 test.sh

Redirecting the output of the command to a file or even to /dev/null also takes
care of this problem.

suspend
This has a similar effect to Control-Z, but it suspends the shell (the shell's parent process should
resume it at an appropriate time).

logout
Exit a login shell, optionally specifying an exit status.

times
Gives statistics on the system time elapsed when executing commands, in the following form:

0m0.020s 0m0.020s

This capability is of relatively limited value, since it is not common to profile and benchmark shell
scripts.

kill
Forcibly terminate a process by sending it an appropriate terminate signal (see Example 17-6).

Example 15-27. A script that kills itself

 1 #!/bin/bash
 2 # self-destruct.sh
 3
 4 kill $$ # Script kills its own process here.
 5 # Recall that "$$" is the script's PID.
 6
 7 echo "This line will not echo."
 8 # Instead, the shell sends a "Terminated" message to stdout.
 9
 10 exit 0 # Normal exit? No!
 11
 12 # After this script terminates prematurely,
 13 #+ what exit status does it return?
 14 #
 15 # sh self-destruct.sh
 16 # echo $?
 17 # 143
 18 #
 19 # 143 = 128 + 15
 20 # TERM signal

kill -l lists all the signals (as does the file /usr/include/asm/signal.h).
A kill -9 is a sure kill, which will usually terminate a process that stubbornly
refuses to die with a plain kill. Sometimes, a kill -15 works. A zombie process,
that is, a child process that has terminated, but that the parent process has not (yet)
killed, cannot be killed by a logged-on user -- you can't kill something that is already
dead -- but init will generally clean it up sooner or later.

killall
The killall command kills a running process by name, rather than by process ID. If there are multiple
instances of a particular command running, then doing a killall on that command will terminate them
all.

This refers to the killall command in /usr/bin, not the killall script in
/etc/rc.d/init.d.

command
The command directive disables aliases and functions for the command immediately following it.

bash$ command ls

This is one of three shell directives that effect script command processing. The
others are builtin and enable.

builtin
Invoking builtin BUILTIN_COMMAND runs the command BUILTIN_COMMAND as a shell
builtin, temporarily disabling both functions and external system commands with the same name.

enable
This either enables or disables a shell builtin command. As an example, enable -n kill disables
the shell builtin kill, so that when Bash subsequently encounters kill, it invokes the external command
/bin/kill.

The -a option to enable lists all the shell builtins, indicating whether or not they are enabled. The -f
filename option lets enable load a builtin as a shared library (DLL) module from a properly
compiled object file. [11].

autoload
This is a port to Bash of the ksh autoloader. With autoload in place, a function with an autoload
declaration will load from an external file at its first invocation. [12] This saves system resources.

Note that autoload is not a part of the core Bash installation. It needs to be loaded in with enable
-f (see above).

Table 15-1. Job identifiers

Notation Meaning
%N Job number [N]
%S Invocation (command-line) of job begins with string S
%?S Invocation (command-line) of job contains within it string S
%% "current" job (last job stopped in foreground or started in background)
%+ "current" job (last job stopped in foreground or started in background)
%- Last job
$! Last background process

Notes

[1] As Nathan Coulter points out, "while forking a process is a low-cost operation, executing a new
program in the newly-forked child process adds more overhead."

[2] An exception to this is the time command, listed in the official Bash documentation as a keyword
("reserved word").

[3] Note that let cannot be used for setting string variables.
[4] To Export information is to make it available in a more general context. See also scope.
[5] An option is an argument that acts as a flag, switching script behaviors on or off. The argument

associated with a particular option indicates the behavior that the option (flag) switches on or off.

[6] Technically, an exit only terminates the process (or shell) in which it is running, not the parent process.
[7] Unless the exec is used to reassign file descriptors.
[8]

Hashing is a method of creating lookup keys for data stored in a table. The data items themselves are
"scrambled" to create keys, using one of a number of simple mathematical algorithms (methods, or
recipes).

An advantage of hashing is that it is fast. A disadvantage is that collisions -- where a single key maps to
more than one data item -- are possible.

For examples of hashing see Example A-20 and Example A-21.
[9] The readline library is what Bash uses for reading input in an interactive shell.
[10] This only applies to child processes, of course.
[11] The C source for a number of loadable builtins is typically found in the

/usr/share/doc/bash-?.??/functions directory.

Note that the -f option to enable is not portable to all systems.
[12] The same effect as autoload can be achieved with typeset -fu.

Prev Home Next
Commands Up External Filters, Programs and

Commands
Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting

Prev Next

Chapter 16. External Filters, Programs and
Commands

Standard UNIX commands make shell scripts more versatile. The power of scripts comes from coupling
system commands and shell directives with simple programming constructs.

16.1. Basic Commands
The first commands a novice learns

ls
The basic file "list" command. It is all too easy to underestimate the power of this humble command.
For example, using the -R, recursive option, ls provides a tree-like listing of a directory structure.
Other useful options are -S, sort listing by file size, -t, sort by file modification time, -v, sort by
(numerical) version numbers embedded in the filenames, [1] -b, show escape characters, and -i,
show file inodes (see Example 16-4).

bash$ ls -l
-rw-rw-r-- 1 bozo bozo 0 Sep 14 18:44 chapter10.txt

 -rw-rw-r-- 1 bozo bozo 0 Sep 14 18:44 chapter11.txt
 -rw-rw-r-- 1 bozo bozo 0 Sep 14 18:44 chapter12.txt
 -rw-rw-r-- 1 bozo bozo 0 Sep 14 18:44 chapter1.txt
 -rw-rw-r-- 1 bozo bozo 0 Sep 14 18:44 chapter2.txt
 -rw-rw-r-- 1 bozo bozo 0 Sep 14 18:44 chapter3.txt
 -rw-rw-r-- 1 bozo bozo 0 Sep 14 18:49 Chapter_headings.txt
 -rw-rw-r-- 1 bozo bozo 0 Sep 14 18:49 Preface.txt

bash$ ls -lv
total 0

 -rw-rw-r-- 1 bozo bozo 0 Sep 14 18:49 Chapter_headings.txt
 -rw-rw-r-- 1 bozo bozo 0 Sep 14 18:49 Preface.txt
 -rw-rw-r-- 1 bozo bozo 0 Sep 14 18:44 chapter1.txt
 -rw-rw-r-- 1 bozo bozo 0 Sep 14 18:44 chapter2.txt
 -rw-rw-r-- 1 bozo bozo 0 Sep 14 18:44 chapter3.txt
 -rw-rw-r-- 1 bozo bozo 0 Sep 14 18:44 chapter10.txt
 -rw-rw-r-- 1 bozo bozo 0 Sep 14 18:44 chapter11.txt
 -rw-rw-r-- 1 bozo bozo 0 Sep 14 18:44 chapter12.txt

The ls command returns a non-zero exit status when attempting to list a non-existent
file.

bash$ ls abc
ls: abc: No such file or directory

bash$ echo $?
2

Example 16-1. Using ls to create a table of contents for burning a CDR disk

 1 #!/bin/bash
 2 # ex40.sh (burn-cd.sh)
 3 # Script to automate burning a CDR.
 4
 5
 6 SPEED=10 # May use higher speed if your hardware supports it.
 7 IMAGEFILE=cdimage.iso
 8 CONTENTSFILE=contents
 9 # DEVICE=/dev/cdrom For older versions of cdrecord
 10 DEVICE="1,0,0"
 11 DEFAULTDIR=/opt # This is the directory containing the data to be burned.
 12 # Make sure it exists.
 13 # Exercise: Add a test for this.
 14
 15 # Uses Joerg Schilling's "cdrecord" package:

 16 # http://www.fokus.fhg.de/usr/schilling/cdrecord.html
 17
 18 # If this script invoked as an ordinary user, may need to suid cdrecord
 19 #+ chmod u+s /usr/bin/cdrecord, as root.
 20 # Of course, this creates a security hole, though a relatively minor one.
 21
 22 if [-z "$1"]
 23 then
 24 IMAGE_DIRECTORY=$DEFAULTDIR
 25 # Default directory, if not specified on command-line.
 26 else
 27 IMAGE_DIRECTORY=$1
 28 fi
 29
 30 # Create a "table of contents" file.
 31 ls -lRF $IMAGE_DIRECTORY > $IMAGE_DIRECTORY/$CONTENTSFILE
 32 # The "l" option gives a "long" file listing.
 33 # The "R" option makes the listing recursive.
 34 # The "F" option marks the file types (directories get a trailing /).
 35 echo "Creating table of contents."
 36
 37 # Create an image file preparatory to burning it onto the CDR.
 38 mkisofs -r -o $IMAGEFILE $IMAGE_DIRECTORY
 39 echo "Creating ISO9660 file system image ($IMAGEFILE)."
 40
 41 # Burn the CDR.
 42 echo "Burning the disk."
 43 echo "Please be patient, this will take a while."
 44 wodim -v -isosize dev=$DEVICE $IMAGEFILE
 45 # In newer Linux distros, the "wodim" utility assumes the
 46 #+ functionality of "cdrecord."
 47 exitcode=$?
 48 echo "Exit code = $exitcode"
 49
 50 exit $exitcode

cat, tac
cat, an acronym for concatenate, lists a file to stdout. When combined with redirection (> or >>), it
is commonly used to concatenate files.

 1 # Uses of 'cat'
 2 cat filename # Lists the file.
 3
 4 cat file.1 file.2 file.3 > file.123 # Combines three files into one.

The -n option to cat inserts consecutive numbers before all lines of the target file(s). The -b option
numbers only the non-blank lines. The -v option echoes nonprintable characters, using ^ notation.
The -s option squeezes multiple consecutive blank lines into a single blank line.

See also Example 16-28 and Example 16-24.

In a pipe, it may be more efficient to redirect the stdin to a file, rather than to cat the
file.

 1 cat filename | tr a-z A-Z
 2
 3 tr a-z A-Z < filename # Same effect, but starts one less process,
 4 #+ and also dispenses with the pipe.

tac, is the inverse of cat, listing a file backwards from its end.
rev

reverses each line of a file, and outputs to stdout. This does not have the same effect as tac, as it
preserves the order of the lines, but flips each one around (mirror image).

bash$ cat file1.txt
This is line 1.

 This is line 2.

bash$ tac file1.txt
This is line 2.

 This is line 1.

bash$ rev file1.txt
.1 enil si sihT

 .2 enil si sihT

cp
This is the file copy command. cp file1 file2 copies file1 to file2, overwriting file2 if
it already exists (see Example 16-6).

Particularly useful are the -a archive flag (for copying an entire directory tree), the
-u update flag (which prevents overwriting identically-named newer files), and the
-r and -R recursive flags.

 1 cp -u source_dir/* dest_dir
 2 # "Synchronize" dest_dir to source_dir
 3 #+ by copying over all newer and not previously existing files.

mv
This is the file move command. It is equivalent to a combination of cp and rm. It may be used to
move multiple files to a directory, or even to rename a directory. For some examples of using mv in a
script, see Example 10-11 and Example A-2.

When used in a non-interactive script, mv takes the -f (force) option to bypass user
input.

When a directory is moved to a preexisting directory, it becomes a subdirectory of the
destination directory.

bash$ mv source_directory target_directory

bash$ ls -lF target_directory
total 1

 drwxrwxr-x 2 bozo bozo 1024 May 28 19:20 source_directory/

rm
Delete (remove) a file or files. The -f option forces removal of even readonly files, and is useful for
bypassing user input in a script.

The rm command will, by itself, fail to remove filenames beginning with a dash.
Why? Because rm sees a dash-prefixed filename as an option.

bash$ rm -badname
rm: invalid option -- b
 Try `rm --help' for more information.

One clever workaround is to precede the filename with a " -- " (the end-of-options
flag).

bash$ rm -- -badname

Another method to is to preface the filename to be removed with a dot-slash .

bash$ rm ./-badname

When used with the recursive flag -r, this command removes files all the way down
the directory tree from the current directory. A careless rm -rf * can wipe out a big
chunk of a directory structure.

rmdir
Remove directory. The directory must be empty of all files -- including "invisible" dotfiles [2] -- for
this command to succeed.

mkdir
Make directory, creates a new directory. For example, mkdir -p
project/programs/December creates the named directory. The -p option automatically
creates any necessary parent directories.

chmod
Changes the attributes of an existing file or directory (see Example 15-14).

 1 chmod +x filename
 2 # Makes "filename" executable for all users.
 3
 4 chmod u+s filename
 5 # Sets "suid" bit on "filename" permissions.
 6 # An ordinary user may execute "filename" with same privileges as the file's owner.
 7 # (This does not apply to shell scripts.)

 1 chmod 644 filename
 2 # Makes "filename" readable/writable to owner, readable to others
 3 #+ (octal mode).
 4
 5 chmod 444 filename
 6 # Makes "filename" read-only for all.
 7 # Modifying the file (for example, with a text editor)
 8 #+ not allowed for a user who does not own the file (except for root),
 9 #+ and even the file owner must force a file-save
 10 #+ if she modifies the file.
 11 # Same restrictions apply for deleting the file.

 1 chmod 1777 directory-name
 2 # Gives everyone read, write, and execute permission in directory,
 3 #+ however also sets the "sticky bit".
 4 # This means that only the owner of the directory,
 5 #+ owner of the file, and, of course, root
 6 #+ can delete any particular file in that directory.
 7
 8 chmod 111 directory-name
 9 # Gives everyone execute-only permission in a directory.
 10 # This means that you can execute and READ the files in that directory
 11 #+ (execute permission necessarily includes read permission
 12 #+ because you can't execute a file without being able to read it).
 13 # But you can't list the files or search for them with the "find" command.
 14 # These restrictions do not apply to root.
 15
 16 chmod 000 directory-name
 17 # No permissions at all for that directory.
 18 # Can't read, write, or execute files in it.
 19 # Can't even list files in it or "cd" to it.
 20 # But, you can rename (mv) the directory
 21 #+ or delete it (rmdir) if it is empty.
 22 # You can even symlink to files in the directory,
 23 #+ but you can't read, write, or execute the symlinks.
 24 # These restrictions do not apply to root.

chattr

Change file attributes. This is analogous to chmod above, but with different options and a different
invocation syntax, and it works only on ext2/ext3 filesystems.

One particularly interesting chattr option is i. A chattr +i filename marks the file as immutable.
The file cannot be modified, linked to, or deleted, not even by root. This file attribute can be set or
removed only by root. In a similar fashion, the a option marks the file as append only.

root# chattr +i file1.txt

root# rm file1.txt

rm: remove write-protected regular file `file1.txt'? y
 rm: cannot remove `file1.txt': Operation not permitted

If a file has the s (secure) attribute set, then when it is deleted its block is overwritten with binary
zeroes. [3]

If a file has the u (undelete) attribute set, then when it is deleted, its contents can still be retrieved
(undeleted).

If a file has the c (compress) attribute set, then it will automatically be compressed on writes to disk,
and uncompressed on reads.

The file attributes set with chattr do not show in a file listing (ls -l).

ln
Creates links to pre-existings files. A "link" is a reference to a file, an alternate name for it. The ln
command permits referencing the linked file by more than one name and is a superior alternative to
aliasing (see Example 4-6).

The ln creates only a reference, a pointer to the file only a few bytes in size.

The ln command is most often used with the -s, symbolic or "soft" link flag. Advantages of using the
-s flag are that it permits linking across file systems or to directories.

The syntax of the command is a bit tricky. For example: ln -s oldfile newfile links the
previously existing oldfile to the newly created link, newfile.

If a file named newfile has previously existed, an error message will result.

Which type of link to use?

As John Macdonald explains it:

Both of these [types of links] provide a certain measure of dual reference -- if you edit the contents
of the file using any name, your changes will affect both the original name and either a hard or soft
new name. The differences between them occurs when you work at a higher level. The advantage of
a hard link is that the new name is totally independent of the old name -- if you remove or rename
the old name, that does not affect the hard link, which continues to point to the data while it would
leave a soft link hanging pointing to the old name which is no longer there. The advantage of a soft
link is that it can refer to a different file system (since it is just a reference to a file name, not to
actual data). And, unlike a hard link, a symbolic link can refer to a directory.

Links give the ability to invoke a script (or any other type of executable) with multiple names, and
having that script behave according to how it was invoked.

Example 16-2. Hello or Good-bye

 1 #!/bin/bash
 2 # hello.sh: Saying "hello" or "goodbye"
 3 #+ depending on how script is invoked.
 4
 5 # Make a link in current working directory ($PWD) to this script:
 6 # ln -s hello.sh goodbye
 7 # Now, try invoking this script both ways:
 8 # ./hello.sh
 9 # ./goodbye
 10
 11
 12 HELLO_CALL=65
 13 GOODBYE_CALL=66
 14
 15 if [$0 = "./goodbye"]
 16 then
 17 echo "Good-bye!"
 18 # Some other goodbye-type commands, as appropriate.
 19 exit $GOODBYE_CALL
 20 fi
 21
 22 echo "Hello!"
 23 # Some other hello-type commands, as appropriate.
 24 exit $HELLO_CALL

man, info
These commands access the manual and information pages on system commands and installed
utilities. When available, the info pages usually contain more detailed descriptions than do the man
pages.

There have been various attempts at "automating" the writing of man pages. For a script that makes a
tentative first step in that direction, see Example A-39.

Notes

[1] The -v option also orders the sort by upper- and lowercase prefixed filenames.
[2]

Dotfiles are files whose names begin with a dot, such as ~/.Xdefaults. Such filenames do not
appear in a normal ls listing (although an ls -a will show them), and they cannot be deleted by an
accidental rm -rf *. Dotfiles are generally used as setup and configuration files in a user's home
directory.

[3] This particular feature may not yet be implemented in the version of the ext2/ext3 filesystem installed
on your system. Check the documentation for your Linux distro.

Prev Home Next
Internal Commands and Builtins Up Complex Commands

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Chapter 16. External Filters, Programs and Commands Next

16.2. Complex Commands
Commands for more advanced users

find

-exec COMMAND \;

Carries out COMMAND on each file that find matches. The command sequence terminates with ; (the
";" is escaped to make certain the shell passes it to find literally, without interpreting it as a special
character).

bash$ find ~/ -name '*.txt'
/home/bozo/.kde/share/apps/karm/karmdata.txt

 /home/bozo/misc/irmeyc.txt
 /home/bozo/test-scripts/1.txt

If COMMAND contains {}, then find substitutes the full path name of the selected file for "{}".

 1 find ~/ -name 'core*' -exec rm {} \;
 2 # Removes all core dump files from user's home directory.

 1 find /home/bozo/projects -mtime -1
 2 # ^ Note minus sign!
 3 # Lists all files in /home/bozo/projects directory tree
 4 #+ that were modified within the last day (current_day - 1).
 5 #
 6 find /home/bozo/projects -mtime 1
 7 # Same as above, but modified *exactly* one day ago.
 8 #
 9 # mtime = last modification time of the target file
 10 # ctime = last status change time (via 'chmod' or otherwise)
 11 # atime = last access time
 12
 13 DIR=/home/bozo/junk_files
 14 find "$DIR" -type f -atime +5 -exec rm {} \;
 15 # ^ ^^
 16 # Curly brackets are placeholder for the path name output by "find."
 17 #
 18 # Deletes all files in "/home/bozo/junk_files"
 19 #+ that have not been accessed in *at least* 5 days (plus sign ... +5).
 20 #
 21 # "-type filetype", where
 22 # f = regular file
 23 # d = directory
 24 # l = symbolic link, etc.
 25 #
 26 # (The 'find' manpage and info page have complete option listings.)

 1 find /etc -exec grep '[0-9][0-9]*[.][0-9][0-9]*[.][0-9][0-9]*[.][0-9][0-9]*' {} \;
 2
 3 # Finds all IP addresses (xxx.xxx.xxx.xxx) in /etc directory files.
 4 # There a few extraneous hits. Can they be filtered out?
 5
 6 # Possibly by:
 7
 8 find /etc -type f -exec cat '{}' \; | tr -c '.[:digit:]' '\n' \
 9 | grep '^[^.][^.]*\.[^.][^.]*\.[^.][^.]*\.[^.][^.]*$'
 10 #

 11 # [:digit:] is one of the character classes
 12 #+ introduced with the POSIX 1003.2 standard.
 13
 14 # Thanks, Stéphane Chazelas.

The -exec option to find should not be confused with the exec shell builtin.

Example 16-3. Badname, eliminate file names in current directory containing bad characters
and whitespace.

 1 #!/bin/bash
 2 # badname.sh
 3 # Delete filenames in current directory containing bad characters.
 4
 5 for filename in *
 6 do
 7 badname=`echo "$filename" | sed -n /[\+\{\;\"\\\=\?~\(\)\<\>\&*\|\$]/p`
 8 # badname=`echo "$filename" | sed -n '/[+{;"\=?~()<>&*|$]/p'` also works.
 9 # Deletes files containing these nasties: + { ; " \ = ? ~ () < > & * | $
 10 #
 11 rm $badname 2>/dev/null
 12 # ^^^^^^^^^^^ Error messages deep-sixed.
 13 done
 14
 15 # Now, take care of files containing all manner of whitespace.
 16 find . -name "* *" -exec rm -f {} \;
 17 # The path name of the file that _find_ finds replaces the "{}".
 18 # The '\' ensures that the ';' is interpreted literally, as end of command.
 19
 20 exit 0
 21
 22 #---
 23 # Commands below this line will not execute because of _exit_ command.
 24
 25 # An alternative to the above script:
 26 find . -name '*[+{;"\\=?~()<>&*|$]*' -maxdepth 0 \
 27 -exec rm -f '{}' \;
 28 # The "-maxdepth 0" option ensures that _find_ will not search
 29 #+ subdirectories below $PWD.
 30
 31 # (Thanks, S.C.)

Example 16-4. Deleting a file by its inode number

 1 #!/bin/bash
 2 # idelete.sh: Deleting a file by its inode number.
 3
 4 # This is useful when a filename starts with an illegal character,
 5 #+ such as ? or -.
 6
 7 ARGCOUNT=1 # Filename arg must be passed to script.
 8 E_WRONGARGS=70
 9 E_FILE_NOT_EXIST=71
 10 E_CHANGED_MIND=72
 11
 12 if [$# -ne "$ARGCOUNT"]
 13 then
 14 echo "Usage: `basename $0` filename"
 15 exit $E_WRONGARGS
 16 fi

 17
 18 if [! -e "$1"]
 19 then
 20 echo "File \""$1"\" does not exist."
 21 exit $E_FILE_NOT_EXIST
 22 fi
 23
 24 inum=`ls -i | grep "$1" | awk '{print $1}'`
 25 # inum = inode (index node) number of file
 26 # ---
 27 # Every file has an inode, a record that holds its physical address info.
 28 # ---
 29
 30 echo; echo -n "Are you absolutely sure you want to delete \"$1\" (y/n)? "
 31 # The '-v' option to 'rm' also asks this.
 32 read answer
 33 case "$answer" in
 34 [nN]) echo "Changed your mind, huh?"
 35 exit $E_CHANGED_MIND
 36 ;;
 37 *) echo "Deleting file \"$1\".";;
 38 esac
 39
 40 find . -inum $inum -exec rm {} \;
 41 # ^^
 42 # Curly brackets are placeholder
 43 #+ for text output by "find."
 44 echo "File "\"$1"\" deleted!"
 45
 46 exit 0

The find command also works without the -exec option.

 1 #!/bin/bash
 2 # Find suid root files.
 3 # A strange suid file might indicate a security hole,
 4 #+ or even a system intrusion.
 5
 6 directory="/usr/sbin"
 7 # Might also try /sbin, /bin, /usr/bin, /usr/local/bin, etc.
 8 permissions="+4000" # suid root (dangerous!)
 9
 10
 11 for file in $(find "$directory" -perm "$permissions")
 12 do
 13 ls -ltF --author "$file"
 14 done

See Example 16-30, Example 3-4, and Example 11-10 for scripts using find. Its manpage provides
more detail on this complex and powerful command.

xargs
A filter for feeding arguments to a command, and also a tool for assembling the commands
themselves. It breaks a data stream into small enough chunks for filters and commands to process.
Consider it as a powerful replacement for backquotes. In situations where command substitution fails
with a too many arguments error, substituting xargs often works. [1] Normally, xargs reads from
stdin or from a pipe, but it can also be given the output of a file.

The default command for xargs is echo. This means that input piped to xargs may have linefeeds and
other whitespace characters stripped out.

bash$ ls -l
total 0

 -rw-rw-r-- 1 bozo bozo 0 Jan 29 23:58 file1

 -rw-rw-r-- 1 bozo bozo 0 Jan 29 23:58 file2

bash$ ls -l | xargs
total 0 -rw-rw-r-- 1 bozo bozo 0 Jan 29 23:58 file1 -rw-rw-r-- 1 bozo bozo 0 Jan...

bash$ find ~/mail -type f | xargs grep "Linux"
./misc:User-Agent: slrn/0.9.8.1 (Linux)

 ./sent-mail-jul-2005: hosted by the Linux Documentation Project.
 ./sent-mail-jul-2005: (Linux Documentation Project Site, rtf version)
 ./sent-mail-jul-2005: Subject: Criticism of Bozo's Windows/Linux article
 ./sent-mail-jul-2005: while mentioning that the Linux ext2/ext3 filesystem
 . . .

ls | xargs -p -l gzip gzips every file in current directory, one at a time, prompting before
each operation.

Note that xargs processes the arguments passed to it sequentially, one at a time.

bash$ find /usr/bin | xargs file
/usr/bin: directory

 /usr/bin/foomatic-ppd-options: perl script text executable
 . . .

An interesting xargs option is -n NN, which limits to NN the number of arguments
passed.

ls | xargs -n 8 echo lists the files in the current directory in 8 columns.

Another useful option is -0, in combination with find -print0 or grep -lZ.
This allows handling arguments containing whitespace or quotes.

find / -type f -print0 | xargs -0 grep -liwZ GUI | xargs
-0 rm -f

grep -rliwZ GUI / | xargs -0 rm -f

Either of the above will remove any file containing "GUI". (Thanks, S.C.)

Or:

 1 cat /proc/"$pid"/"$OPTION" | xargs -0 echo
 2 # Formats output: ^^^^^^^^^^^^^^^
 3 # From Han Holl's fixup of "get-commandline.sh"
 4 #+ script in "/dev and /proc" chapter.

The -P option to xargs permits running processes in parallel. This speeds up
execution in a machine with a multicore CPU.

 1 #!/bin/bash
 2
 3 ls *gif | xargs -t -n1 -P2 gif2png
 4 # Converts all the gif images in current directory to png.

 5
 6 # Options:
 7 # =======
 8 # -t Print command to stderr.
 9 # -n1 At most 1 argument per command line.
 10 # -P2 Run up to 2 processes simultaneously.
 11
 12 # Thank you, Roberto Polli, for the inspiration.

Example 16-5. Logfile: Using xargs to monitor system log

 1 #!/bin/bash
 2
 3 # Generates a log file in current directory
 4 # from the tail end of /var/log/messages.
 5
 6 # Note: /var/log/messages must be world readable
 7 # if this script invoked by an ordinary user.
 8 # #root chmod 644 /var/log/messages
 9
 10 LINES=5
 11
 12 (date; uname -a) >>logfile
 13 # Time and machine name
 14 echo -- >>logfile
 15 tail -n $LINES /var/log/messages | xargs | fmt -s >>logfile
 16 echo >>logfile
 17 echo >>logfile
 18
 19 exit 0
 20
 21 # Note:
 22 # ----
 23 # As Frank Wang points out,
 24 #+ unmatched quotes (either single or double quotes) in the source file
 25 #+ may give xargs indigestion.
 26 #
 27 # He suggests the following substitution for line 15:
 28 # tail -n $LINES /var/log/messages | tr -d "\"'" | xargs | fmt -s >>logfile
 29
 30
 31
 32 # Exercise:
 33 # --------
 34 # Modify this script to track changes in /var/log/messages at intervals
 35 #+ of 20 minutes.
 36 # Hint: Use the "watch" command.

As in find, a curly bracket pair serves as a placeholder for replacement text.

Example 16-6. Copying files in current directory to another

 1 #!/bin/bash
 2 # copydir.sh
 3
 4 # Copy (verbose) all files in current directory ($PWD)
 5 #+ to directory specified on command-line.
 6
 7 E_NOARGS=85

 8
 9 if [-z "$1"] # Exit if no argument given.
 10 then
 11 echo "Usage: `basename $0` directory-to-copy-to"
 12 exit $E_NOARGS
 13 fi
 14
 15 ls . | xargs -i -t cp ./{} $1
 16 # ^^ ^^ ^^
 17 # -t is "verbose" (output command-line to stderr) option.
 18 # -i is "replace strings" option.
 19 # {} is a placeholder for output text.
 20 # This is similar to the use of a curly-bracket pair in "find."
 21 #
 22 # List the files in current directory (ls .),
 23 #+ pass the output of "ls" as arguments to "xargs" (-i -t options),
 24 #+ then copy (cp) these arguments ({}) to new directory ($1).
 25 #
 26 # The net result is the exact equivalent of
 27 #+ cp * $1
 28 #+ unless any of the filenames has embedded "whitespace" characters.
 29
 30 exit 0

Example 16-7. Killing processes by name

 1 #!/bin/bash
 2 # kill-byname.sh: Killing processes by name.
 3 # Compare this script with kill-process.sh.
 4
 5 # For instance,
 6 #+ try "./kill-byname.sh xterm" --
 7 #+ and watch all the xterms on your desktop disappear.
 8
 9 # Warning:
 10 # -------
 11 # This is a fairly dangerous script.
 12 # Running it carelessly (especially as root)
 13 #+ can cause data loss and other undesirable effects.
 14
 15 E_BADARGS=66
 16
 17 if test -z "$1" # No command-line arg supplied?
 18 then
 19 echo "Usage: `basename $0` Process(es)_to_kill"
 20 exit $E_BADARGS
 21 fi
 22
 23
 24 PROCESS_NAME="$1"
 25 ps ax | grep "$PROCESS_NAME" | awk '{print $1}' | xargs -i kill {} 2&>/dev/null
 26 # ^^ ^^
 27
 28 # ---
 29 # Notes:
 30 # -i is the "replace strings" option to xargs.
 31 # The curly brackets are the placeholder for the replacement.
 32 # 2&>/dev/null suppresses unwanted error messages.
 33 #
 34 # Can grep "$PROCESS_NAME" be replaced by pidof "$PROCESS_NAME"?
 35 # ---
 36

 37 exit $?
 38
 39 # The "killall" command has the same effect as this script,
 40 #+ but using it is not quite as educational.

Example 16-8. Word frequency analysis using xargs

 1 #!/bin/bash
 2 # wf2.sh: Crude word frequency analysis on a text file.
 3
 4 # Uses 'xargs' to decompose lines of text into single words.
 5 # Compare this example to the "wf.sh" script later on.
 6
 7
 8 # Check for input file on command-line.
 9 ARGS=1
 10 E_BADARGS=85
 11 E_NOFILE=86
 12
 13 if [$# -ne "$ARGS"]
 14 # Correct number of arguments passed to script?
 15 then
 16 echo "Usage: `basename $0` filename"
 17 exit $E_BADARGS
 18 fi
 19
 20 if [! -f "$1"] # Does file exist?
 21 then
 22 echo "File \"$1\" does not exist."
 23 exit $E_NOFILE
 24 fi
 25
 26
 27
 28 ###
 29 cat "$1" | xargs -n1 | \
 30 # List the file, one word per line.
 31 tr A-Z a-z | \
 32 # Shift characters to lowercase.
 33 sed -e 's/\.//g' -e 's/\,//g' -e 's/ /\
 34 /g' | \
 35 # Filter out periods and commas, and
 36 #+ change space between words to linefeed,
 37 sort | uniq -c | sort -nr
 38 # Finally remove duplicates, prefix occurrence count
 39 #+ and sort numerically.
 40 ###
 41
 42 # This does the same job as the "wf.sh" example,
 43 #+ but a bit more ponderously, and it runs more slowly (why?).
 44
 45 exit $?

expr
All-purpose expression evaluator: Concatenates and evaluates the arguments according to the
operation given (arguments must be separated by spaces). Operations may be arithmetic, comparison,
string, or logical.

expr 3 + 5
returns 8

expr 5 % 3
returns 2

expr 1 / 0
returns the error message, expr: division by zero

Illegal arithmetic operations not allowed.
expr 5 * 3

returns 15

The multiplication operator must be escaped when used in an arithmetic expression with
expr.

y=`expr $y + 1`
Increment a variable, with the same effect as let y=y+1 and y=$(($y+1)). This is an
example of arithmetic expansion.

z=`expr substr $string $position $length`
Extract substring of $length characters, starting at $position.

Example 16-9. Using expr

 1 #!/bin/bash
 2
 3 # Demonstrating some of the uses of 'expr'
 4 # =======================================
 5
 6 echo
 7
 8 # Arithmetic Operators
 9 # ---------- ---------
 10
 11 echo "Arithmetic Operators"
 12 echo
 13 a=`expr 5 + 3`
 14 echo "5 + 3 = $a"
 15
 16 a=`expr $a + 1`
 17 echo
 18 echo "a + 1 = $a"
 19 echo "(incrementing a variable)"
 20
 21 a=`expr 5 % 3`
 22 # modulo
 23 echo
 24 echo "5 mod 3 = $a"
 25
 26 echo
 27 echo
 28
 29 # Logical Operators
 30 # ------- ---------
 31
 32 # Returns 1 if true, 0 if false,
 33 #+ opposite of normal Bash convention.
 34
 35 echo "Logical Operators"
 36 echo
 37
 38 x=24
 39 y=25
 40 b=`expr $x = $y` # Test equality.
 41 echo "b = $b" # 0 ($x -ne $y)

 42 echo
 43
 44 a=3
 45 b=`expr $a \> 10`
 46 echo 'b=`expr $a \> 10`, therefore...'
 47 echo "If a > 10, b = 0 (false)"
 48 echo "b = $b" # 0 (3 ! -gt 10)
 49 echo
 50
 51 b=`expr $a \< 10`
 52 echo "If a < 10, b = 1 (true)"
 53 echo "b = $b" # 1 (3 -lt 10)
 54 echo
 55 # Note escaping of operators.
 56
 57 b=`expr $a \<= 3`
 58 echo "If a <= 3, b = 1 (true)"
 59 echo "b = $b" # 1 (3 -le 3)
 60 # There is also a "\>=" operator (greater than or equal to).
 61
 62
 63 echo
 64 echo
 65
 66
 67
 68 # String Operators
 69 # ------ ---------
 70
 71 echo "String Operators"
 72 echo
 73
 74 a=1234zipper43231
 75 echo "The string being operated upon is \"$a\"."
 76
 77 # length: length of string
 78 b=`expr length $a`
 79 echo "Length of \"$a\" is $b."
 80
 81 # index: position of first character in substring
 82 # that matches a character in string
 83 b=`expr index $a 23`
 84 echo "Numerical position of first \"2\" in \"$a\" is \"$b\"."
 85
 86 # substr: extract substring, starting position & length specified
 87 b=`expr substr $a 2 6`
 88 echo "Substring of \"$a\", starting at position 2,\
 89 and 6 chars long is \"$b\"."
 90
 91
 92 # The default behavior of the 'match' operations is to
 93 #+ search for the specified match at the BEGINNING of the string.
 94 #
 95 # Using Regular Expressions ...
 96 b=`expr match "$a" '[0-9]*'` # Numerical count.
 97 echo Number of digits at the beginning of \"$a\" is $b.
 98 b=`expr match "$a" '\([0-9]*\)'` # Note that escaped parentheses
 99 # == == #+ trigger substring match.
 100 echo "The digits at the beginning of \"$a\" are \"$b\"."
 101
 102 echo
 103
 104 exit 0

The : (null) operator can substitute for match. For example, b=`expr $a : [0-9]*` is the
exact equivalent of b=`expr match $a [0-9]*` in the above listing.

 1 #!/bin/bash
 2
 3 echo
 4 echo "String operations using \"expr \$string : \" construct"
 5 echo "==="
 6 echo
 7
 8 a=1234zipper5FLIPPER43231
 9
 10 echo "The string being operated upon is \"`expr "$a" : '\(.*\)'`\"."
 11 # Escaped parentheses grouping operator. == ==
 12
 13 # ***************************
 14 #+ Escaped parentheses
 15 #+ match a substring
 16 # ***************************
 17
 18
 19 # If no escaped parentheses ...
 20 #+ then 'expr' converts the string operand to an integer.
 21
 22 echo "Length of \"$a\" is `expr "$a" : '.*'`." # Length of string
 23
 24 echo "Number of digits at the beginning of \"$a\" is `expr "$a" : '[0-9]*'`."
 25
 26 # --- #
 27
 28 echo
 29
 30 echo "The digits at the beginning of \"$a\" are `expr "$a" : '\([0-9]*\)'`."
 31 # == ==
 32 echo "The first 7 characters of \"$a\" are `expr "$a" : '\(.......\)'`."
 33 # ===== == ==
 34 # Again, escaped parentheses force a substring match.
 35 #
 36 echo "The last 7 characters of \"$a\" are `expr "$a" : '.*\(.......\)'`."
 37 # ==== end of string operator ^^
 38 # (In fact, means skip over one or more of any characters until specified
 39 #+ substring found.)
 40
 41 echo
 42
 43 exit 0

The above script illustrates how expr uses the escaped parentheses -- \(... \) -- grouping operator in tandem
with regular expression parsing to match a substring. Here is a another example, this time from "real life."

 1 # Strip the whitespace from the beginning and end.
 2 LRFDATE=`expr "$LRFDATE" : '[[:space:]]*\(.*\)[[:space:]]*$'`
 3
 4 # From Peter Knowles' "booklistgen.sh" script
 5 #+ for converting files to Sony Librie/PRS-50X format.
 6 # (http://booklistgensh.peterknowles.com)

Perl, sed, and awk have far superior string parsing facilities. A short sed or awk "subroutine" within a script
(see Section 36.2) is an attractive alternative to expr.

See Section 10.1 for more on using expr in string operations.

Notes

[1] And even when xargs is not strictly necessary, it can speed up execution of a command involving
batch-processing of multiple files.

Prev Home Next
External Filters, Programs and
Commands

Up Time / Date Commands

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Chapter 16. External Filters, Programs and Commands Next

16.3. Time / Date Commands
Time/date and timing

date
Simply invoked, date prints the date and time to stdout. Where this command gets interesting is in
its formatting and parsing options.

Example 16-10. Using date

 1 #!/bin/bash
 2 # Exercising the 'date' command
 3
 4 echo "The number of days since the year's beginning is `date +%j`."
 5 # Needs a leading '+' to invoke formatting.
 6 # %j gives day of year.
 7
 8 echo "The number of seconds elapsed since 01/01/1970 is `date +%s`."
 9 # %s yields number of seconds since "UNIX epoch" began,
 10 #+ but how is this useful?
 11
 12 prefix=temp
 13 suffix=$(date +%s) # The "+%s" option to 'date' is GNU-specific.
 14 filename=$prefix.$suffix
 15 echo "Temporary filename = $filename"
 16 # It's great for creating "unique and random" temp filenames,
 17 #+ even better than using $$.
 18
 19 # Read the 'date' man page for more formatting options.
 20
 21 exit 0

The -u option gives the UTC (Universal Coordinated Time).

bash$ date
Fri Mar 29 21:07:39 MST 2002

bash$ date -u
Sat Mar 30 04:07:42 UTC 2002

This option facilitates calculating the time between different dates.

Example 16-11. Date calculations

 1 #!/bin/bash
 2 # date-calc.sh
 3 # Author: Nathan Coulter
 4 # Used in ABS Guide with permission (thanks!).
 5
 6 MPHR=60 # Minutes per hour.
 7 HPD=24 # Hours per day.
 8
 9 diff () {
 10 printf '%s' $(($(date -u -d"$TARGET" +%s) -
 11 $(date -u -d"$CURRENT" +%s)))
 12 # %d = day of month.

 13 }
 14
 15
 16 CURRENT=$(date -u -d '2007-09-01 17:30:24' '+%F %T.%N %Z')
 17 TARGET=$(date -u -d'2007-12-25 12:30:00' '+%F %T.%N %Z')
 18 # %F = full date, %T = %H:%M:%S, %N = nanoseconds, %Z = time zone.
 19
 20 printf '\nIn 2007, %s ' \
 21 "$(date -d"$CURRENT +
 22 $(($(diff) /$MPHR /$MPHR /$HPD / 2)) days" '+%d %B')"
 23 # %B = name of month ^ halfway
 24 printf 'was halfway between %s ' "$(date -d"$CURRENT" '+%d %B')"
 25 printf 'and %s\n' "$(date -d"$TARGET" '+%d %B')"
 26
 27 printf '\nOn %s at %s, there were\n' \
 28 $(date -u -d"$CURRENT" +%F) $(date -u -d"$CURRENT" +%T)
 29 DAYS=$(($(diff) / $MPHR / $MPHR / $HPD))
 30 CURRENT=$(date -d"$CURRENT +$DAYS days" '+%F %T.%N %Z')
 31 HOURS=$(($(diff) / $MPHR / $MPHR))
 32 CURRENT=$(date -d"$CURRENT +$HOURS hours" '+%F %T.%N %Z')
 33 MINUTES=$(($(diff) / $MPHR))
 34 CURRENT=$(date -d"$CURRENT +$MINUTES minutes" '+%F %T.%N %Z')
 35 printf '%s days, %s hours, ' "$DAYS" "$HOURS"
 36 printf '%s minutes, and %s seconds ' "$MINUTES" "$(diff)"
 37 printf 'until Christmas Dinner!\n\n'
 38
 39 # Exercise:
 40 # --------
 41 # Rewrite the diff () function to accept passed parameters,
 42 #+ rather than using global variables.

The date command has quite a number of output options. For example %N gives the nanosecond
portion of the current time. One interesting use for this is to generate random integers.

 1 date +%N | sed -e 's/000$//' -e 's/^0//'
 2 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
 3 # Strip off leading and trailing zeroes, if present.
 4 # Length of generated integer depends on
 5 #+ how many zeroes stripped off.
 6
 7 # 115281032
 8 # 63408725
 9 # 394504284

There are many more options (try man date).

 1 date +%j
 2 # Echoes day of the year (days elapsed since January 1).
 3
 4 date +%k%M
 5 # Echoes hour and minute in 24-hour format, as a single digit string.
 6
 7
 8
 9 # The 'TZ' parameter permits overriding the default time zone.
 10 date # Mon Mar 28 21:42:16 MST 2005
 11 TZ=EST date # Mon Mar 28 23:42:16 EST 2005
 12 # Thanks, Frank Kannemann and Pete Sjoberg, for the tip.
 13
 14
 15 SixDaysAgo=$(date --date='6 days ago')
 16 OneMonthAgo=$(date --date='1 month ago') # Four weeks back (not a month!)
 17 OneYearAgo=$(date --date='1 year ago')

See also Example 3-4 and Example A-43.
zdump

Time zone dump: echoes the time in a specified time zone.

bash$ zdump EST
EST Tue Sep 18 22:09:22 2001 EST

time
Outputs verbose timing statistics for executing a command.

time ls -l / gives something like this:

real 0m0.067s
 user 0m0.004s
 sys 0m0.005s

See also the very similar times command in the previous section.

As of version 2.0 of Bash, time became a shell reserved word, with slightly altered
behavior in a pipeline.

touch
Utility for updating access/modification times of a file to current system time or other specified time,
but also useful for creating a new file. The command touch zzz will create a new file of zero
length, named zzz, assuming that zzz did not previously exist. Time-stamping empty files in this
way is useful for storing date information, for example in keeping track of modification times on a
project.

The touch command is equivalent to : >> newfile or >> newfile (for
ordinary files).
Before doing a cp -u (copy/update), use touch to update the time stamp of files you
don't wish overwritten.

As an example, if the directory /home/bozo/tax_audit contains the files
spreadsheet-051606.data, spreadsheet-051706.data, and
spreadsheet-051806.data, then doing a touch spreadsheet*.data will protect
these files from being overwritten by files with the same names during a cp -u
/home/bozo/financial_info/spreadsheet*data /home/bozo/tax_audit.

at
The at job control command executes a given set of commands at a specified time. Superficially, it
resembles cron, however, at is chiefly useful for one-time execution of a command set.

at 2pm January 15 prompts for a set of commands to execute at that time. These commands
should be shell-script compatible, since, for all practical purposes, the user is typing in an executable
shell script a line at a time. Input terminates with a Ctl-D.

Using either the -f option or input redirection (<), at reads a command list from a file. This file is an
executable shell script, though it should, of course, be non-interactive. Particularly clever is including
the run-parts command in the file to execute a different set of scripts.

bash$ at 2:30 am Friday < at-jobs.list
job 2 at 2000-10-27 02:30

batch
The batch job control command is similar to at, but it runs a command list when the system load
drops below .8. Like at, it can read commands from a file with the -f option.

The concept of batch processing dates back to the era of mainframe computers. It means running a
set of commands without user intervention.

cal
Prints a neatly formatted monthly calendar to stdout. Will do current year or a large range of past
and future years.

sleep
This is the shell equivalent of a wait loop. It pauses for a specified number of seconds, doing nothing.
It can be useful for timing or in processes running in the background, checking for a specific event
every so often (polling), as in Example 32-6.

 1 sleep 3 # Pauses 3 seconds.

The sleep command defaults to seconds, but minute, hours, or days may also be
specified.

 1 sleep 3 h # Pauses 3 hours!

The watch command may be a better choice than sleep for running commands at
timed intervals.

usleep
Microsleep (the u may be read as the Greek mu, or micro- prefix). This is the same as sleep, above,
but "sleeps" in microsecond intervals. It can be used for fine-grained timing, or for polling an ongoing
process at very frequent intervals.

 1 usleep 30 # Pauses 30 microseconds.

This command is part of the Red Hat initscripts / rc-scripts package.

The usleep command does not provide particularly accurate timing, and is therefore
unsuitable for critical timing loops.

hwclock, clock
The hwclock command accesses or adjusts the machine's hardware clock. Some options require root
privileges. The /etc/rc.d/rc.sysinit startup file uses hwclock to set the system time from
the hardware clock at bootup.

The clock command is a synonym for hwclock.

Prev Home Next
Complex Commands Up Text Processing Commands

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Chapter 16. External Filters, Programs and Commands Next

16.4. Text Processing Commands
Commands affecting text and text files

sort
File sort utility, often used as a filter in a pipe. This command sorts a text stream or file forwards or
backwards, or according to various keys or character positions. Using the -m option, it merges
presorted input files. The info page lists its many capabilities and options. See Example 11-10,
Example 11-11, and Example A-8.

tsort
Topological sort, reading in pairs of whitespace-separated strings and sorting according to input
patterns. The original purpose of tsort was to sort a list of dependencies for an obsolete version of the
ld linker in an "ancient" version of UNIX.

The results of a tsort will usually differ markedly from those of the standard sort command, above.
uniq

This filter removes duplicate lines from a sorted file. It is often seen in a pipe coupled with sort.

 1 cat list-1 list-2 list-3 | sort | uniq > final.list
 2 # Concatenates the list files,
 3 # sorts them,
 4 # removes duplicate lines,
 5 # and finally writes the result to an output file.

The useful -c option prefixes each line of the input file with its number of occurrences.

bash$ cat testfile
This line occurs only once.

 This line occurs twice.
 This line occurs twice.
 This line occurs three times.
 This line occurs three times.
 This line occurs three times.

bash$ uniq -c testfile
 1 This line occurs only once.

 2 This line occurs twice.
 3 This line occurs three times.

bash$ sort testfile | uniq -c | sort -nr
 3 This line occurs three times.

 2 This line occurs twice.
 1 This line occurs only once.

The sort INPUTFILE | uniq -c | sort -nr command string produces a frequency of
occurrence listing on the INPUTFILE file (the -nr options to sort cause a reverse numerical sort).
This template finds use in analysis of log files and dictionary lists, and wherever the lexical structure
of a document needs to be examined.

Example 16-12. Word Frequency Analysis

 1 #!/bin/bash
 2 # wf.sh: Crude word frequency analysis on a text file.
 3 # This is a more efficient version of the "wf2.sh" script.
 4
 5

 6 # Check for input file on command-line.
 7 ARGS=1
 8 E_BADARGS=85
 9 E_NOFILE=86
 10
 11 if [$# -ne "$ARGS"] # Correct number of arguments passed to script?
 12 then
 13 echo "Usage: `basename $0` filename"
 14 exit $E_BADARGS
 15 fi
 16
 17 if [! -f "$1"] # Check if file exists.
 18 then
 19 echo "File \"$1\" does not exist."
 20 exit $E_NOFILE
 21 fi
 22
 23
 24
 25 ##
 26 # main ()
 27 sed -e 's/\.//g' -e 's/\,//g' -e 's/ /\
 28 /g' "$1" | tr 'A-Z' 'a-z' | sort | uniq -c | sort -nr
 29 # =========================
 30 # Frequency of occurrence
 31
 32 # Filter out periods and commas, and
 33 #+ change space between words to linefeed,
 34 #+ then shift characters to lowercase, and
 35 #+ finally prefix occurrence count and sort numerically.
 36
 37 # Arun Giridhar suggests modifying the above to:
 38 # . . . | sort | uniq -c | sort +1 [-f] | sort +0 -nr
 39 # This adds a secondary sort key, so instances of
 40 #+ equal occurrence are sorted alphabetically.
 41 # As he explains it:
 42 # "This is effectively a radix sort, first on the
 43 #+ least significant column
 44 #+ (word or string, optionally case-insensitive)
 45 #+ and last on the most significant column (frequency)."
 46 #
 47 # As Frank Wang explains, the above is equivalent to
 48 #+ . . . | sort | uniq -c | sort +0 -nr
 49 #+ and the following also works:
 50 #+ . . . | sort | uniq -c | sort -k1nr -k
 51 ##
 52
 53 exit 0
 54
 55 # Exercises:
 56 # ---------
 57 # 1) Add 'sed' commands to filter out other punctuation,
 58 #+ such as semicolons.
 59 # 2) Modify the script to also filter out multiple spaces and
 60 #+ other whitespace.

bash$ cat testfile
This line occurs only once.

 This line occurs twice.
 This line occurs twice.
 This line occurs three times.
 This line occurs three times.
 This line occurs three times.

bash$./wf.sh testfile
 6 this

 6 occurs
 6 line
 3 times
 3 three
 2 twice
 1 only
 1 once

expand, unexpand
The expand filter converts tabs to spaces. It is often used in a pipe.

The unexpand filter converts spaces to tabs. This reverses the effect of expand.
cut

A tool for extracting fields from files. It is similar to the print $N command set in awk, but more
limited. It may be simpler to use cut in a script than awk. Particularly important are the -d (delimiter)
and -f (field specifier) options.

Using cut to obtain a listing of the mounted filesystems:

 1 cut -d ' ' -f1,2 /etc/mtab

Using cut to list the OS and kernel version:

 1 uname -a | cut -d" " -f1,3,11,12

Using cut to extract message headers from an e-mail folder:

bash$ grep '^Subject:' read-messages | cut -c10-80
Re: Linux suitable for mission-critical apps?
 MAKE MILLIONS WORKING AT HOME!!!
 Spam complaint
 Re: Spam complaint

Using cut to parse a file:

 1 # List all the users in /etc/passwd.
 2
 3 FILENAME=/etc/passwd
 4
 5 for user in $(cut -d: -f1 $FILENAME)
 6 do
 7 echo $user
 8 done
 9
 10 # Thanks, Oleg Philon for suggesting this.

cut -d ' ' -f2,3 filename is equivalent to awk -F'[]' '{ print $2, $3 }'
filename

It is even possible to specify a linefeed as a delimiter. The trick is to actually embed a
linefeed (RETURN) in the command sequence.

bash$ cut -d'
 ' -f3,7,19 testfile
This is line 3 of testfile.

 This is line 7 of testfile.
 This is line 19 of testfile.

Thank you, Jaka Kranjc, for pointing this out.
See also Example 16-48.

paste
Tool for merging together different files into a single, multi-column file. In combination with cut,
useful for creating system log files.

bash$ cat items
alphabet blocks

 building blocks
 cables

bash$ cat prices
$1.00/dozen

 $2.50 ea.
 $3.75

bash$ paste items prices
alphabet blocks $1.00/dozen

 building blocks $2.50 ea.
 cables $3.75

join
Consider this a special-purpose cousin of paste. This powerful utility allows merging two files in a
meaningful fashion, which essentially creates a simple version of a relational database.

The join command operates on exactly two files, but pastes together only those lines with a common
tagged field (usually a numerical label), and writes the result to stdout. The files to be joined
should be sorted according to the tagged field for the matchups to work properly.

 1 File: 1.data
 2
 3 100 Shoes
 4 200 Laces
 5 300 Socks

 1 File: 2.data
 2
 3 100 $40.00
 4 200 $1.00
 5 300 $2.00

bash$ join 1.data 2.data
File: 1.data 2.data

 100 Shoes $40.00
 200 Laces $1.00
 300 Socks $2.00

The tagged field appears only once in the output.

head
lists the beginning of a file to stdout. The default is 10 lines, but a different number can be
specified. The command has a number of interesting options.

Example 16-13. Which files are scripts?

 1 #!/bin/bash
 2 # script-detector.sh: Detects scripts within a directory.
 3
 4 TESTCHARS=2 # Test first 2 characters.
 5 SHABANG='#!' # Scripts begin with a "sha-bang."
 6

 7 for file in * # Traverse all the files in current directory.
 8 do
 9 if [[`head -c$TESTCHARS "$file"` = "$SHABANG"]]
 10 # head -c2 #!
 11 # The '-c' option to "head" outputs a specified
 12 #+ number of characters, rather than lines (the default).
 13 then
 14 echo "File \"$file\" is a script."
 15 else
 16 echo "File \"$file\" is *not* a script."
 17 fi
 18 done
 19
 20 exit 0
 21
 22 # Exercises:
 23 # ---------
 24 # 1) Modify this script to take as an optional argument
 25 #+ the directory to scan for scripts
 26 #+ (rather than just the current working directory).
 27 #
 28 # 2) As it stands, this script gives "false positives" for
 29 #+ Perl, awk, and other scripting language scripts.
 30 # Correct this.

Example 16-14. Generating 10-digit random numbers

 1 #!/bin/bash
 2 # rnd.sh: Outputs a 10-digit random number
 3
 4 # Script by Stephane Chazelas.
 5
 6 head -c4 /dev/urandom | od -N4 -tu4 | sed -ne '1s/.* //p'
 7
 8
 9 # === #
 10
 11 # Analysis
 12 # --------
 13
 14 # head:
 15 # -c4 option takes first 4 bytes.
 16
 17 # od:
 18 # -N4 option limits output to 4 bytes.
 19 # -tu4 option selects unsigned decimal format for output.
 20
 21 # sed:
 22 # -n option, in combination with "p" flag to the "s" command,
 23 # outputs only matched lines.
 24
 25
 26
 27 # The author of this script explains the action of 'sed', as follows.
 28
 29 # head -c4 /dev/urandom | od -N4 -tu4 | sed -ne '1s/.* //p'
 30 # ----------------------------------> |
 31
 32 # Assume output up to "sed" --------> |
 33 # is 0000000 1198195154\n
 34
 35 # sed begins reading characters: 0000000 1198195154\n.

 36 # Here it finds a newline character,
 37 #+ so it is ready to process the first line (0000000 1198195154).
 38 # It looks at its <range><action>s. The first and only one is
 39
 40 # range action
 41 # 1 s/.* //p
 42
 43 # The line number is in the range, so it executes the action:
 44 #+ tries to substitute the longest string ending with a space in the line
 45 # ("0000000 ") with nothing (//), and if it succeeds, prints the result
 46 # ("p" is a flag to the "s" command here, this is different
 47 #+ from the "p" command).
 48
 49 # sed is now ready to continue reading its input. (Note that before
 50 #+ continuing, if -n option had not been passed, sed would have printed
 51 #+ the line once again).
 52
 53 # Now, sed reads the remainder of the characters, and finds the
 54 #+ end of the file.
 55 # It is now ready to process its 2nd line (which is also numbered '$' as
 56 #+ it's the last one).
 57 # It sees it is not matched by any <range>, so its job is done.
 58
 59 # In few word this sed commmand means:
 60 # "On the first line only, remove any character up to the right-most space,
 61 #+ then print it."
 62
 63 # A better way to do this would have been:
 64 # sed -e 's/.* //;q'
 65
 66 # Here, two <range><action>s (could have been written
 67 # sed -e 's/.* //' -e q):
 68
 69 # range action
 70 # nothing (matches line) s/.* //
 71 # nothing (matches line) q (quit)
 72
 73 # Here, sed only reads its first line of input.
 74 # It performs both actions, and prints the line (substituted) before
 75 #+ quitting (because of the "q" action) since the "-n" option is not passed.
 76
 77 # === #
 78
 79 # An even simpler altenative to the above one-line script would be:
 80 # head -c4 /dev/urandom| od -An -tu4
 81
 82 exit

See also Example 16-39.
tail

lists the (tail) end of a file to stdout. The default is 10 lines, but this can be changed with the -n
option. Commonly used to keep track of changes to a system logfile, using the -f option, which
outputs lines appended to the file.

Example 16-15. Using tail to monitor the system log

 1 #!/bin/bash
 2
 3 filename=sys.log
 4
 5 cat /dev/null > $filename; echo "Creating / cleaning out file."
 6 # Creates the file if it does not already exist,

 7 #+ and truncates it to zero length if it does.
 8 # : > filename and > filename also work.
 9
 10 tail /var/log/messages > $filename
 11 # /var/log/messages must have world read permission for this to work.
 12
 13 echo "$filename contains tail end of system log."
 14
 15 exit 0

To list a specific line of a text file, pipe the output of head to tail -n 1. For example
head -n 8 database.txt | tail -n 1 lists the 8th line of the file
database.txt.

To set a variable to a given block of a text file:

 1 var=$(head -n $m $filename | tail -n $n)
 2
 3 # filename = name of file
 4 # m = from beginning of file, number of lines to end of block
 5 # n = number of lines to set variable to (trim from end of block)

Newer implementations of tail deprecate the older tail -$LINES filename usage. The
standard tail -n $LINES filename is correct.

See also Example 16-5, Example 16-39 and Example 32-6.
grep

A multi-purpose file search tool that uses Regular Expressions. It was originally a command/filter in
the venerable ed line editor: g/re/p -- global - regular expression - print.

grep pattern [file...]

Search the target file(s) for occurrences of pattern, where pattern may be literal text or a
Regular Expression.

bash$ grep '[rst]ystem.$' osinfo.txt
The GPL governs the distribution of the Linux operating system.

If no target file(s) specified, grep works as a filter on stdout, as in a pipe.

bash$ ps ax | grep clock
765 tty1 S 0:00 xclock

 901 pts/1 S 0:00 grep clock

The -i option causes a case-insensitive search.

The -w option matches only whole words.

The -l option lists only the files in which matches were found, but not the matching lines.

The -r (recursive) option searches files in the current working directory and all subdirectories below
it.

The -n option lists the matching lines, together with line numbers.

bash$ grep -n Linux osinfo.txt
2:This is a file containing information about Linux.

 6:The GPL governs the distribution of the Linux operating system.

The -v (or --invert-match) option filters out matches.

 1 grep pattern1 *.txt | grep -v pattern2
 2
 3 # Matches all lines in "*.txt" files containing "pattern1",
 4 # but ***not*** "pattern2".

The -c (--count) option gives a numerical count of matches, rather than actually listing the
matches.

 1 grep -c txt *.sgml # (number of occurrences of "txt" in "*.sgml" files)
 2
 3
 4 # grep -cz .
 5 # ^ dot
 6 # means count (-c) zero-separated (-z) items matching "."
 7 # that is, non-empty ones (containing at least 1 character).
 8 #
 9 printf 'a b\nc d\n\n\n\n\n\000\n\000e\000\000\nf' | grep -cz . # 3
 10 printf 'a b\nc d\n\n\n\n\n\000\n\000e\000\000\nf' | grep -cz '$' # 5
 11 printf 'a b\nc d\n\n\n\n\n\000\n\000e\000\000\nf' | grep -cz '^' # 5
 12 #
 13 printf 'a b\nc d\n\n\n\n\n\000\n\000e\000\000\nf' | grep -c '$' # 9
 14 # By default, newline chars (\n) separate items to match.
 15
 16 # Note that the -z option is GNU "grep" specific.
 17
 18
 19 # Thanks, S.C.

The --color (or --colour) option marks the matching string in color (on the console or in an
xterm window). Since grep prints out each entire line containing the matching pattern, this lets you
see exactly what is being matched. See also the -o option, which shows only the matching portion of
the line(s).

Example 16-16. Printing out the From lines in stored e-mail messages

 1 #!/bin/bash
 2 # from.sh
 3
 4 # Emulates the useful 'from' utility in Solaris, BSD, etc.
 5 # Echoes the "From" header line in all messages
 6 #+ in your e-mail directory.
 7
 8
 9 MAILDIR=~/mail/* # No quoting of variable. Why?
 10 # Maybe check if-exists $MAILDIR: if [-d $MAILDIR] . . .
 11 GREP_OPTS="-H -A 5 --color" # Show file, plus extra context lines
 12 #+ and display "From" in color.
 13 TARGETSTR="^From" # "From" at beginning of line.
 14
 15 for file in $MAILDIR # No quoting of variable.
 16 do
 17 grep $GREP_OPTS "$TARGETSTR" "$file"
 18 # ^^^^^^^^^^ # Again, do not quote this variable.
 19 echo
 20 done
 21
 22 exit $?
 23
 24 # You might wish to pipe the output of this script to 'more'
 25 #+ or redirect it to a file . . .

When invoked with more than one target file given, grep specifies which file contains matches.

bash$ grep Linux osinfo.txt misc.txt
osinfo.txt:This is a file containing information about Linux.

 osinfo.txt:The GPL governs the distribution of the Linux operating system.
 misc.txt:The Linux operating system is steadily gaining in popularity.

To force grep to show the filename when searching only one target file, simply give
/dev/null as the second file.

bash$ grep Linux osinfo.txt /dev/null
osinfo.txt:This is a file containing information about Linux.
 osinfo.txt:The GPL governs the distribution of the Linux operating system.

If there is a successful match, grep returns an exit status of 0, which makes it useful in a condition test
in a script, especially in combination with the -q option to suppress output.

 1 SUCCESS=0 # if grep lookup succeeds
 2 word=Linux
 3 filename=data.file
 4
 5 grep -q "$word" "$filename" # The "-q" option
 6 #+ causes nothing to echo to stdout.
 7 if [$? -eq $SUCCESS]
 8 # if grep -q "$word" "$filename" can replace lines 5 - 7.
 9 then
 10 echo "$word found in $filename"
 11 else
 12 echo "$word not found in $filename"
 13 fi

Example 32-6 demonstrates how to use grep to search for a word pattern in a system logfile.

Example 16-17. Emulating grep in a script

 1 #!/bin/bash
 2 # grp.sh: Rudimentary reimplementation of grep.
 3
 4 E_BADARGS=85
 5
 6 if [-z "$1"] # Check for argument to script.
 7 then
 8 echo "Usage: `basename $0` pattern"
 9 exit $E_BADARGS
 10 fi
 11
 12 echo
 13
 14 for file in * # Traverse all files in $PWD.
 15 do
 16 output=$(sed -n /"$1"/p $file) # Command substitution.
 17
 18 if [! -z "$output"] # What happens if "$output" is not quoted?
 19 then
 20 echo -n "$file: "
 21 echo "$output"
 22 fi # sed -ne "/$1/s|^|${file}: |p" is equivalent to above.
 23
 24 echo
 25 done
 26
 27 echo

 28
 29 exit 0
 30
 31 # Exercises:
 32 # ---------
 33 # 1) Add newlines to output, if more than one match in any given file.
 34 # 2) Add features.

How can grep search for two (or more) separate patterns? What if you want grep to display all lines
in a file or files that contain both "pattern1" and "pattern2"?

One method is to pipe the result of grep pattern1 to grep pattern2.

For example, given the following file:

 1 # Filename: tstfile
 2
 3 This is a sample file.
 4 This is an ordinary text file.
 5 This file does not contain any unusual text.
 6 This file is not unusual.
 7 Here is some text.

Now, let's search this file for lines containing both "file" and "text" . . .

bash$ grep file tstfile
Filename: tstfile

 This is a sample file.
 This is an ordinary text file.
 This file does not contain any unusual text.
 This file is not unusual.

bash$ grep file tstfile | grep text
This is an ordinary text file.

 This file does not contain any unusual text.

Now, for an interesting recreational use of grep . . .

Example 16-18. Crossword puzzle solver

 1 #!/bin/bash
 2 # cw-solver.sh
 3 # This is actually a wrapper around a one-liner (line 46).
 4
 5 # Crossword puzzle and anagramming word game solver.
 6 # You know *some* of the letters in the word you're looking for,
 7 #+ so you need a list of all valid words
 8 #+ with the known letters in given positions.
 9 # For example: w...i....n
 10 # 1???5????10
 11 # w in position 1, 3 unknowns, i in the 5th, 4 unknowns, n at the end.
 12 # (See comments at end of script.)
 13
 14
 15 E_NOPATT=71
 16 DICT=/usr/share/dict/word.lst
 17 # ^^^^^^^^ Looks for word list here.
 18 # ASCII word list, one word per line.
 19 # If you happen to need an appropriate list,
 20 #+ download the author's "yawl" word list package.
 21 # http://ibiblio.org/pub/Linux/libs/yawl-0.3.2.tar.gz
 22 # or
 23 # http://bash.deta.in/yawl-0.3.2.tar.gz

 24
 25
 26 if [-z "$1"] # If no word pattern specified
 27 then #+ as a command-line argument . . .
 28 echo #+ . . . then . . .
 29 echo "Usage:" #+ Usage message.
 30 echo
 31 echo ""$0" \"pattern,\""
 32 echo "where \"pattern\" is in the form"
 33 echo "xxx..x.x..."
 34 echo
 35 echo "The x's represent known letters,"
 36 echo "and the periods are unknown letters (blanks)."
 37 echo "Letters and periods can be in any position."
 38 echo "For example, try: sh cw-solver.sh w...i....n"
 39 echo
 40 exit $E_NOPATT
 41 fi
 42
 43 echo
 44 # ===
 45 # This is where all the work gets done.
 46 grep ^"$1"$ "$DICT" # Yes, only one line!
 47 # | |
 48 # ^ is start-of-word regex anchor.
 49 # $ is end-of-word regex anchor.
 50
 51 # From _Stupid Grep Tricks_, vol. 1,
 52 #+ a book the ABS Guide author may yet get around
 53 #+ to writing . . . one of these days . . .
 54 # ===
 55 echo
 56
 57
 58 exit $? # Script terminates here.
 59 # If there are too many words generated,
 60 #+ redirect the output to a file.
 61
 62 $ sh cw-solver.sh w...i....n
 63
 64 wellington
 65 workingman
 66 workingmen

egrep -- extended grep -- is the same as grep -E. This uses a somewhat different, extended set of
Regular Expressions, which can make the search a bit more flexible. It also allows the boolean | (or)
operator.

bash $ egrep 'matches|Matches' file.txt
Line 1 matches.

 Line 3 Matches.
 Line 4 contains matches, but also Matches

fgrep -- fast grep -- is the same as grep -F. It does a literal string search (no Regular Expressions),
which generally speeds things up a bit.

On some Linux distros, egrep and fgrep are symbolic links to, or aliases for grep, but
invoked with the -E and -F options, respectively.

Example 16-19. Looking up definitions in Webster's 1913 Dictionary

 1 #!/bin/bash
 2 # dict-lookup.sh
 3
 4 # This script looks up definitions in the 1913 Webster's Dictionary.
 5 # This Public Domain dictionary is available for download
 6 #+ from various sites, including
 7 #+ Project Gutenberg (http://www.gutenberg.org/etext/247).
 8 #
 9 # Convert it from DOS to UNIX format (with only LF at end of line)
 10 #+ before using it with this script.
 11 # Store the file in plain, uncompressed ASCII text.
 12 # Set DEFAULT_DICTFILE variable below to path/filename.
 13
 14
 15 E_BADARGS=85
 16 MAXCONTEXTLINES=50 # Maximum number of lines to show.
 17 DEFAULT_DICTFILE="/usr/share/dict/webster1913-dict.txt"
 18 # Default dictionary file pathname.
 19 # Change this as necessary.
 20 # Note:
 21 # ----
 22 # This particular edition of the 1913 Webster's
 23 #+ begins each entry with an uppercase letter
 24 #+ (lowercase for the remaining characters).
 25 # Only the *very first line* of an entry begins this way,
 26 #+ and that's why the search algorithm below works.
 27
 28
 29
 30 if [[-z $(echo "$1" | sed -n '/^[A-Z]/p')]]
 31 # Must at least specify word to look up, and
 32 #+ it must start with an uppercase letter.
 33 then
 34 echo "Usage: `basename $0` Word-to-define [dictionary-file]"
 35 echo
 36 echo "Note: Word to look up must start with capital letter,"
 37 echo "with the rest of the word in lowercase."
 38 echo "--"
 39 echo "Examples: Abandon, Dictionary, Marking, etc."
 40 exit $E_BADARGS
 41 fi
 42
 43
 44 if [-z "$2"] # May specify different dictionary
 45 #+ as an argument to this script.
 46 then
 47 dictfile=$DEFAULT_DICTFILE
 48 else
 49 dictfile="$2"
 50 fi
 51
 52 # ---
 53 Definition=$(fgrep -A $MAXCONTEXTLINES "$1 \\" "$dictfile")
 54 # Definitions in form "Word \..."
 55 #
 56 # And, yes, "fgrep" is fast enough
 57 #+ to search even a very large text file.
 58
 59
 60 # Now, snip out just the definition block.
 61
 62 echo "$Definition" |
 63 sed -n '1,/^[A-Z]/p' |
 64 # Print from first line of output
 65 #+ to the first line of the next entry.
 66 sed '$d' | sed '$d'

 67 # Delete last two lines of output
 68 #+ (blank line and first line of next entry).
 69 # ---
 70
 71 exit $?
 72
 73 # Exercises:
 74 # ---------
 75 # 1) Modify the script to accept any type of alphabetic input
 76 # + (uppercase, lowercase, mixed case), and convert it
 77 # + to an acceptable format for processing.
 78 #
 79 # 2) Convert the script to a GUI application,
 80 # + using something like 'gdialog' or 'zenity' . . .
 81 # The script will then no longer take its argument(s)
 82 # + from the command-line.
 83 #
 84 # 3) Modify the script to parse one of the other available
 85 # + Public Domain Dictionaries, such as the U.S. Census Bureau Gazetteer.

See also Example A-41 for an example of speedy fgrep lookup on a large text file.

agrep (approximate grep) extends the capabilities of grep to approximate matching. The search string
may differ by a specified number of characters from the resulting matches. This utility is not part of
the core Linux distribution.

To search compressed files, use zgrep, zegrep, or zfgrep. These also work on
non-compressed files, though slower than plain grep, egrep, fgrep. They are
handy for searching through a mixed set of files, some compressed, some not.

To search bzipped files, use bzgrep.
look

The command look works like grep, but does a lookup on a "dictionary," a sorted word list. By
default, look searches for a match in /usr/dict/words, but a different dictionary file may be
specified.

Example 16-20. Checking words in a list for validity

 1 #!/bin/bash
 2 # lookup: Does a dictionary lookup on each word in a data file.
 3
 4 file=words.data # Data file from which to read words to test.
 5
 6 echo
 7 echo "Testing file $file"
 8 echo
 9
 10 while ["$word" != end] # Last word in data file.
 11 do # ^^^
 12 read word # From data file, because of redirection at end of loop.
 13 look $word > /dev/null # Don't want to display lines in dictionary file.
 14 # Searches for words in the file /usr/share/dict/words
 15 #+ (usually a link to linux.words).
 16 lookup=$? # Exit status of 'look' command.
 17
 18 if ["$lookup" -eq 0]
 19 then

 20 echo "\"$word\" is valid."
 21 else
 22 echo "\"$word\" is invalid."
 23 fi
 24
 25 done <"$file" # Redirects stdin to $file, so "reads" come from there.
 26
 27 echo
 28
 29 exit 0
 30
 31 # --
 32 # Code below line will not execute because of "exit" command above.
 33
 34
 35 # Stephane Chazelas proposes the following, more concise alternative:
 36
 37 while read word && [[$word != end]]
 38 do if look "$word" > /dev/null
 39 then echo "\"$word\" is valid."
 40 else echo "\"$word\" is invalid."
 41 fi
 42 done <"$file"
 43
 44 exit 0

sed, awk
Scripting languages especially suited for parsing text files and command output. May be embedded
singly or in combination in pipes and shell scripts.

sed
Non-interactive "stream editor", permits using many ex commands in batch mode. It finds many uses
in shell scripts.

awk
Programmable file extractor and formatter, good for manipulating and/or extracting fields (columns)
in structured text files. Its syntax is similar to C.

wc
wc gives a "word count" on a file or I/O stream:

bash $ wc /usr/share/doc/sed-4.1.2/README
13 70 447 README

 [13 lines 70 words 447 characters]

wc -w gives only the word count.

wc -l gives only the line count.

wc -c gives only the byte count.

wc -m gives only the character count.

wc -L gives only the length of the longest line.

Using wc to count how many .txt files are in current working directory:

 1 $ ls *.txt | wc -l
 2 # Will work as long as none of the "*.txt" files
 3 #+ have a linefeed embedded in their name.
 4
 5 # Alternative ways of doing this are:
 6 # find . -maxdepth 1 -name *.txt -print0 | grep -cz .
 7 # (shopt -s nullglob; set -- *.txt; echo $#)

 8
 9 # Thanks, S.C.

Using wc to total up the size of all the files whose names begin with letters in the range d - h

bash$ wc [d-h]* | grep total | awk '{print $3}'
71832

Using wc to count the instances of the word "Linux" in the main source file for this book.

bash$ grep Linux abs-book.sgml | wc -l
138

See also Example 16-39 and Example 20-8.

Certain commands include some of the functionality of wc as options.

 1 ... | grep foo | wc -l
 2 # This frequently used construct can be more concisely rendered.
 3
 4 ... | grep -c foo
 5 # Just use the "-c" (or "--count") option of grep.
 6
 7 # Thanks, S.C.

tr
character translation filter.

Must use quoting and/or brackets, as appropriate. Quotes prevent the shell from
reinterpreting the special characters in tr command sequences. Brackets should be
quoted to prevent expansion by the shell.

Either tr "A-Z" "*" <filename or tr A-Z * <filename changes all the uppercase
letters in filename to asterisks (writes to stdout). On some systems this may not work, but tr
A-Z '[**]' will.

The -d option deletes a range of characters.

 1 echo "abcdef" # abcdef
 2 echo "abcdef" | tr -d b-d # aef
 3
 4
 5 tr -d 0-9 <filename
 6 # Deletes all digits from the file "filename".

The --squeeze-repeats (or -s) option deletes all but the first instance of a string of
consecutive characters. This option is useful for removing excess whitespace.

bash$ echo "XXXXX" | tr --squeeze-repeats 'X'
X

The -c "complement" option inverts the character set to match. With this option, tr acts only upon
those characters not matching the specified set.

bash$ echo "acfdeb123" | tr -c b-d +
+c+d+b++++

Note that tr recognizes POSIX character classes. [1]

bash$ echo "abcd2ef1" | tr '[:alpha:]' -
----2--1

Example 16-21. toupper: Transforms a file to all uppercase.

 1 #!/bin/bash
 2 # Changes a file to all uppercase.
 3
 4 E_BADARGS=85
 5
 6 if [-z "$1"] # Standard check for command-line arg.
 7 then
 8 echo "Usage: `basename $0` filename"
 9 exit $E_BADARGS
 10 fi
 11
 12 tr a-z A-Z <"$1"
 13
 14 # Same effect as above, but using POSIX character set notation:
 15 # tr '[:lower:]' '[:upper:]' <"$1"
 16 # Thanks, S.C.
 17
 18 # Or even . . .
 19 # cat "$1" | tr a-z A-Z
 20 # Or dozens of other ways . . .
 21
 22 exit 0
 23
 24 # Exercise:
 25 # Rewrite this script to give the option of changing a file
 26 #+ to *either* upper or lowercase.
 27 # Hint: Use either the "case" or "select" command.

Example 16-22. lowercase: Changes all filenames in working directory to lowercase.

 1 #!/bin/bash
 2 #
 3 # Changes every filename in working directory to all lowercase.
 4 #
 5 # Inspired by a script of John Dubois,
 6 #+ which was translated into Bash by Chet Ramey,
 7 #+ and considerably simplified by the author of the ABS Guide.
 8
 9
 10 for filename in * # Traverse all files in directory.
 11 do
 12 fname=`basename $filename`
 13 n=`echo $fname | tr A-Z a-z` # Change name to lowercase.
 14 if ["$fname" != "$n"] # Rename only files not already lowercase.
 15 then
 16 mv $fname $n
 17 fi
 18 done
 19
 20 exit $?
 21
 22
 23 # Code below this line will not execute because of "exit".
 24 #--#
 25 # To run it, delete script above line.
 26
 27 # The above script will not work on filenames containing blanks or newlines.

 28 # Stephane Chazelas therefore suggests the following alternative:
 29
 30
 31 for filename in * # Not necessary to use basename,
 32 # since "*" won't return any file containing "/".
 33 do n=`echo "$filename/" | tr '[:upper:]' '[:lower:]'`
 34 # POSIX char set notation.
 35 # Slash added so that trailing newlines are not
 36 # removed by command substitution.
 37 # Variable substitution:
 38 n=${n%/} # Removes trailing slash, added above, from filename.
 39 [[$filename == $n]] || mv "$filename" "$n"
 40 # Checks if filename already lowercase.
 41 done
 42
 43 exit $?

Example 16-23. du: DOS to UNIX text file conversion.

 1 #!/bin/bash
 2 # Du.sh: DOS to UNIX text file converter.
 3
 4 E_WRONGARGS=85
 5
 6 if [-z "$1"]
 7 then
 8 echo "Usage: `basename $0` filename-to-convert"
 9 exit $E_WRONGARGS
 10 fi
 11
 12 NEWFILENAME=$1.unx
 13
 14 CR='\015' # Carriage return.
 15 # 015 is octal ASCII code for CR.
 16 # Lines in a DOS text file end in CR-LF.
 17 # Lines in a UNIX text file end in LF only.
 18
 19 tr -d $CR < $1 > $NEWFILENAME
 20 # Delete CR's and write to new file.
 21
 22 echo "Original DOS text file is \"$1\"."
 23 echo "Converted UNIX text file is \"$NEWFILENAME\"."
 24
 25 exit 0
 26
 27 # Exercise:
 28 # --------
 29 # Change the above script to convert from UNIX to DOS.

Example 16-24. rot13: ultra-weak encryption.

 1 #!/bin/bash
 2 # rot13.sh: Classic rot13 algorithm,
 3 # encryption that might fool a 3-year old
 4 # for about 10 minutes.
 5
 6 # Usage: ./rot13.sh filename
 7 # or ./rot13.sh <filename
 8 # or ./rot13.sh and supply keyboard input (stdin)

 9
 10 cat "$@" | tr 'a-zA-Z' 'n-za-mN-ZA-M' # "a" goes to "n", "b" to "o" ...
 11 # The cat "$@" construct
 12 #+ permits input either from stdin or from files.
 13
 14 exit 0

Example 16-25. Generating "Crypto-Quote" Puzzles

 1 #!/bin/bash
 2 # crypto-quote.sh: Encrypt quotes
 3
 4 # Will encrypt famous quotes in a simple monoalphabetic substitution.
 5 # The result is similar to the "Crypto Quote" puzzles
 6 #+ seen in the Op Ed pages of the Sunday paper.
 7
 8
 9 key=ETAOINSHRDLUBCFGJMQPVWZYXK
 10 # The "key" is nothing more than a scrambled alphabet.
 11 # Changing the "key" changes the encryption.
 12
 13 # The 'cat "$@"' construction gets input either from stdin or from files.
 14 # If using stdin, terminate input with a Control-D.
 15 # Otherwise, specify filename as command-line parameter.
 16
 17 cat "$@" | tr "a-z" "A-Z" | tr "A-Z" "$key"
 18 # | to uppercase | encrypt
 19 # Will work on lowercase, uppercase, or mixed-case quotes.
 20 # Passes non-alphabetic characters through unchanged.
 21
 22
 23 # Try this script with something like:
 24 # "Nothing so needs reforming as other people's habits."
 25 # --Mark Twain
 26 #
 27 # Output is:
 28 # "CFPHRCS QF CIIOQ MINFMBRCS EQ FPHIM GIFGUI'Q HETRPQ."
 29 # --BEML PZERC
 30
 31 # To reverse the encryption:
 32 # cat "$@" | tr "$key" "A-Z"
 33
 34
 35 # This simple-minded cipher can be broken by an average 12-year old
 36 #+ using only pencil and paper.
 37
 38 exit 0
 39
 40 # Exercise:
 41 # --------
 42 # Modify the script so that it will either encrypt or decrypt,
 43 #+ depending on command-line argument(s).

Of course, tr lends itself to code obfuscation.

 1 #!/bin/bash
 2 # jabh.sh
 3
 4 x="wftedskaebjgdBstbdbsmnjgz"
 5 echo $x | tr "a-z" 'oh, turtleneck Phrase Jar!'
 6

 7 # Based on the Wikipedia "Just another Perl hacker" article.

tr variants

The tr utility has two historic variants. The BSD version does not use brackets (tr a-z A-Z), but
the SysV one does (tr '[a-z]' '[A-Z]'). The GNU version of tr resembles the BSD one.

fold
A filter that wraps lines of input to a specified width. This is especially useful with the -s option,
which breaks lines at word spaces (see Example 16-26 and Example A-1).

fmt
Simple-minded file formatter, used as a filter in a pipe to "wrap" long lines of text output.

Example 16-26. Formatted file listing.

 1 #!/bin/bash
 2
 3 WIDTH=40 # 40 columns wide.
 4
 5 b=`ls /usr/local/bin` # Get a file listing...
 6
 7 echo $b | fmt -w $WIDTH
 8
 9 # Could also have been done by
 10 # echo $b | fold - -s -w $WIDTH
 11
 12 exit 0

See also Example 16-5.

A powerful alternative to fmt is Kamil Toman's par utility, available from
http://www.cs.berkeley.edu/~amc/Par/.

col
This deceptively named filter removes reverse line feeds from an input stream. It also attempts to
replace whitespace with equivalent tabs. The chief use of col is in filtering the output from certain text
processing utilities, such as groff and tbl.

column
Column formatter. This filter transforms list-type text output into a "pretty-printed" table by inserting
tabs at appropriate places.

Example 16-27. Using column to format a directory listing

 1 #!/bin/bash
 2 # colms.sh
 3 # A minor modification of the example file in the "column" man page.
 4
 5
 6 (printf "PERMISSIONS LINKS OWNER GROUP SIZE MONTH DAY HH:MM PROG-NAME\n" \
 7 ; ls -l | sed 1d) | column -t
 8 # ^^^^^^ ^^
 9
 10 # The "sed 1d" in the pipe deletes the first line of output,
 11 #+ which would be "total N",
 12 #+ where "N" is the total number of files found by "ls -l".
 13

http://www.cs.berkeley.edu/~amc/Par/

 14 # The -t option to "column" pretty-prints a table.
 15
 16 exit 0

colrm
Column removal filter. This removes columns (characters) from a file and writes the file, lacking the
range of specified columns, back to stdout. colrm 2 4 <filename removes the second
through fourth characters from each line of the text file filename.

If the file contains tabs or nonprintable characters, this may cause unpredictable
behavior. In such cases, consider using expand and unexpand in a pipe preceding
colrm.

nl
Line numbering filter: nl filename lists filename to stdout, but inserts consecutive numbers
at the beginning of each non-blank line. If filename omitted, operates on stdin.

The output of nl is very similar to cat -b, since, by default nl does not list blank lines.

Example 16-28. nl: A self-numbering script.

 1 #!/bin/bash
 2 # line-number.sh
 3
 4 # This script echoes itself twice to stdout with its lines numbered.
 5
 6 echo " line number = $LINENO" # 'nl' sees this as line 4
 7 # (nl does not number blank lines).
 8 # 'cat -n' sees it correctly as line #6.
 9
 10 nl `basename $0`
 11
 12 echo; echo # Now, let's try it with 'cat -n'
 13
 14 cat -n `basename $0`
 15 # The difference is that 'cat -n' numbers the blank lines.
 16 # Note that 'nl -ba' will also do so.
 17
 18 exit 0
 19 # ---

pr
Print formatting filter. This will paginate files (or stdout) into sections suitable for hard copy
printing or viewing on screen. Various options permit row and column manipulation, joining lines,
setting margins, numbering lines, adding page headers, and merging files, among other things. The pr
command combines much of the functionality of nl, paste, fold, column, and expand.

pr -o 5 --width=65 fileZZZ | more gives a nice paginated listing to screen of
fileZZZ with margins set at 5 and 65.

A particularly useful option is -d, forcing double-spacing (same effect as sed -G).
gettext

The GNU gettext package is a set of utilities for localizing and translating the text output of programs
into foreign languages. While originally intended for C programs, it now supports quite a number of
programming and scripting languages.

The gettext program works on shell scripts. See the info page.

msgfmt
A program for generating binary message catalogs. It is used for localization.

iconv
A utility for converting file(s) to a different encoding (character set). Its chief use is for localization.

 1 # Convert a string from UTF-8 to UTF-16 and print to the BookList
 2 function write_utf8_string {
 3 STRING=$1
 4 BOOKLIST=$2
 5 echo -n "$STRING" | iconv -f UTF8 -t UTF16 | \
 6 cut -b 3- | tr -d \\n >> "$BOOKLIST"
 7 }
 8
 9 # From Peter Knowles' "booklistgen.sh" script
 10 #+ for converting files to Sony Librie/PRS-50X format.
 11 # (http://booklistgensh.peterknowles.com)

recode
Consider this a fancier version of iconv, above. This very versatile utility for converting a file to a
different encoding scheme. Note that recode is not part of the standard Linux installation.

TeX, gs
TeX and Postscript are text markup languages used for preparing copy for printing or formatted
video display.

TeX is Donald Knuth's elaborate typsetting system. It is often convenient to write a shell script
encapsulating all the options and arguments passed to one of these markup languages.

Ghostscript (gs) is a GPL-ed Postscript interpreter.
texexec

Utility for processing TeX and pdf files. Found in /usr/bin on many Linux distros, it is actually a
shell wrapper that calls Perl to invoke Tex.

 1 texexec --pdfarrange --result=Concatenated.pdf *pdf
 2
 3 # Concatenates all the pdf files in the current working directory
 4 #+ into the merged file, Concatenated.pdf . . .
 5 # (The --pdfarrange option repaginates a pdf file. See also --pdfcombine.)
 6 # The above command-line could be parameterized and put into a shell script.

enscript
Utility for converting plain text file to PostScript

For example, enscript filename.txt -p filename.ps produces the PostScript output file
filename.ps.

groff, tbl, eqn
Yet another text markup and display formatting language is groff. This is the enhanced GNU version
of the venerable UNIX roff/troff display and typesetting package. Manpages use groff.

The tbl table processing utility is considered part of groff, as its function is to convert table markup
into groff commands.

The eqn equation processing utility is likewise part of groff, and its function is to convert equation
markup into groff commands.

Example 16-29. manview: Viewing formatted manpages

 1 #!/bin/bash
 2 # manview.sh: Formats the source of a man page for viewing.

 3
 4 # This script is useful when writing man page source.
 5 # It lets you look at the intermediate results on the fly
 6 #+ while working on it.
 7
 8 E_WRONGARGS=85
 9
 10 if [-z "$1"]
 11 then
 12 echo "Usage: `basename $0` filename"
 13 exit $E_WRONGARGS
 14 fi
 15
 16 # ---------------------------
 17 groff -Tascii -man $1 | less
 18 # From the man page for groff.
 19 # ---------------------------
 20
 21 # If the man page includes tables and/or equations,
 22 #+ then the above code will barf.
 23 # The following line can handle such cases.
 24 #
 25 # gtbl < "$1" | geqn -Tlatin1 | groff -Tlatin1 -mtty-char -man
 26 #
 27 # Thanks, S.C.
 28
 29 exit $? # See also the "maned.sh" script.

See also Example A-39.
lex, yacc

The lex lexical analyzer produces programs for pattern matching. This has been replaced by the
nonproprietary flex on Linux systems.

The yacc utility creates a parser based on a set of specifications. This has been replaced by the
nonproprietary bison on Linux systems.

Notes

[1] This is only true of the GNU version of tr, not the generic version often found on commercial UNIX
systems.

Prev Home Next
Time / Date Commands Up File and Archiving Commands

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Chapter 16. External Filters, Programs and Commands Next

16.5. File and Archiving Commands
Archiving

tar
The standard UNIX archiving utility. [1] Originally a Tape ARchiving program, it has developed into
a general purpose package that can handle all manner of archiving with all types of destination
devices, ranging from tape drives to regular files to even stdout (see Example 3-4). GNU tar has
been patched to accept various compression filters, for example: tar czvf archive_name.tar.gz *,
which recursively archives and gzips all files in a directory tree except dotfiles in the current working
directory ($PWD). [2]

Some useful tar options:

-c create (a new archive)1.
-x extract (files from existing archive)2.
--delete delete (files from existing archive)

This option will not work on magnetic tape devices.

3.

-r append (files to existing archive)4.
-A append (tar files to existing archive)5.
-t list (contents of existing archive)6.
-u update archive7.
-d compare archive with specified filesystem8.
--after-date only process files with a date stamp after specified date9.
-z gzip the archive

(compress or uncompress, depending on whether combined with the -c or -x) option

10.

-j bzip2 the archive11.
It may be difficult to recover data from a corrupted gzipped tar archive. When
archiving important files, make multiple backups.

shar
Shell archiving utility. The text and/or binary files in a shell archive are concatenated without
compression, and the resultant archive is essentially a shell script, complete with #!/bin/sh header,
containing all the necessary unarchiving commands, as well as the files themselves. Unprintable
binary characters in the target file(s) are converted to printable ASCII characters in the output shar
file. Shar archives still show up in Usenet newsgroups, but otherwise shar has been replaced by
tar/gzip. The unshar command unpacks shar archives.

The mailshar command is a Bash script that uses shar to concatenate multiple files into a single one
for e-mailing. This script supports compression and uuencoding.

ar
Creation and manipulation utility for archives, mainly used for binary object file libraries.

rpm
The Red Hat Package Manager, or rpm utility provides a wrapper for source or binary archives. It
includes commands for installing and checking the integrity of packages, among other things.

A simple rpm -i package_name.rpm usually suffices to install a package, though there are many
more options available.

rpm -qf identifies which package a file originates from.

bash$ rpm -qf /bin/ls
coreutils-5.2.1-31

rpm -qa gives a complete list of all installed rpm packages on a given system. An
rpm -qa package_name lists only the package(s) corresponding to
package_name.

bash$ rpm -qa
redhat-logos-1.1.3-1

 glibc-2.2.4-13
 cracklib-2.7-12
 dosfstools-2.7-1
 gdbm-1.8.0-10
 ksymoops-2.4.1-1
 mktemp-1.5-11
 perl-5.6.0-17
 reiserfs-utils-3.x.0j-2
 ...

bash$ rpm -qa docbook-utils
docbook-utils-0.6.9-2

bash$ rpm -qa docbook | grep docbook
docbook-dtd31-sgml-1.0-10

 docbook-style-dsssl-1.64-3
 docbook-dtd30-sgml-1.0-10
 docbook-dtd40-sgml-1.0-11
 docbook-utils-pdf-0.6.9-2
 docbook-dtd41-sgml-1.0-10
 docbook-utils-0.6.9-2

cpio
This specialized archiving copy command (copy input and output) is rarely seen any more, having
been supplanted by tar/gzip. It still has its uses, such as moving a directory tree. With an appropriate
block size (for copying) specified, it can be appreciably faster than tar.

Example 16-30. Using cpio to move a directory tree

 1 #!/bin/bash
 2
 3 # Copying a directory tree using cpio.
 4
 5 # Advantages of using 'cpio':
 6 # Speed of copying. It's faster than 'tar' with pipes.
 7 # Well suited for copying special files (named pipes, etc.)
 8 #+ that 'cp' may choke on.
 9
 10 ARGS=2
 11 E_BADARGS=65
 12
 13 if [$# -ne "$ARGS"]
 14 then
 15 echo "Usage: `basename $0` source destination"
 16 exit $E_BADARGS
 17 fi
 18
 19 source="$1"
 20 destination="$2"
 21

 22 ###
 23 find "$source" -depth | cpio -admvp "$destination"
 24 # ^^^^^ ^^^^^
 25 # Read the 'find' and 'cpio' info pages to decipher these options.
 26 # The above works only relative to $PWD (current directory) . . .
 27 #+ full pathnames are specified.
 28 ###
 29
 30
 31 # Exercise:
 32 # --------
 33
 34 # Add code to check the exit status ($?) of the 'find | cpio' pipe
 35 #+ and output appropriate error messages if anything went wrong.
 36
 37 exit $?

rpm2cpio
This command extracts a cpio archive from an rpm one.

Example 16-31. Unpacking an rpm archive

 1 #!/bin/bash
 2 # de-rpm.sh: Unpack an 'rpm' archive
 3
 4 : ${1?"Usage: `basename $0` target-file"}
 5 # Must specify 'rpm' archive name as an argument.
 6
 7
 8 TEMPFILE=$$.cpio # Tempfile with "unique" name.
 9 # $$ is process ID of script.
 10
 11 rpm2cpio < $1 > $TEMPFILE # Converts rpm archive into
 12 #+ cpio archive.
 13 cpio --make-directories -F $TEMPFILE -i # Unpacks cpio archive.
 14 rm -f $TEMPFILE # Deletes cpio archive.
 15
 16 exit 0
 17
 18 # Exercise:
 19 # Add check for whether 1) "target-file" exists and
 20 #+ 2) it is an rpm archive.
 21 # Hint: Parse output of 'file' command.

pax
The pax portable archive exchange toolkit facilitates periodic file backups and is designed to be
cross-compatible between various flavors of UNIX. It was designed to replace tar and cpio.

 1 pax -wf daily_backup.pax ~/linux-server/files
 2 # Creates a tar archive of all files in the target directory.
 3 # Note that the options to pax must be in the correct order --
 4 #+ pax -fw has an entirely different effect.
 5
 6 pax -f daily_backup.pax
 7 # Lists the files in the archive.
 8
 9 pax -rf daily_backup.pax ~/bsd-server/files
 10 # Restores the backed-up files from the Linux machine
 11 #+ onto a BSD one.

Note that pax handles many of the standard archiving and compression commands.

Compression

gzip
The standard GNU/UNIX compression utility, replacing the inferior and proprietary compress. The
corresponding decompression command is gunzip, which is the equivalent of gzip -d.

The -c option sends the output of gzip to stdout. This is useful when piping to
other commands.

The zcat filter decompresses a gzipped file to stdout, as possible input to a pipe or redirection. This
is, in effect, a cat command that works on compressed files (including files processed with the older
compress utility). The zcat command is equivalent to gzip -dc.

On some commercial UNIX systems, zcat is a synonym for uncompress -c,
and will not work on gzipped files.

See also Example 7-7.
bzip2

An alternate compression utility, usually more efficient (but slower) than gzip, especially on large
files. The corresponding decompression command is bunzip2.

Similar to the zcat command, bzcat decompresses a bzipped2-ed file to stdout.

Newer versions of tar have been patched with bzip2 support.

compress, uncompress
This is an older, proprietary compression utility found in commercial UNIX distributions. The more
efficient gzip has largely replaced it. Linux distributions generally include a compress workalike for
compatibility, although gunzip can unarchive files treated with compress.

The znew command transforms compressed files into gzipped ones.

sq
Yet another compression (squeeze) utility, a filter that works only on sorted ASCII word lists. It uses
the standard invocation syntax for a filter, sq < input-file > output-file. Fast, but not nearly as
efficient as gzip. The corresponding uncompression filter is unsq, invoked like sq.

The output of sq may be piped to gzip for further compression.

zip, unzip
Cross-platform file archiving and compression utility compatible with DOS pkzip.exe. "Zipped"
archives seem to be a more common medium of file exchange on the Internet than "tarballs."

unarc, unarj, unrar
These Linux utilities permit unpacking archives compressed with the DOS arc.exe, arj.exe, and
rar.exe programs.

lzma, unlzma, lzcat
Highly efficient Lempel-Ziv-Markov compression. The syntax of lzma is similar to that of gzip. The
7-zip Website has more information.

xz, unxz, xzcat
A new high-efficiency compression tool, backward compatible with lzma, and with an invocation
syntax similar to gzip. For more information, see the Wikipedia entry.

File Information

file

http://www.7-zip.org/sdk.html
http://en.wikipedia.org/wiki/Xz

A utility for identifying file types. The command file file-name will return a file specification
for file-name, such as ascii text or data. It references the magic numbers found in
/usr/share/magic, /etc/magic, or /usr/lib/magic, depending on the Linux/UNIX
distribution.

The -f option causes file to run in batch mode, to read from a designated file a list of filenames to
analyze. The -z option, when used on a compressed target file, forces an attempt to analyze the
uncompressed file type.

bash$ file test.tar.gz
test.tar.gz: gzip compressed data, deflated,

 last modified: Sun Sep 16 13:34:51 2001, os: Unix

bash file -z test.tar.gz
test.tar.gz: GNU tar archive (gzip compressed data, deflated,

 last modified: Sun Sep 16 13:34:51 2001, os: Unix)

 1 # Find sh and Bash scripts in a given directory:
 2
 3 DIRECTORY=/usr/local/bin
 4 KEYWORD=Bourne
 5 # Bourne and Bourne-Again shell scripts
 6
 7 file $DIRECTORY/* | fgrep $KEYWORD
 8
 9 # Output:
 10
 11 # /usr/local/bin/burn-cd: Bourne-Again shell script text executable
 12 # /usr/local/bin/burnit: Bourne-Again shell script text executable
 13 # /usr/local/bin/cassette.sh: Bourne shell script text executable
 14 # /usr/local/bin/copy-cd: Bourne-Again shell script text executable
 15 # . . .

Example 16-32. Stripping comments from C program files

 1 #!/bin/bash
 2 # strip-comment.sh: Strips out the comments (/* COMMENT */) in a C program.
 3
 4 E_NOARGS=0
 5 E_ARGERROR=66
 6 E_WRONG_FILE_TYPE=67
 7
 8 if [$# -eq "$E_NOARGS"]
 9 then
 10 echo "Usage: `basename $0` C-program-file" >&2 # Error message to stderr.
 11 exit $E_ARGERROR
 12 fi
 13
 14 # Test for correct file type.
 15 type=`file $1 | awk '{ print $2, $3, $4, $5 }'`
 16 # "file $1" echoes file type . . .
 17 # Then awk removes the first field, the filename . . .
 18 # Then the result is fed into the variable "type."
 19 correct_type="ASCII C program text"
 20
 21 if ["$type" != "$correct_type"]
 22 then
 23 echo
 24 echo "This script works on C program files only."
 25 echo

 26 exit $E_WRONG_FILE_TYPE
 27 fi
 28
 29
 30 # Rather cryptic sed script:
 31 #--------
 32 sed '
 33 /^\/*/d
 34 /.**\//d
 35 ' $1
 36 #--------
 37 # Easy to understand if you take several hours to learn sed fundamentals.
 38
 39
 40 # Need to add one more line to the sed script to deal with
 41 #+ case where line of code has a comment following it on same line.
 42 # This is left as a non-trivial exercise.
 43
 44 # Also, the above code deletes non-comment lines with a "*/" . . .
 45 #+ not a desirable result.
 46
 47 exit 0
 48
 49
 50 # --
 51 # Code below this line will not execute because of 'exit 0' above.
 52
 53 # Stephane Chazelas suggests the following alternative:
 54
 55 usage() {
 56 echo "Usage: `basename $0` C-program-file" >&2
 57 exit 1
 58 }
 59
 60 WEIRD=`echo -n -e '\377'` # or WEIRD=$'\377'
 61 [[$# -eq 1]] || usage
 62 case `file "$1"` in
 63 *"C program text"*) sed -e "s%/*%${WEIRD}%g;s%*/%${WEIRD}%g" "$1" \
 64 | tr '\377\n' '\n\377' \
 65 | sed -ne 'p;n' \
 66 | tr -d '\n' | tr '\377' '\n';;
 67 *) usage;;
 68 esac
 69
 70 # This is still fooled by things like:
 71 # printf("/*");
 72 # or
 73 # /* /* buggy embedded comment */
 74 #
 75 # To handle all special cases (comments in strings, comments in string
 76 #+ where there is a \", \\" ...),
 77 #+ the only way is to write a C parser (using lex or yacc perhaps?).
 78
 79 exit 0

which
which command gives the full path to "command." This is useful for finding out whether a particular
command or utility is installed on the system.

$bash which rm

/usr/bin/rm

For an interesting use of this command, see Example 36-16.

whereis
Similar to which, above, whereis command gives the full path to "command," but also to its
manpage.

$bash whereis rm

rm: /bin/rm /usr/share/man/man1/rm.1.bz2

whatis
whatis command looks up "command" in the whatis database. This is useful for identifying system
commands and important configuration files. Consider it a simplified man command.

$bash whatis whatis

whatis (1) - search the whatis database for complete words

Example 16-33. Exploring /usr/X11R6/bin

 1 #!/bin/bash
 2
 3 # What are all those mysterious binaries in /usr/X11R6/bin?
 4
 5 DIRECTORY="/usr/X11R6/bin"
 6 # Try also "/bin", "/usr/bin", "/usr/local/bin", etc.
 7
 8 for file in $DIRECTORY/*
 9 do
 10 whatis `basename $file` # Echoes info about the binary.
 11 done
 12
 13 exit 0
 14
 15 # Note: For this to work, you must create a "whatis" database
 16 #+ with /usr/sbin/makewhatis.
 17 # You may wish to redirect output of this script, like so:
 18 # ./what.sh >>whatis.db
 19 # or view it a page at a time on stdout,
 20 # ./what.sh | less

See also Example 11-3.
vdir

Show a detailed directory listing. The effect is similar to ls -lb.

This is one of the GNU fileutils.

bash$ vdir
total 10

 -rw-r--r-- 1 bozo bozo 4034 Jul 18 22:04 data1.xrolo
 -rw-r--r-- 1 bozo bozo 4602 May 25 13:58 data1.xrolo.bak
 -rw-r--r-- 1 bozo bozo 877 Dec 17 2000 employment.xrolo

bash ls -l
total 10

 -rw-r--r-- 1 bozo bozo 4034 Jul 18 22:04 data1.xrolo
 -rw-r--r-- 1 bozo bozo 4602 May 25 13:58 data1.xrolo.bak
 -rw-r--r-- 1 bozo bozo 877 Dec 17 2000 employment.xrolo

locate, slocate

The locate command searches for files using a database stored for just that purpose. The slocate
command is the secure version of locate (which may be aliased to slocate).

$bash locate hickson

/usr/lib/xephem/catalogs/hickson.edb

getfacl, setfacl
These commands retrieve or set the file access control list -- the owner, group, and file permissions.

bash$ getfacl *
file: test1.txt

 # owner: bozo
 # group: bozgrp
 user::rw-
 group::rw-
 other::r--

 # file: test2.txt
 # owner: bozo
 # group: bozgrp
 user::rw-
 group::rw-
 other::r--

bash$ setfacl -m u:bozo:rw yearly_budget.csv
bash$ getfacl yearly_budget.csv
file: yearly_budget.csv

 # owner: accountant
 # group: budgetgrp
 user::rw-
 user:bozo:rw-
 user:accountant:rw-
 group::rw-
 mask::rw-
 other::r--

readlink
Disclose the file that a symbolic link points to.

bash$ readlink /usr/bin/awk
../../bin/gawk

strings
Use the strings command to find printable strings in a binary or data file. It will list sequences of
printable characters found in the target file. This might be handy for a quick 'n dirty examination of a
core dump or for looking at an unknown graphic image file (strings image-file | more
might show something like JFIF, which would identify the file as a jpeg graphic). In a script, you
would probably parse the output of strings with grep or sed. See Example 11-8 and Example 11-10.

Example 16-34. An "improved" strings command

 1 #!/bin/bash
 2 # wstrings.sh: "word-strings" (enhanced "strings" command)
 3 #
 4 # This script filters the output of "strings" by checking it
 5 #+ against a standard word list file.
 6 # This effectively eliminates gibberish and noise,

 7 #+ and outputs only recognized words.
 8
 9 # ===
 10 # Standard Check for Script Argument(s)
 11 ARGS=1
 12 E_BADARGS=85
 13 E_NOFILE=86
 14
 15 if [$# -ne $ARGS]
 16 then
 17 echo "Usage: `basename $0` filename"
 18 exit $E_BADARGS
 19 fi
 20
 21 if [! -f "$1"] # Check if file exists.
 22 then
 23 echo "File \"$1\" does not exist."
 24 exit $E_NOFILE
 25 fi
 26 # ===
 27
 28
 29 MINSTRLEN=3 # Minimum string length.
 30 WORDFILE=/usr/share/dict/linux.words # Dictionary file.
 31 # May specify a different word list file
 32 #+ of one-word-per-line format.
 33 # For example, the "yawl" word-list package,
 34 # http://bash.deta.in/yawl-0.3.2.tar.gz
 35
 36
 37 wlist=`strings "$1" | tr A-Z a-z | tr '[:space:]' Z | \
 38 tr -cs '[:alpha:]' Z | tr -s '\173-\377' Z | tr Z ' '`
 39
 40 # Translate output of 'strings' command with multiple passes of 'tr'.
 41 # "tr A-Z a-z" converts to lowercase.
 42 # "tr '[:space:]'" converts whitespace characters to Z's.
 43 # "tr -cs '[:alpha:]' Z" converts non-alphabetic characters to Z's,
 44 #+ and squeezes multiple consecutive Z's.
 45 # "tr -s '\173-\377' Z" converts all characters past 'z' to Z's
 46 #+ and squeezes multiple consecutive Z's,
 47 #+ which gets rid of all the weird characters that the previous
 48 #+ translation failed to deal with.
 49 # Finally, "tr Z ' '" converts all those Z's to whitespace,
 50 #+ which will be seen as word separators in the loop below.
 51
 52 # ***
 53 # Note the technique of feeding/piping the output of 'tr' back to itself,
 54 #+ but with different arguments and/or options on each successive pass.
 55 # ***
 56
 57
 58 for word in $wlist # Important:
 59 # $wlist must not be quoted here.
 60 # "$wlist" does not work.
 61 # Why not?
 62 do
 63 strlen=${#word} # String length.
 64 if ["$strlen" -lt "$MINSTRLEN"] # Skip over short strings.
 65 then
 66 continue
 67 fi
 68
 69 grep -Fw $word "$WORDFILE" # Match whole words only.
 70 # ^^^ # "Fixed strings" and
 71 #+ "whole words" options.
 72 done

 73
 74 exit $?

Comparison

diff, patch
diff: flexible file comparison utility. It compares the target files line-by-line sequentially. In some
applications, such as comparing word dictionaries, it may be helpful to filter the files through sort and
uniq before piping them to diff. diff file-1 file-2 outputs the lines in the files that differ,
with carets showing which file each particular line belongs to.

The --side-by-side option to diff outputs each compared file, line by line, in separate columns,
with non-matching lines marked. The -c and -u options likewise make the output of the command
easier to interpret.

There are available various fancy frontends for diff, such as sdiff, wdiff, xdiff, and mgdiff.

The diff command returns an exit status of 0 if the compared files are identical, and 1
if they differ (or 2 when binary files are being compared). This permits use of diff in a
test construct within a shell script (see below).

A common use for diff is generating difference files to be used with patch The -e option outputs
files suitable for ed or ex scripts.

patch: flexible versioning utility. Given a difference file generated by diff, patch can upgrade a
previous version of a package to a newer version. It is much more convenient to distribute a relatively
small "diff" file than the entire body of a newly revised package. Kernel "patches" have become the
preferred method of distributing the frequent releases of the Linux kernel.

 1 patch -p1 <patch-file
 2 # Takes all the changes listed in 'patch-file'
 3 # and applies them to the files referenced therein.
 4 # This upgrades to a newer version of the package.

Patching the kernel:

 1 cd /usr/src
 2 gzip -cd patchXX.gz | patch -p0
 3 # Upgrading kernel source using 'patch'.
 4 # From the Linux kernel docs "README",
 5 # by anonymous author (Alan Cox?).

The diff command can also recursively compare directories (for the filenames
present).

bash$ diff -r ~/notes1 ~/notes2
Only in /home/bozo/notes1: file02

 Only in /home/bozo/notes1: file03
 Only in /home/bozo/notes2: file04

Use zdiff to compare gzipped files.

Use diffstat to create a histogram (point-distribution graph) of output from diff.
diff3, merge

An extended version of diff that compares three files at a time. This command returns an exit value of
0 upon successful execution, but unfortunately this gives no information about the results of the
comparison.

bash$ diff3 file-1 file-2 file-3
====

 1:1c
 This is line 1 of "file-1".
 2:1c
 This is line 1 of "file-2".
 3:1c
 This is line 1 of "file-3"

The merge (3-way file merge) command is an interesting adjunct to diff3. Its syntax is merge
Mergefile file1 file2. The result is to output to Mergefile the changes that lead from
file1 to file2. Consider this command a stripped-down version of patch.

sdiff
Compare and/or edit two files in order to merge them into an output file. Because of its interactive
nature, this command would find little use in a script.

cmp
The cmp command is a simpler version of diff, above. Whereas diff reports the differences between
two files, cmp merely shows at what point they differ.

Like diff, cmp returns an exit status of 0 if the compared files are identical, and 1 if
they differ. This permits use in a test construct within a shell script.

Example 16-35. Using cmp to compare two files within a script.

 1 #!/bin/bash
 2 # file-comparison.sh
 3
 4 ARGS=2 # Two args to script expected.
 5 E_BADARGS=85
 6 E_UNREADABLE=86
 7
 8 if [$# -ne "$ARGS"]
 9 then
 10 echo "Usage: `basename $0` file1 file2"
 11 exit $E_BADARGS
 12 fi
 13
 14 if [[! -r "$1" || ! -r "$2"]]
 15 then
 16 echo "Both files to be compared must exist and be readable."
 17 exit $E_UNREADABLE
 18 fi
 19
 20 cmp $1 $2 &> /dev/null
 21 # Redirection to /dev/null buries the output of the "cmp" command.
 22 # cmp -s $1 $2 has same result ("-s" silent flag to "cmp")
 23 # Thank you Anders Gustavsson for pointing this out.
 24 #
 25 # Also works with 'diff', i.e.,
 26 #+ diff $1 $2 &> /dev/null
 27
 28 if [$? -eq 0] # Test exit status of "cmp" command.
 29 then
 30 echo "File \"$1\" is identical to file \"$2\"."
 31 else
 32 echo "File \"$1\" differs from file \"$2\"."

 33 fi
 34
 35 exit 0

Use zcmp on gzipped files.

comm
Versatile file comparison utility. The files must be sorted for this to be useful.

comm -options first-file second-file

comm file-1 file-2 outputs three columns:

column 1 = lines unique to file-1◊
column 2 = lines unique to file-2◊
column 3 = lines common to both.◊

The options allow suppressing output of one or more columns.

-1 suppresses column 1◊
-2 suppresses column 2◊
-3 suppresses column 3◊
-12 suppresses both columns 1 and 2, etc.◊

This command is useful for comparing "dictionaries" or word lists -- sorted text files with one word
per line.

Utilities

basename
Strips the path information from a file name, printing only the file name. The construction
basename $0 lets the script know its name, that is, the name it was invoked by. This can be used
for "usage" messages if, for example a script is called with missing arguments:

 1 echo "Usage: `basename $0` arg1 arg2 ... argn"

dirname
Strips the basename from a filename, printing only the path information.

basename and dirname can operate on any arbitrary string. The argument does not
need to refer to an existing file, or even be a filename for that matter (see Example
A-7).

Example 16-36. basename and dirname

 1 #!/bin/bash
 2
 3 address=/home/bozo/daily-journal.txt
 4
 5 echo "Basename of /home/bozo/daily-journal.txt = `basename $address`"
 6 echo "Dirname of /home/bozo/daily-journal.txt = `dirname $address`"
 7 echo
 8 echo "My own home is `basename ~/`." # `basename ~` also works.
 9 echo "The home of my home is `dirname ~/`." # `dirname ~` also works.
 10
 11 exit 0

split, csplit

These are utilities for splitting a file into smaller chunks. Their usual use is for splitting up large files
in order to back them up on floppies or preparatory to e-mailing or uploading them.

The csplit command splits a file according to context, the split occuring where patterns are matched.

Example 16-37. A script that copies itself in sections

 1 #!/bin/bash
 2 # splitcopy.sh
 3
 4 # A script that splits itself into chunks,
 5 #+ then reassembles the chunks into an exact copy
 6 #+ of the original script.
 7
 8 CHUNKSIZE=4 # Size of first chunk of split files.
 9 OUTPREFIX=xx # csplit prefixes, by default,
 10 #+ files with "xx" ...
 11
 12 csplit "$0" "$CHUNKSIZE"
 13
 14 # Some comment lines for padding . . .
 15 # Line 15
 16 # Line 16
 17 # Line 17
 18 # Line 18
 19 # Line 19
 20 # Line 20
 21
 22 cat "$OUTPREFIX"* > "$0.copy" # Concatenate the chunks.
 23 rm "$OUTPREFIX"* # Get rid of the chunks.
 24
 25 exit $?

Encoding and Encryption

sum, cksum, md5sum, sha1sum
These are utilities for generating checksums. A checksum is a number [3] mathematically calculated
from the contents of a file, for the purpose of checking its integrity. A script might refer to a list of
checksums for security purposes, such as ensuring that the contents of key system files have not been
altered or corrupted. For security applications, use the md5sum (message digest 5 checksum)
command, or better yet, the newer sha1sum (Secure Hash Algorithm). [4]

bash$ cksum /boot/vmlinuz
1670054224 804083 /boot/vmlinuz

bash$ echo -n "Top Secret" | cksum
3391003827 10

bash$ md5sum /boot/vmlinuz
0f43eccea8f09e0a0b2b5cf1dcf333ba /boot/vmlinuz

bash$ echo -n "Top Secret" | md5sum
8babc97a6f62a4649716f4df8d61728f -

The cksum command shows the size, in bytes, of its target, whether file or stdout.

The md5sum and sha1sum commands display a dash when they receive their input
from stdout.

Example 16-38. Checking file integrity

 1 #!/bin/bash
 2 # file-integrity.sh: Checking whether files in a given directory
 3 # have been tampered with.
 4
 5 E_DIR_NOMATCH=80
 6 E_BAD_DBFILE=81
 7
 8 dbfile=File_record.md5
 9 # Filename for storing records (database file).
 10
 11
 12 set_up_database ()
 13 {
 14 echo ""$directory"" > "$dbfile"
 15 # Write directory name to first line of file.
 16 md5sum "$directory"/* >> "$dbfile"
 17 # Append md5 checksums and filenames.
 18 }
 19
 20 check_database ()
 21 {
 22 local n=0
 23 local filename
 24 local checksum
 25
 26 # --- #
 27 # This file check should be unnecessary,
 28 #+ but better safe than sorry.
 29
 30 if [! -r "$dbfile"]
 31 then
 32 echo "Unable to read checksum database file!"
 33 exit $E_BAD_DBFILE
 34 fi
 35 # --- #
 36
 37 while read record[n]
 38 do
 39
 40 directory_checked="${record[0]}"
 41 if ["$directory_checked" != "$directory"]
 42 then
 43 echo "Directories do not match up!"
 44 # Tried to use file for a different directory.
 45 exit $E_DIR_NOMATCH
 46 fi
 47
 48 if ["$n" -gt 0] # Not directory name.
 49 then
 50 filename[n]=$(echo ${record[$n]} | awk '{ print $2 }')
 51 # md5sum writes records backwards,
 52 #+ checksum first, then filename.
 53 checksum[n]=$(md5sum "${filename[n]}")
 54
 55
 56 if ["${record[n]}" = "${checksum[n]}"]
 57 then
 58 echo "${filename[n]} unchanged."

 59
 60 elif ["`basename ${filename[n]}`" != "$dbfile"]
 61 # Skip over checksum database file,
 62 #+ as it will change with each invocation of script.
 63 # ---
 64 # This unfortunately means that when running
 65 #+ this script on $PWD, tampering with the
 66 #+ checksum database file will not be detected.
 67 # Exercise: Fix this.
 68 then
 69 echo "${filename[n]} : CHECKSUM ERROR!"
 70 # File has been changed since last checked.
 71 fi
 72
 73 fi
 74
 75
 76
 77 let "n+=1"
 78 done <"$dbfile" # Read from checksum database file.
 79
 80 }
 81
 82 # === #
 83 # main ()
 84
 85 if [-z "$1"]
 86 then
 87 directory="$PWD" # If not specified,
 88 else #+ use current working directory.
 89 directory="$1"
 90 fi
 91
 92 clear # Clear screen.
 93 echo " Running file integrity check on $directory"
 94 echo
 95
 96 # -- #
 97 if [! -r "$dbfile"] # Need to create database file?
 98 then
 99 echo "Setting up database file, \""$directory"/"$dbfile"\"."; echo
 100 set_up_database
 101 fi
 102 # -- #
 103
 104 check_database # Do the actual work.
 105
 106 echo
 107
 108 # You may wish to redirect the stdout of this script to a file,
 109 #+ especially if the directory checked has many files in it.
 110
 111 exit 0
 112
 113 # For a much more thorough file integrity check,
 114 #+ consider the "Tripwire" package,
 115 #+ http://sourceforge.net/projects/tripwire/.

Also see Example A-19, Example 36-16, and Example 10-2 for creative uses of the md5sum
command.

There have been reports that the 128-bit md5sum can be cracked, so the more secure
160-bit sha1sum is a welcome new addition to the checksum toolkit.

bash$ md5sum testfile
e181e2c8720c60522c4c4c981108e367 testfile

bash$ sha1sum testfile
5d7425a9c08a66c3177f1e31286fa40986ffc996 testfile

Security consultants have demonstrated that even sha1sum can be compromised. Fortunately, newer
Linux distros include longer bit-length sha224sum, sha256sum, sha384sum, and sha512sum
commands.

uuencode
This utility encodes binary files (images, sound files, compressed files, etc.) into ASCII characters,
making them suitable for transmission in the body of an e-mail message or in a newsgroup posting.
This is especially useful where MIME (multimedia) encoding is not available.

uudecode
This reverses the encoding, decoding uuencoded files back into the original binaries.

Example 16-39. Uudecoding encoded files

 1 #!/bin/bash
 2 # Uudecodes all uuencoded files in current working directory.
 3
 4 lines=35 # Allow 35 lines for the header (very generous).
 5
 6 for File in * # Test all the files in $PWD.
 7 do
 8 search1=`head -n $lines $File | grep begin | wc -w`
 9 search2=`tail -n $lines $File | grep end | wc -w`
 10 # Uuencoded files have a "begin" near the beginning,
 11 #+ and an "end" near the end.
 12 if ["$search1" -gt 0]
 13 then
 14 if ["$search2" -gt 0]
 15 then
 16 echo "uudecoding - $File -"
 17 uudecode $File
 18 fi
 19 fi
 20 done
 21
 22 # Note that running this script upon itself fools it
 23 #+ into thinking it is a uuencoded file,
 24 #+ because it contains both "begin" and "end".
 25
 26 # Exercise:
 27 # --------
 28 # Modify this script to check each file for a newsgroup header,
 29 #+ and skip to next if not found.
 30
 31 exit 0

The fold -s command may be useful (possibly in a pipe) to process long uudecoded
text messages downloaded from Usenet newsgroups.

mimencode, mmencode
The mimencode and mmencode commands process multimedia-encoded e-mail attachments.
Although mail user agents (such as pine or kmail) normally handle this automatically, these particular
utilities permit manipulating such attachments manually from the command-line or in batch
processing mode by means of a shell script.

crypt

At one time, this was the standard UNIX file encryption utility. [5] Politically-motivated government
regulations prohibiting the export of encryption software resulted in the disappearance of crypt from
much of the UNIX world, and it is still missing from most Linux distributions. Fortunately,
programmers have come up with a number of decent alternatives to it, among them the author's very
own cruft (see Example A-4).

openssl
This is an Open Source implementation of Secure Sockets Layer encryption.

 1 # To encrypt a file:
 2 openssl aes-128-ecb -salt -in file.txt -out file.encrypted \
 3 -pass pass:my_password
 4 # ^^^^^^^^^^^ User-selected password.
 5 # aes-128-ecb is the encryption method chosen.
 6
 7 # To decrypt an openssl-encrypted file:
 8 openssl aes-128-ecb -d -salt -in file.encrypted -out file.txt \
 9 -pass pass:my_password
 10 # ^^^^^^^^^^^ User-selected password.

Piping openssl to/from tar makes it possible to encrypt an entire directory tree.

 1 # To encrypt a directory:
 2
 3 sourcedir="/home/bozo/testfiles"
 4 encrfile="encr-dir.tar.gz"
 5 password=my_secret_password
 6
 7 tar czvf - "$sourcedir" |
 8 openssl des3 -salt -out "$encrfile" -pass pass:"$password"
 9 # ^^^^ Uses des3 encryption.
 10 # Writes encrypted file "encr-dir.tar.gz" in current working directory.
 11
 12 # To decrypt the resulting tarball:
 13 openssl des3 -d -salt -in "$encrfile" -pass pass:"$password" |
 14 tar -xzv
 15 # Decrypts and unpacks into current working directory.

Of course, openssl has many other uses, such as obtaining signed certificates for Web sites. See the
info page.

shred
Securely erase a file by overwriting it multiple times with random bit patterns before deleting it. This
command has the same effect as Example 16-61, but does it in a more thorough and elegant manner.

This is one of the GNU fileutils.

Advanced forensic technology may still be able to recover the contents of a file, even
after application of shred.

Miscellaneous

mktemp
Create a temporary file [6] with a "unique" filename. When invoked from the command-line without
additional arguments, it creates a zero-length file in the /tmp directory.

bash$ mktemp
/tmp/tmp.zzsvql3154

 1 PREFIX=filename
 2 tempfile=`mktemp $PREFIX.XXXXXX`
 3 # ^^^^^^ Need at least 6 placeholders

ftp://metalab.unc.edu/pub/Linux/utils/file/cruft-0.2.tar.gz

 4 #+ in the filename template.
 5 # If no filename template supplied,
 6 #+ "tmp.XXXXXXXXXX" is the default.
 7
 8 echo "tempfile name = $tempfile"
 9 # tempfile name = filename.QA2ZpY
 10 # or something similar...
 11
 12 # Creates a file of that name in the current working directory
 13 #+ with 600 file permissions.
 14 # A "umask 177" is therefore unnecessary,
 15 #+ but it's good programming practice nevertheless.

make

Utility for building and compiling binary packages. This can also be used for any set of operations
triggered by incremental changes in source files.

The make command checks a Makefile, a list of file dependencies and operations to be carried out.

The make utility is, in effect, a powerful scripting language similar in many ways to Bash, but with
the capability of recognizing dependencies. For in-depth coverage of this useful tool set, see the GNU
software documentation site.

install
Special purpose file copying command, similar to cp, but capable of setting permissions and attributes
of the copied files. This command seems tailormade for installing software packages, and as such it
shows up frequently in Makefiles (in the make install : section). It could likewise prove
useful in installation scripts.

dos2unix
This utility, written by Benjamin Lin and collaborators, converts DOS-formatted text files (lines
terminated by CR-LF) to UNIX format (lines terminated by LF only), and vice-versa.

ptx
The ptx [targetfile] command outputs a permuted index (cross-reference list) of the targetfile. This
may be further filtered and formatted in a pipe, if necessary.

more, less
Pagers that display a text file or stream to stdout, one screenful at a time. These may be used to
filter the output of stdout . . . or of a script.

An interesting application of more is to "test drive" a command sequence, to forestall potentially
unpleasant consequences.

 1 ls /home/bozo | awk '{print "rm -rf " $1}' | more
 2 # ^^^^
 3
 4 # Testing the effect of the following (disastrous) command-line:
 5 # ls /home/bozo | awk '{print "rm -rf " $1}' | sh
 6 # Hand off to the shell to execute . . . ^^

The less pager has the interesting property of doing a formatted display of man page source. See
Example A-39.

Notes

[1] An archive, in the sense discussed here, is simply a set of related files stored in a single location.
[2] A tar czvf ArchiveName.tar.gz * will include dotfiles in subdirectories below the current

working directory. This is an undocumented GNU tar "feature."
[3] The checksum may be expressed as a hexadecimal number, or to some other base.
[4] For even better security, use the sha256sum, sha512, and sha1pass commands.

http://www.gnu.org/manual/manual.html
http://www.gnu.org/manual/manual.html

[5] This is a symmetric block cipher, used to encrypt files on a single system or local network, as opposed
to the public key cipher class, of which pgp is a well-known example.

[6] Creates a temporary directory when invoked with the -d option.

Prev Home Next
Text Processing Commands Up Communications Commands

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Chapter 16. External Filters, Programs and Commands Next

16.6. Communications Commands
Certain of the following commands find use in network data transfer and analysis, as well as in chasing
spammers.

Information and Statistics

host
Searches for information about an Internet host by name or IP address, using DNS.

bash$ host surfacemail.com
surfacemail.com. has address 202.92.42.236

ipcalc
Displays IP information for a host. With the -h option, ipcalc does a reverse DNS lookup, finding the
name of the host (server) from the IP address.

bash$ ipcalc -h 202.92.42.236
HOSTNAME=surfacemail.com

nslookup
Do an Internet "name server lookup" on a host by IP address. This is essentially equivalent to ipcalc
-h or dig -x . The command may be run either interactively or noninteractively, i.e., from within a
script.

The nslookup command has allegedly been "deprecated," but it is still useful.

bash$ nslookup -sil 66.97.104.180
nslookup kuhleersparnis.ch

 Server: 135.116.137.2
 Address: 135.116.137.2#53

 Non-authoritative answer:
 Name: kuhleersparnis.ch

dig
Domain Information Groper. Similar to nslookup, dig does an Internet name server lookup on a host.
May be run from the command-line or from within a script.

Some interesting options to dig are +time=N for setting a query timeout to N seconds, +nofail for
continuing to query servers until a reply is received, and -x for doing a reverse address lookup.

Compare the output of dig -x with ipcalc -h and nslookup.

bash$ dig -x 81.9.6.2
;; Got answer:

 ;; ->>HEADER<<- opcode: QUERY, status: NXDOMAIN, id: 11649
 ;; flags: qr rd ra; QUERY: 1, ANSWER: 0, AUTHORITY: 1, ADDITIONAL: 0

 ;; QUESTION SECTION:
 ;2.6.9.81.in-addr.arpa. IN PTR

 ;; AUTHORITY SECTION:
 6.9.81.in-addr.arpa. 3600 IN SOA ns.eltel.net. noc.eltel.net.
 2002031705 900 600 86400 3600

 ;; Query time: 537 msec
 ;; SERVER: 135.116.137.2#53(135.116.137.2)

 ;; WHEN: Wed Jun 26 08:35:24 2002
 ;; MSG SIZE rcvd: 91

Example 16-40. Finding out where to report a spammer

 1 #!/bin/bash
 2 # spam-lookup.sh: Look up abuse contact to report a spammer.
 3 # Thanks, Michael Zick.
 4
 5 # Check for command-line arg.
 6 ARGCOUNT=1
 7 E_WRONGARGS=85
 8 if [$# -ne "$ARGCOUNT"]
 9 then
 10 echo "Usage: `basename $0` domain-name"
 11 exit $E_WRONGARGS
 12 fi
 13
 14
 15 dig +short $1.contacts.abuse.net -c in -t txt
 16 # Also try:
 17 # dig +nssearch $1
 18 # Tries to find "authoritative name servers" and display SOA records.
 19
 20 # The following also works:
 21 # whois -h whois.abuse.net $1
 22 # ^^ ^^^^^^^^^^^^^^^ Specify host.
 23 # Can even lookup multiple spammers with this, i.e."
 24 # whois -h whois.abuse.net $spamdomain1 $spamdomain2 . . .
 25
 26
 27 # Exercise:
 28 # --------
 29 # Expand the functionality of this script
 30 #+ so that it automatically e-mails a notification
 31 #+ to the responsible ISP's contact address(es).
 32 # Hint: use the "mail" command.
 33
 34 exit $?
 35
 36 # spam-lookup.sh chinatietong.com
 37 # A known spam domain.
 38
 39 # "crnet_mgr@chinatietong.com"
 40 # "crnet_tec@chinatietong.com"
 41 # "postmaster@chinatietong.com"
 42
 43
 44 # For a more elaborate version of this script,
 45 #+ see the SpamViz home page, http://www.spamviz.net/index.html.

Example 16-41. Analyzing a spam domain

 1 #! /bin/bash
 2 # is-spammer.sh: Identifying spam domains
 3
 4 # $Id: is-spammer, v 1.4 2004/09/01 19:37:52 mszick Exp $
 5 # Above line is RCS ID info.
 6 #

 7 # This is a simplified version of the "is_spammer.bash
 8 #+ script in the Contributed Scripts appendix.
 9
 10 # is-spammer <domain.name>
 11
 12 # Uses an external program: 'dig'
 13 # Tested with version: 9.2.4rc5
 14
 15 # Uses functions.
 16 # Uses IFS to parse strings by assignment into arrays.
 17 # And even does something useful: checks e-mail blacklists.
 18
 19 # Use the domain.name(s) from the text body:
 20 # http://www.good_stuff.spammer.biz/just_ignore_everything_else
 21 # ^^^^^^^^^^^
 22 # Or the domain.name(s) from any e-mail address:
 23 # Really_Good_Offer@spammer.biz
 24 #
 25 # as the only argument to this script.
 26 #(PS: have your Inet connection running)
 27 #
 28 # So, to invoke this script in the above two instances:
 29 # is-spammer.sh spammer.biz
 30
 31
 32 # Whitespace == :Space:Tab:Line Feed:Carriage Return:
 33 WSP_IFS=$'\x20'$'\x09'$'\x0A'$'\x0D'
 34
 35 # No Whitespace == Line Feed:Carriage Return
 36 No_WSP=$'\x0A'$'\x0D'
 37
 38 # Field separator for dotted decimal ip addresses
 39 ADR_IFS=${No_WSP}'.'
 40
 41 # Get the dns text resource record.
 42 # get_txt <error_code> <list_query>
 43 get_txt() {
 44
 45 # Parse $1 by assignment at the dots.
 46 local -a dns
 47 IFS=$ADR_IFS
 48 dns=($1)
 49 IFS=$WSP_IFS
 50 if ["${dns[0]}" == '127']
 51 then
 52 # See if there is a reason.
 53 echo $(dig +short $2 -t txt)
 54 fi
 55 }
 56
 57 # Get the dns address resource record.
 58 # chk_adr <rev_dns> <list_server>
 59 chk_adr() {
 60 local reply
 61 local server
 62 local reason
 63
 64 server=${1}${2}
 65 reply=$(dig +short ${server})
 66
 67 # If reply might be an error code . . .
 68 if [${#reply} -gt 6]
 69 then
 70 reason=$(get_txt ${reply} ${server})
 71 reason=${reason:-${reply}}
 72 fi

 73 echo ${reason:-' not blacklisted.'}
 74 }
 75
 76 # Need to get the IP address from the name.
 77 echo 'Get address of: '$1
 78 ip_adr=$(dig +short $1)
 79 dns_reply=${ip_adr:-' no answer '}
 80 echo ' Found address: '${dns_reply}
 81
 82 # A valid reply is at least 4 digits plus 3 dots.
 83 if [${#ip_adr} -gt 6]
 84 then
 85 echo
 86 declare query
 87
 88 # Parse by assignment at the dots.
 89 declare -a dns
 90 IFS=$ADR_IFS
 91 dns=(${ip_adr})
 92 IFS=$WSP_IFS
 93
 94 # Reorder octets into dns query order.
 95 rev_dns="${dns[3]}"'.'"${dns[2]}"'.'"${dns[1]}"'.'"${dns[0]}"'.'
 96
 97 # See: http://www.spamhaus.org (Conservative, well maintained)
 98 echo -n 'spamhaus.org says: '
 99 echo $(chk_adr ${rev_dns} 'sbl-xbl.spamhaus.org')
 100
 101 # See: http://ordb.org (Open mail relays)
 102 echo -n ' ordb.org says: '
 103 echo $(chk_adr ${rev_dns} 'relays.ordb.org')
 104
 105 # See: http://www.spamcop.net/ (You can report spammers here)
 106 echo -n ' spamcop.net says: '
 107 echo $(chk_adr ${rev_dns} 'bl.spamcop.net')
 108
 109 # # # other blacklist operations # # #
 110
 111 # See: http://cbl.abuseat.org.
 112 echo -n ' abuseat.org says: '
 113 echo $(chk_adr ${rev_dns} 'cbl.abuseat.org')
 114
 115 # See: http://dsbl.org/usage (Various mail relays)
 116 echo
 117 echo 'Distributed Server Listings'
 118 echo -n ' list.dsbl.org says: '
 119 echo $(chk_adr ${rev_dns} 'list.dsbl.org')
 120
 121 echo -n ' multihop.dsbl.org says: '
 122 echo $(chk_adr ${rev_dns} 'multihop.dsbl.org')
 123
 124 echo -n 'unconfirmed.dsbl.org says: '
 125 echo $(chk_adr ${rev_dns} 'unconfirmed.dsbl.org')
 126
 127 else
 128 echo
 129 echo 'Could not use that address.'
 130 fi
 131
 132 exit 0
 133
 134 # Exercises:
 135 # --------
 136
 137 # 1) Check arguments to script,
 138 # and exit with appropriate error message if necessary.

 139
 140 # 2) Check if on-line at invocation of script,
 141 # and exit with appropriate error message if necessary.
 142
 143 # 3) Substitute generic variables for "hard-coded" BHL domains.
 144
 145 # 4) Set a time-out for the script using the "+time=" option
 146 to the 'dig' command.

For a much more elaborate version of the above script, see Example A-28.
traceroute

Trace the route taken by packets sent to a remote host. This command works within a LAN, WAN, or
over the Internet. The remote host may be specified by an IP address. The output of this command
may be filtered by grep or sed in a pipe.

bash$ traceroute 81.9.6.2
traceroute to 81.9.6.2 (81.9.6.2), 30 hops max, 38 byte packets

 1 tc43.xjbnnbrb.com (136.30.178.8) 191.303 ms 179.400 ms 179.767 ms
 2 or0.xjbnnbrb.com (136.30.178.1) 179.536 ms 179.534 ms 169.685 ms
 3 192.168.11.101 (192.168.11.101) 189.471 ms 189.556 ms *
 ...

ping
Broadcast an ICMP ECHO_REQUEST packet to another machine, either on a local or remote
network. This is a diagnostic tool for testing network connections, and it should be used with caution.

bash$ ping localhost
PING localhost.localdomain (127.0.0.1) from 127.0.0.1 : 56(84) bytes of data.

 64 bytes from localhost.localdomain (127.0.0.1): icmp_seq=0 ttl=255 time=709 usec
 64 bytes from localhost.localdomain (127.0.0.1): icmp_seq=1 ttl=255 time=286 usec

 --- localhost.localdomain ping statistics ---
 2 packets transmitted, 2 packets received, 0% packet loss
 round-trip min/avg/max/mdev = 0.286/0.497/0.709/0.212 ms

A successful ping returns an exit status of 0. This can be tested for in a script.

 1 HNAME=news-15.net # Notorious spammer.
 2 # HNAME=$HOST # Debug: test for localhost.
 3 count=2 # Send only two pings.
 4
 5 if [[`ping -c $count "$HNAME"`]]
 6 then
 7 echo ""$HNAME" still up and broadcasting spam your way."
 8 else
 9 echo ""$HNAME" seems to be down. Pity."
 10 fi

whois
Perform a DNS (Domain Name System) lookup. The -h option permits specifying which particular
whois server to query. See Example 4-6 and Example 16-40.

finger
Retrieve information about users on a network. Optionally, this command can display a user's
~/.plan, ~/.project, and ~/.forward files, if present.

bash$ finger
Login Name Tty Idle Login Time Office Office Phone

 bozo Bozo Bozeman tty1 8 Jun 25 16:59 (:0)
 bozo Bozo Bozeman ttyp0 Jun 25 16:59 (:0.0)
 bozo Bozo Bozeman ttyp1 Jun 25 17:07 (:0.0)

bash$ finger bozo
Login: bozo Name: Bozo Bozeman

 Directory: /home/bozo Shell: /bin/bash
 Office: 2355 Clown St., 543-1234
 On since Fri Aug 31 20:13 (MST) on tty1 1 hour 38 minutes idle
 On since Fri Aug 31 20:13 (MST) on pts/0 12 seconds idle
 On since Fri Aug 31 20:13 (MST) on pts/1
 On since Fri Aug 31 20:31 (MST) on pts/2 1 hour 16 minutes idle
 Mail last read Tue Jul 3 10:08 2007 (MST)
 No Plan.

Out of security considerations, many networks disable finger and its associated daemon. [1]
chfn

Change information disclosed by the finger command.
vrfy

Verify an Internet e-mail address.

This command seems to be missing from newer Linux distros.

Remote Host Access

sx, rx
The sx and rx command set serves to transfer files to and from a remote host using the xmodem
protocol. These are generally part of a communications package, such as minicom.

sz, rz
The sz and rz command set serves to transfer files to and from a remote host using the zmodem
protocol. Zmodem has certain advantages over xmodem, such as faster transmission rate and
resumption of interrupted file transfers. Like sx and rx, these are generally part of a communications
package.

ftp
Utility and protocol for uploading / downloading files to or from a remote host. An ftp session can be
automated in a script (see Example 19-6 and Example A-4).

uucp, uux, cu
uucp: UNIX to UNIX copy. This is a communications package for transferring files between UNIX
servers. A shell script is an effective way to handle a uucp command sequence.

Since the advent of the Internet and e-mail, uucp seems to have faded into obscurity, but it still exists
and remains perfectly workable in situations where an Internet connection is not available or
appropriate. The advantage of uucp is that it is fault-tolerant, so even if there is a service interruption
the copy operation will resume where it left off when the connection is restored.

uux: UNIX to UNIX execute. Execute a command on a remote system. This command is part of the
uucp package.

cu: Call Up a remote system and connect as a simple terminal. It is a sort of dumbed-down version of
telnet. This command is part of the uucp package.

telnet
Utility and protocol for connecting to a remote host.

The telnet protocol contains security holes and should therefore probably be
avoided. Its use within a shell script is not recommended.

wget
The wget utility noninteractively retrieves or downloads files from a Web or ftp site. It works well in
a script.

 1 wget -p http://www.xyz23.com/file01.html
 2 # The -p or --page-requisite option causes wget to fetch all files
 3 #+ required to display the specified page.
 4
 5 wget -r ftp://ftp.xyz24.net/~bozo/project_files/ -O $SAVEFILE
 6 # The -r option recursively follows and retrieves all links
 7 #+ on the specified site.
 8
 9 wget -c ftp://ftp.xyz25.net/bozofiles/filename.tar.bz2
 10 # The -c option lets wget resume an interrupted download.
 11 # This works with ftp servers and many HTTP sites.

Example 16-42. Getting a stock quote

 1 #!/bin/bash
 2 # quote-fetch.sh: Download a stock quote.
 3
 4
 5 E_NOPARAMS=86
 6
 7 if [-z "$1"] # Must specify a stock (symbol) to fetch.
 8 then echo "Usage: `basename $0` stock-symbol"
 9 exit $E_NOPARAMS
 10 fi
 11
 12 stock_symbol=$1
 13
 14 file_suffix=.html
 15 # Fetches an HTML file, so name it appropriately.
 16 URL='http://finance.yahoo.com/q?s='
 17 # Yahoo finance board, with stock query suffix.
 18
 19 # ---
 20 wget -O ${stock_symbol}${file_suffix} "${URL}${stock_symbol}"
 21 # ---
 22
 23
 24 # To look up stuff on http://search.yahoo.com:
 25 # ---
 26 # URL="http://search.yahoo.com/search?fr=ush-news&p=${query}"
 27 # wget -O "$savefilename" "${URL}"
 28 # ---
 29 # Saves a list of relevant URLs.
 30
 31 exit $?
 32
 33 # Exercises:
 34 # ---------
 35 #
 36 # 1) Add a test to ensure the user running the script is on-line.
 37 # (Hint: parse the output of 'ps -ax' for "ppp" or "connect."
 38 #
 39 # 2) Modify this script to fetch the local weather report,
 40 #+ taking the user's zip code as an argument.

See also Example A-30 and Example A-31.
lynx

The lynx Web and file browser can be used inside a script (with the -dump option) to retrieve a file
from a Web or ftp site noninteractively.

 1 lynx -dump http://www.xyz23.com/file01.html >$SAVEFILE

With the -traversal option, lynx starts at the HTTP URL specified as an argument, then "crawls"
through all links located on that particular server. Used together with the -crawl option, outputs
page text to a log file.

rlogin
Remote login, initates a session on a remote host. This command has security issues, so use ssh
instead.

rsh
Remote shell, executes command(s) on a remote host. This has security issues, so use ssh
instead.

rcp
Remote copy, copies files between two different networked machines.

rsync
Remote synchronize, updates (synchronizes) files between two different networked machines.

bash$ rsync -a ~/sourcedir/*txt /node1/subdirectory/

Example 16-43. Updating FC4

 1 #!/bin/bash
 2 # fc4upd.sh
 3
 4 # Script author: Frank Wang.
 5 # Slight stylistic modifications by ABS Guide author.
 6 # Used in ABS Guide with permission.
 7
 8
 9 # Download Fedora Core 4 update from mirror site using rsync.
 10 # Should also work for newer Fedora Cores -- 5, 6, . . .
 11 # Only download latest package if multiple versions exist,
 12 #+ to save space.
 13
 14 URL=rsync://distro.ibiblio.org/fedora-linux-core/updates/
 15 # URL=rsync://ftp.kddilabs.jp/fedora/core/updates/
 16 # URL=rsync://rsync.planetmirror.com/fedora-linux-core/updates/
 17
 18 DEST=${1:-/var/www/html/fedora/updates/}
 19 LOG=/tmp/repo-update-$(/bin/date +%Y-%m-%d).txt
 20 PID_FILE=/var/run/${0##*/}.pid
 21
 22 E_RETURN=85 # Something unexpected happened.
 23
 24
 25 # General rsync options
 26 # -r: recursive download
 27 # -t: reserve time
 28 # -v: verbose
 29
 30 OPTS="-rtv --delete-excluded --delete-after --partial"
 31
 32 # rsync include pattern
 33 # Leading slash causes absolute path name match.
 34 INCLUDE=(

 35 "/4/i386/kde-i18n-Chinese*"
 36 # ^ ^
 37 # Quoting is necessary to prevent globbing.
 38)
 39
 40
 41 # rsync exclude pattern
 42 # Temporarily comment out unwanted pkgs using "#" . . .
 43 EXCLUDE=(
 44 /1
 45 /2
 46 /3
 47 /testing
 48 /4/SRPMS
 49 /4/ppc
 50 /4/x86_64
 51 /4/i386/debug
 52 "/4/i386/kde-i18n-*"
 53 "/4/i386/openoffice.org-langpack-*"
 54 "/4/i386/*i586.rpm"
 55 "/4/i386/GFS-*"
 56 "/4/i386/cman-*"
 57 "/4/i386/dlm-*"
 58 "/4/i386/gnbd-*"
 59 "/4/i386/kernel-smp*"
 60 # "/4/i386/kernel-xen*"
 61 # "/4/i386/xen-*"
 62)
 63
 64
 65 init () {
 66 # Let pipe command return possible rsync error, e.g., stalled network.
 67 set -o pipefail # Newly introduced in Bash, version 3.
 68
 69 TMP=${TMPDIR:-/tmp}/${0##*/}.$$ # Store refined download list.
 70 trap "{
 71 rm -f $TMP 2>/dev/null
 72 }" EXIT # Clear temporary file on exit.
 73 }
 74
 75
 76 check_pid () {
 77 # Check if process exists.
 78 if [-s "$PID_FILE"]; then
 79 echo "PID file exists. Checking ..."
 80 PID=$(/bin/egrep -o "^[[:digit:]]+" $PID_FILE)
 81 if /bin/ps --pid $PID &>/dev/null; then
 82 echo "Process $PID found. ${0##*/} seems to be running!"
 83 /usr/bin/logger -t ${0##*/} \
 84 "Process $PID found. ${0##*/} seems to be running!"
 85 exit $E_RETURN
 86 fi
 87 echo "Process $PID not found. Start new process . . ."
 88 fi
 89 }
 90
 91
 92 # Set overall file update range starting from root or $URL,
 93 #+ according to above patterns.
 94 set_range () {
 95 include=
 96 exclude=
 97 for p in "${INCLUDE[@]}"; do
 98 include="$include --include \"$p\""
 99 done
 100

 101 for p in "${EXCLUDE[@]}"; do
 102 exclude="$exclude --exclude \"$p\""
 103 done
 104 }
 105
 106
 107 # Retrieve and refine rsync update list.
 108 get_list () {
 109 echo $$ > $PID_FILE || {
 110 echo "Can't write to pid file $PID_FILE"
 111 exit $E_RETURN
 112 }
 113
 114 echo -n "Retrieving and refining update list . . ."
 115
 116 # Retrieve list -- 'eval' is needed to run rsync as a single command.
 117 # $3 and $4 is the date and time of file creation.
 118 # $5 is the full package name.
 119 previous=
 120 pre_file=
 121 pre_date=0
 122 eval /bin/nice /usr/bin/rsync \
 123 -r $include $exclude $URL | \
 124 egrep '^dr.x|^-r' | \
 125 awk '{print $3, $4, $5}' | \
 126 sort -k3 | \
 127 { while read line; do
 128 # Get seconds since epoch, to filter out obsolete pkgs.
 129 cur_date=$(date -d "$(echo $line | awk '{print $1, $2}')" +%s)
 130 # echo $cur_date
 131
 132 # Get file name.
 133 cur_file=$(echo $line | awk '{print $3}')
 134 # echo $cur_file
 135
 136 # Get rpm pkg name from file name, if possible.
 137 if [[$cur_file == *rpm]]; then
 138 pkg_name=$(echo $cur_file | sed -r -e \
 139 's/(^([^_-]+[_-])+)[[:digit:]]+\..*[_-].*$/\1/')
 140 else
 141 pkg_name=
 142 fi
 143 # echo $pkg_name
 144
 145 if [-z "$pkg_name"]; then # If not a rpm file,
 146 echo $cur_file >> $TMP #+ then append to download list.
 147 elif ["$pkg_name" != "$previous"]; then # A new pkg found.
 148 echo $pre_file >> $TMP # Output latest file.
 149 previous=$pkg_name # Save current.
 150 pre_date=$cur_date
 151 pre_file=$cur_file
 152 elif ["$cur_date" -gt "$pre_date"]; then
 153 # If same pkg, but newer,
 154 pre_date=$cur_date #+ then update latest pointer.
 155 pre_file=$cur_file
 156 fi
 157 done
 158 echo $pre_file >> $TMP # TMP contains ALL
 159 #+ of refined list now.
 160 # echo "subshell=$BASH_SUBSHELL"
 161
 162 } # Bracket required here to let final "echo $pre_file >> $TMP"
 163 # Remained in the same subshell (1) with the entire loop.
 164
 165 RET=$? # Get return code of the pipe command.
 166

 167 ["$RET" -ne 0] && {
 168 echo "List retrieving failed with code $RET"
 169 exit $E_RETURN
 170 }
 171
 172 echo "done"; echo
 173 }
 174
 175 # Real rsync download part.
 176 get_file () {
 177
 178 echo "Downloading..."
 179 /bin/nice /usr/bin/rsync \
 180 $OPTS \
 181 --filter "merge,+/ $TMP" \
 182 --exclude '*' \
 183 $URL $DEST \
 184 | /usr/bin/tee $LOG
 185
 186 RET=$?
 187
 188 # --filter merge,+/ is crucial for the intention.
 189 # + modifier means include and / means absolute path.
 190 # Then sorted list in $TMP will contain ascending dir name and
 191 #+ prevent the following --exclude '*' from "shortcutting the circuit."
 192
 193 echo "Done"
 194
 195 rm -f $PID_FILE 2>/dev/null
 196
 197 return $RET
 198 }
 199
 200 # -------
 201 # Main
 202 init
 203 check_pid
 204 set_range
 205 get_list
 206 get_file
 207 RET=$?
 208 # -------
 209
 210 if ["$RET" -eq 0]; then
 211 /usr/bin/logger -t ${0##*/} "Fedora update mirrored successfully."
 212 else
 213 /usr/bin/logger -t ${0##*/} \
 214 "Fedora update mirrored with failure code: $RET"
 215 fi
 216
 217 exit $RET

See also Example A-32.

Using rcp, rsync, and similar utilities with security implications in a shell script may
not be advisable. Consider, instead, using ssh, scp, or an expect script.

ssh
Secure shell, logs onto a remote host and executes commands there. This secure replacement for
telnet, rlogin, rcp, and rsh uses identity authentication and encryption. See its manpage for details.

Example 16-44. Using ssh

 1 #!/bin/bash
 2 # remote.bash: Using ssh.
 3
 4 # This example by Michael Zick.
 5 # Used with permission.
 6
 7
 8 # Presumptions:
 9 # ------------
 10 # fd-2 isn't being captured ('2>/dev/null').
 11 # ssh/sshd presumes stderr ('2') will display to user.
 12 #
 13 # sshd is running on your machine.
 14 # For any 'standard' distribution, it probably is,
 15 #+ and without any funky ssh-keygen having been done.
 16
 17 # Try ssh to your machine from the command-line:
 18 #
 19 # $ ssh $HOSTNAME
 20 # Without extra set-up you'll be asked for your password.
 21 # enter password
 22 # when done, $ exit
 23 #
 24 # Did that work? If so, you're ready for more fun.
 25
 26 # Try ssh to your machine as 'root':
 27 #
 28 # $ ssh -l root $HOSTNAME
 29 # When asked for password, enter root's, not yours.
 30 # Last login: Tue Aug 10 20:25:49 2004 from localhost.localdomain
 31 # Enter 'exit' when done.
 32
 33 # The above gives you an interactive shell.
 34 # It is possible for sshd to be set up in a 'single command' mode,
 35 #+ but that is beyond the scope of this example.
 36 # The only thing to note is that the following will work in
 37 #+ 'single command' mode.
 38
 39
 40 # A basic, write stdout (local) command.
 41
 42 ls -l
 43
 44 # Now the same basic command on a remote machine.
 45 # Pass a different 'USERNAME' 'HOSTNAME' if desired:
 46 USER=${USERNAME:-$(whoami)}
 47 HOST=${HOSTNAME:-$(hostname)}
 48
 49 # Now excute the above command-line on the remote host,
 50 #+ with all transmissions encrypted.
 51
 52 ssh -l ${USER} ${HOST} " ls -l "
 53
 54 # The expected result is a listing of your username's home
 55 #+ directory on the remote machine.
 56 # To see any difference, run this script from somewhere
 57 #+ other than your home directory.
 58
 59 # In other words, the Bash command is passed as a quoted line
 60 #+ to the remote shell, which executes it on the remote machine.
 61 # In this case, sshd does ' bash -c "ls -l" ' on your behalf.
 62
 63 # For information on topics such as not having to enter a
 64 #+ password/passphrase for every command-line, see
 65 #+ man ssh
 66 #+ man ssh-keygen

 67 #+ man sshd_config.
 68
 69 exit 0

Within a loop, ssh may cause unexpected behavior. According to a Usenet post in the
comp.unix shell archives, ssh inherits the loop's stdin. To remedy this, pass ssh
either the -n or -f option.

Thanks, Jason Bechtel, for pointing this out.
scp

Secure copy, similar in function to rcp, copies files between two different networked machines,
but does so using authentication, and with a security level similar to ssh.

Local Network

write
This is a utility for terminal-to-terminal communication. It allows sending lines from your terminal
(console or xterm) to that of another user. The mesg command may, of course, be used to disable
write access to a terminal

Since write is interactive, it would not normally find use in a script.
netconfig

A command-line utility for configuring a network adapter (using DHCP). This command is native to
Red Hat centric Linux distros.

Mail

mail
Send or read e-mail messages.

This stripped-down command-line mail client works fine as a command embedded in a script.

Example 16-45. A script that mails itself

 1 #!/bin/sh
 2 # self-mailer.sh: Self-mailing script
 3
 4 adr=${1:-`whoami`} # Default to current user, if not specified.
 5 # Typing 'self-mailer.sh wiseguy@superdupergenius.com'
 6 #+ sends this script to that addressee.
 7 # Just 'self-mailer.sh' (no argument) sends the script
 8 #+ to the person invoking it, for example, bozo@localhost.localdomain.
 9 #
 10 # For more on the ${parameter:-default} construct,
 11 #+ see the "Parameter Substitution" section
 12 #+ of the "Variables Revisited" chapter.
 13
 14 # ==
 15 cat $0 | mail -s "Script \"`basename $0`\" has mailed itself to you." "$adr"
 16 # ==
 17
 18 # --
 19 # Greetings from the self-mailing script.
 20 # A mischievous person has run this script,
 21 #+ which has caused it to mail itself to you.
 22 # Apparently, some people have nothing better
 23 #+ to do with their time.

http://groups-beta.google.com/group/comp.unix.shell/msg/dcb446b5fff7d230

 24 # --
 25
 26 echo "At `date`, script \"`basename $0`\" mailed to "$adr"."
 27
 28 exit 0
 29
 30 # Note that the "mailx" command (in "send" mode) may be substituted
 31 #+ for "mail" ... but with somewhat different options.

mailto
Similar to the mail command, mailto sends e-mail messages from the command-line or in a script.
However, mailto also permits sending MIME (multimedia) messages.

mailstats
Show mail statistics. This command may be invoked only by root.

root# mailstats
Statistics from Tue Jan 1 20:32:08 2008

 M msgsfr bytes_from msgsto bytes_to msgsrej msgsdis msgsqur Mailer
 4 1682 24118K 0 0K 0 0 0 esmtp
 9 212 640K 1894 25131K 0 0 0 local
 ===
 T 1894 24758K 1894 25131K 0 0 0
 C 414 0

vacation
This utility automatically replies to e-mails that the intended recipient is on vacation and temporarily
unavailable. It runs on a network, in conjunction with sendmail, and is not applicable to a dial-up
POPmail account.

Notes

[1]
A daemon is a background process not attached to a terminal session. Daemons perform designated
services either at specified times or explicitly triggered by certain events.

The word "daemon" means ghost in Greek, and there is certainly something mysterious, almost
supernatural, about the way UNIX daemons wander about behind the scenes, silently carrying out their
appointed tasks.

Prev Home Next
File and Archiving Commands Up Terminal Control Commands

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Chapter 16. External Filters, Programs and Commands Next

16.7. Terminal Control Commands
Command affecting the console or terminal

tput
Initialize terminal and/or fetch information about it from terminfo data. Various options permit certain
terminal operations: tput clear is the equivalent of clear; tput reset is the equivalent of reset.

bash$ tput longname
xterm terminal emulator (X Window System)

Issuing a tput cup X Y moves the cursor to the (X,Y) coordinates in the current terminal. A clear to
erase the terminal screen would normally precede this.

 Some interesting options to tput are:

bold, for high-intensity text◊
smul, to underline text in the terminal◊
smso, to render text in reverse◊
sgr0, to reset the terminal parameters (to normal), without clearing the screen◊

Example scripts using tput:

Example 36-151.
Example 36-132.
Example A-443.
Example A-424.
Example 27-25.

Note that stty offers a more powerful command set for controlling a terminal.
infocmp

This command prints out extensive information about the current terminal. It references the terminfo
database.

bash$ infocmp
Reconstructed via infocmp from file:

 /usr/share/terminfo/r/rxvt
 rxvt|rxvt terminal emulator (X Window System),
 am, bce, eo, km, mir, msgr, xenl, xon,
 colors#8, cols#80, it#8, lines#24, pairs#64,
 acsc=``aaffggjjkkllmmnnooppqqrrssttuuvvwwxxyyzz{{||}}~~,
 bel=^G, blink=\E[5m, bold=\E[1m,
 civis=\E[?25l,
 clear=\E[H\E[2J, cnorm=\E[?25h, cr=^M,
 ...

reset
Reset terminal parameters and clear text screen. As with clear, the cursor and prompt reappear in the
upper lefthand corner of the terminal.

clear
The clear command simply clears the text screen at the console or in an xterm. The prompt and cursor
reappear at the upper lefthand corner of the screen or xterm window. This command may be used
either at the command line or in a script. See Example 11-26.

resize
Echoes commands necessary to set $TERM and $TERMCAP to duplicate the size (dimensions) of the
current terminal.

bash$ resize
set noglob;

 setenv COLUMNS '80';
 setenv LINES '24';
 unset noglob;

script
This utility records (saves to a file) all the user keystrokes at the command-line in a console or an
xterm window. This, in effect, creates a record of a session.

Prev Home Next
Communications Commands Up Math Commands

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Chapter 16. External Filters, Programs and Commands Next

16.8. Math Commands
"Doing the numbers"

factor
Decompose an integer into prime factors.

bash$ factor 27417
27417: 3 13 19 37

Example 16-46. Generating prime numbers

 1 #!/bin/bash
 2 # primes2.sh
 3
 4 # Generating prime numbers the quick-and-easy way,
 5 #+ without resorting to fancy algorithms.
 6
 7 CEILING=10000 # 1 to 10000
 8 PRIME=0
 9 E_NOTPRIME=
 10
 11 is_prime ()
 12 {
 13 local factors
 14 factors=($(factor $1)) # Load output of `factor` into array.
 15
 16 if [-z "${factors[2]}"]
 17 # Third element of "factors" array:
 18 #+ ${factors[2]} is 2nd factor of argument.
 19 # If it is blank, then there is no 2nd factor,
 20 #+ and the argument is therefore prime.
 21 then
 22 return $PRIME # 0
 23 else
 24 return $E_NOTPRIME # null
 25 fi
 26 }
 27
 28 echo
 29 for n in $(seq $CEILING)
 30 do
 31 if is_prime $n
 32 then
 33 printf %5d $n
 34 fi # ^ Five positions per number suffices.
 35 done # For a higher $CEILING, adjust upward, as necessary.
 36
 37 echo
 38
 39 exit

bc
Bash can't handle floating point calculations, and it lacks operators for certain important mathematical
functions. Fortunately, bc gallops to the rescue.

Not just a versatile, arbitrary precision calculation utility, bc offers many of the facilities of a
programming language. It has a syntax vaguely resembling C.

Since it is a fairly well-behaved UNIX utility, and may therefore be used in a pipe, bc comes in handy
in scripts.

Here is a simple template for using bc to calculate a script variable. This uses command substitution.

variable=$(echo "OPTIONS; OPERATIONS" | bc)

Example 16-47. Monthly Payment on a Mortgage

 1 #!/bin/bash
 2 # monthlypmt.sh: Calculates monthly payment on a mortgage.
 3
 4
 5 # This is a modification of code in the
 6 #+ "mcalc" (mortgage calculator) package,
 7 #+ by Jeff Schmidt
 8 #+ and
 9 #+ Mendel Cooper (yours truly, the ABS Guide author).
 10 # http://www.ibiblio.org/pub/Linux/apps/financial/mcalc-1.6.tar.gz
 11
 12 echo
 13 echo "Given the principal, interest rate, and term of a mortgage,"
 14 echo "calculate the monthly payment."
 15
 16 bottom=1.0
 17
 18 echo
 19 echo -n "Enter principal (no commas) "
 20 read principal
 21 echo -n "Enter interest rate (percent) " # If 12%, enter "12", not ".12".
 22 read interest_r
 23 echo -n "Enter term (months) "
 24 read term
 25
 26
 27 interest_r=$(echo "scale=9; $interest_r/100.0" | bc) # Convert to decimal.
 28 # ^^^^^^^^^^^^^^^^^ Divide by 100.
 29 # "scale" determines how many decimal places.
 30
 31 interest_rate=$(echo "scale=9; $interest_r/12 + 1.0" | bc)
 32
 33
 34 top=$(echo "scale=9; $principal*$interest_rate^$term" | bc)
 35 # ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
 36 # Standard formula for figuring interest.
 37
 38 echo; echo "Please be patient. This may take a while."
 39
 40 let "months = $term - 1"
 41 # ==
 42 for ((x=$months; x > 0; x--))
 43 do
 44 bot=$(echo "scale=9; $interest_rate^$x" | bc)
 45 bottom=$(echo "scale=9; $bottom+$bot" | bc)
 46 # bottom = $(($bottom + $bot"))
 47 done
 48 # ==
 49
 50 # --
 51 # Rick Boivie pointed out a more efficient implementation

 52 #+ of the above loop, which decreases computation time by 2/3.
 53
 54 # for ((x=1; x <= $months; x++))
 55 # do
 56 # bottom=$(echo "scale=9; $bottom * $interest_rate + 1" | bc)
 57 # done
 58
 59
 60 # And then he came up with an even more efficient alternative,
 61 #+ one that cuts down the run time by about 95%!
 62
 63 # bottom=`{
 64 # echo "scale=9; bottom=$bottom; interest_rate=$interest_rate"
 65 # for ((x=1; x <= $months; x++))
 66 # do
 67 # echo 'bottom = bottom * interest_rate + 1'
 68 # done
 69 # echo 'bottom'
 70 # } | bc` # Embeds a 'for loop' within command substitution.
 71 # --
 72 # On the other hand, Frank Wang suggests:
 73 # bottom=$(echo "scale=9; ($interest_rate^$term-1)/($interest_rate-1)" | bc)
 74
 75 # Because . . .
 76 # The algorithm behind the loop
 77 #+ is actually a sum of geometric proportion series.
 78 # The sum formula is e0(1-q^n)/(1-q),
 79 #+ where e0 is the first element and q=e(n+1)/e(n)
 80 #+ and n is the number of elements.
 81 # --
 82
 83
 84 # let "payment = $top/$bottom"
 85 payment=$(echo "scale=2; $top/$bottom" | bc)
 86 # Use two decimal places for dollars and cents.
 87
 88 echo
 89 echo "monthly payment = \$$payment" # Echo a dollar sign in front of amount.
 90 echo
 91
 92
 93 exit 0
 94
 95
 96 # Exercises:
 97 # 1) Filter input to permit commas in principal amount.
 98 # 2) Filter input to permit interest to be entered as percent or decimal.
 99 # 3) If you are really ambitious,
 100 #+ expand this script to print complete amortization tables.

Example 16-48. Base Conversion

 1 #!/bin/bash
 2 ###
 3 # Shellscript: base.sh - print number to different bases (Bourne Shell)
 4 # Author : Heiner Steven (heiner.steven@odn.de)
 5 # Date : 07-03-95
 6 # Category : Desktop
 7 # $Id: base.sh,v 1.2 2000/02/06 19:55:35 heiner Exp $
 8 # ==> Above line is RCS ID info.
 9 ###
 10 # Description

 11 #
 12 # Changes
 13 # 21-03-95 stv fixed error occuring with 0xb as input (0.2)
 14 ###
 15
 16 # ==> Used in ABS Guide with the script author's permission.
 17 # ==> Comments added by ABS Guide author.
 18
 19 NOARGS=85
 20 PN=`basename "$0"` # Program name
 21 VER=`echo '$Revision: 1.2 $' | cut -d' ' -f2` # ==> VER=1.2
 22
 23 Usage () {
 24 echo "$PN - print number to different bases, $VER (stv '95)
 25 usage: $PN [number ...]
 26
 27 If no number is given, the numbers are read from standard input.
 28 A number may be
 29 binary (base 2) starting with 0b (i.e. 0b1100)
 30 octal (base 8) starting with 0 (i.e. 014)
 31 hexadecimal (base 16) starting with 0x (i.e. 0xc)
 32 decimal otherwise (i.e. 12)" >&2
 33 exit $NOARGS
 34 } # ==> Prints usage message.
 35
 36 Msg () {
 37 for i # ==> in [list] missing. Why?
 38 do echo "$PN: $i" >&2
 39 done
 40 }
 41
 42 Fatal () { Msg "$@"; exit 66; }
 43
 44 PrintBases () {
 45 # Determine base of the number
 46 for i # ==> in [list] missing...
 47 do # ==> so operates on command-line arg(s).
 48 case "$i" in
 49 0b*) ibase=2;; # binary
 50 0x*|[a-f]*|[A-F]*) ibase=16;; # hexadecimal
 51 0*) ibase=8;; # octal
 52 [1-9]*) ibase=10;; # decimal
 53 *)
 54 Msg "illegal number $i - ignored"
 55 continue;;
 56 esac
 57
 58 # Remove prefix, convert hex digits to uppercase (bc needs this).
 59 number=`echo "$i" | sed -e 's:^0[bBxX]::' | tr '[a-f]' '[A-F]'`
 60 # ==> Uses ":" as sed separator, rather than "/".
 61
 62 # Convert number to decimal
 63 dec=`echo "ibase=$ibase; $number" | bc` # ==> 'bc' is calculator utility.
 64 case "$dec" in
 65 [0-9]*) ;; # number ok
 66 *) continue;; # error: ignore
 67 esac
 68
 69 # Print all conversions in one line.
 70 # ==> 'here document' feeds command list to 'bc'.
 71 echo `bc <<!
 72 obase=16; "hex="; $dec
 73 obase=10; "dec="; $dec
 74 obase=8; "oct="; $dec
 75 obase=2; "bin="; $dec
 76 !

 77 ` | sed -e 's: : :g'
 78
 79 done
 80 }
 81
 82 while [$# -gt 0]
 83 # ==> Is a "while loop" really necessary here,
 84 # ==>+ since all the cases either break out of the loop
 85 # ==>+ or terminate the script.
 86 # ==> (Above comment by Paulo Marcel Coelho Aragao.)
 87 do
 88 case "$1" in
 89 --) shift; break;;
 90 -h) Usage;; # ==> Help message.
 91 -*) Usage;;
 92 *) break;; # First number
 93 esac # ==> Error checking for illegal input might be appropriate.
 94 shift
 95 done
 96
 97 if [$# -gt 0]
 98 then
 99 PrintBases "$@"
 100 else # Read from stdin.
 101 while read line
 102 do
 103 PrintBases $line
 104 done
 105 fi
 106
 107
 108 exit

An alternate method of invoking bc involves using a here document embedded within a command
substitution block. This is especially appropriate when a script needs to pass a list of options and
commands to bc.

 1 variable=`bc << LIMIT_STRING
 2 options
 3 statements
 4 operations
 5 LIMIT_STRING
 6 `
 7
 8 ...or...
 9
 10
 11 variable=$(bc << LIMIT_STRING
 12 options
 13 statements
 14 operations
 15 LIMIT_STRING
 16)

Example 16-49. Invoking bc using a here document

 1 #!/bin/bash
 2 # Invoking 'bc' using command substitution
 3 # in combination with a 'here document'.
 4
 5

 6 var1=`bc << EOF
 7 18.33 * 19.78
 8 EOF
 9 `
 10 echo $var1 # 362.56
 11
 12
 13 # $(...) notation also works.
 14 v1=23.53
 15 v2=17.881
 16 v3=83.501
 17 v4=171.63
 18
 19 var2=$(bc << EOF
 20 scale = 4
 21 a = ($v1 + $v2)
 22 b = ($v3 * $v4)
 23 a * b + 15.35
 24 EOF
 25)
 26 echo $var2 # 593487.8452
 27
 28
 29 var3=$(bc -l << EOF
 30 scale = 9
 31 s (1.7)
 32 EOF
 33)
 34 # Returns the sine of 1.7 radians.
 35 # The "-l" option calls the 'bc' math library.
 36 echo $var3 # .991664810
 37
 38
 39 # Now, try it in a function...
 40 hypotenuse () # Calculate hypotenuse of a right triangle.
 41 { # c = sqrt(a^2 + b^2)
 42 hyp=$(bc -l << EOF
 43 scale = 9
 44 sqrt ($1 * $1 + $2 * $2)
 45 EOF
 46)
 47 # Can't directly return floating point values from a Bash function.
 48 # But, can echo-and-capture:
 49 echo "$hyp"
 50 }
 51
 52 hyp=$(hypotenuse 3.68 7.31)
 53 echo "hypotenuse = $hyp" # 8.184039344
 54
 55
 56 exit 0

Example 16-50. Calculating PI

 1 #!/bin/bash
 2 # cannon.sh: Approximating PI by firing cannonballs.
 3
 4 # Author: Mendel Cooper
 5 # License: Public Domain
 6 # Version 2.2, reldate 13oct08.
 7
 8 # This is a very simple instance of a "Monte Carlo" simulation:

 9 #+ a mathematical model of a real-life event,
 10 #+ using pseudorandom numbers to emulate random chance.
 11
 12 # Consider a perfectly square plot of land, 10000 units on a side.
 13 # This land has a perfectly circular lake in its center,
 14 #+ with a diameter of 10000 units.
 15 # The plot is actually mostly water, except for land in the four corners.
 16 # (Think of it as a square with an inscribed circle.)
 17 #
 18 # We will fire iron cannonballs from an old-style cannon
 19 #+ at the square.
 20 # All the shots impact somewhere on the square,
 21 #+ either in the lake or on the dry corners.
 22 # Since the lake takes up most of the area,
 23 #+ most of the shots will SPLASH! into the water.
 24 # Just a few shots will THUD! into solid ground
 25 #+ in the four corners of the square.
 26 #
 27 # If we take enough random, unaimed shots at the square,
 28 #+ Then the ratio of SPLASHES to total shots will approximate
 29 #+ the value of PI/4.
 30 #
 31 # The simplified explanation is that the cannon is actually
 32 #+ shooting only at the upper right-hand quadrant of the square,
 33 #+ i.e., Quadrant I of the Cartesian coordinate plane.
 34 #
 35 #
 36 # Theoretically, the more shots taken, the better the fit.
 37 # However, a shell script, as opposed to a compiled language
 38 #+ with floating-point math built in, requires some compromises.
 39 # This decreases the accuracy of the simulation.
 40
 41
 42 DIMENSION=10000 # Length of each side of the plot.
 43 # Also sets ceiling for random integers generated.
 44
 45 MAXSHOTS=1000 # Fire this many shots.
 46 # 10000 or more would be better, but would take too long.
 47 PMULTIPLIER=4.0 # Scaling factor.
 48
 49 declare -r M_PI=3.141592654
 50 # Actual 9-place value of PI, for comparison purposes.
 51
 52 get_random ()
 53 {
 54 SEED=$(head -n 1 /dev/urandom | od -N 1 | awk '{ print $2 }')
 55 RANDOM=$SEED # From "seeding-random.sh"
 56 #+ example script.
 57 let "rnum = $RANDOM % $DIMENSION" # Range less than 10000.
 58 echo $rnum
 59 }
 60
 61 distance= # Declare global variable.
 62 hypotenuse () # Calculate hypotenuse of a right triangle.
 63 { # From "alt-bc.sh" example.
 64 distance=$(bc -l << EOF
 65 scale = 0
 66 sqrt ($1 * $1 + $2 * $2)
 67 EOF
 68)
 69 # Setting "scale" to zero rounds down result to integer value,
 70 #+ a necessary compromise in this script.
 71 # It decreases the accuracy of this simulation.
 72 }
 73
 74

 75 # ==
 76 # main() {
 77 # "Main" code block, mimicking a C-language main() function.
 78
 79 # Initialize variables.
 80 shots=0
 81 splashes=0
 82 thuds=0
 83 Pi=0
 84 error=0
 85
 86 while ["$shots" -lt "$MAXSHOTS"] # Main loop.
 87 do
 88
 89 xCoord=$(get_random) # Get random X and Y coords.
 90 yCoord=$(get_random)
 91 hypotenuse $xCoord $yCoord # Hypotenuse of
 92 #+ right-triangle = distance.
 93 ((shots++))
 94
 95 printf "#%4d " $shots
 96 printf "Xc = %4d " $xCoord
 97 printf "Yc = %4d " $yCoord
 98 printf "Distance = %5d " $distance # Distance from
 99 #+ center of lake
 100 #+ -- the "origin" --
 101 #+ coordinate (0,0).
 102
 103 if ["$distance" -le "$DIMENSION"]
 104 then
 105 echo -n "SPLASH! "
 106 ((splashes++))
 107 else
 108 echo -n "THUD! "
 109 ((thuds++))
 110 fi
 111
 112 Pi=$(echo "scale=9; $PMULTIPLIER*$splashes/$shots" | bc)
 113 # Multiply ratio by 4.0.
 114 echo -n "PI ~ $Pi"
 115 echo
 116
 117 done
 118
 119 echo
 120 echo "After $shots shots, PI looks like approximately $Pi"
 121 # Tends to run a bit high,
 122 #+ possibly due to round-off error and imperfect randomness of $RANDOM.
 123 # But still usually within plus-or-minus 5% . . .
 124 #+ a pretty fair rough approximation.
 125 error=$(echo "scale=9; $Pi - $M_PI" | bc)
 126 pct_error=$(echo "scale=2; 100.0 * $error / $M_PI" | bc)
 127 echo -n "Deviation from mathematical value of PI = $error"
 128 echo " ($pct_error% error)"
 129 echo
 130
 131 # End of "main" code block.
 132 # }
 133 # ==
 134
 135 exit 0
 136
 137 # One might well wonder whether a shell script is appropriate for
 138 #+ an application as complex and computation-intensive as a simulation.
 139 #
 140 # There are at least two justifications.

 141 # 1) As a proof of concept: to show it can be done.
 142 # 2) To prototype and test the algorithms before rewriting
 143 #+ it in a compiled high-level language.

See also Example A-37.
dc

The dc (desk calculator) utility is stack-oriented and uses RPN (Reverse Polish Notation). Like bc, it
has much of the power of a programming language.

Similar to the procedure with bc, echo a command-string to dc.

 1 echo "[Printing a string ...]P" | dc
 2 # The P command prints the string between the preceding brackets.
 3
 4 # And now for some simple arithmetic.
 5 echo "7 8 * p" | dc # 56
 6 # Pushes 7, then 8 onto the stack,
 7 #+ multiplies ("*" operator), then prints the result ("p" operator).

Most persons avoid dc, because of its non-intuitive input and rather cryptic operators. Yet, it has its
uses.

Example 16-51. Converting a decimal number to hexadecimal

 1 #!/bin/bash
 2 # hexconvert.sh: Convert a decimal number to hexadecimal.
 3
 4 E_NOARGS=85 # Command-line arg missing.
 5 BASE=16 # Hexadecimal.
 6
 7 if [-z "$1"]
 8 then # Need a command-line argument.
 9 echo "Usage: $0 number"
 10 exit $E_NOARGS
 11 fi # Exercise: add argument validity checking.
 12
 13
 14 hexcvt ()
 15 {
 16 if [-z "$1"]
 17 then
 18 echo 0
 19 return # "Return" 0 if no arg passed to function.
 20 fi
 21
 22 echo ""$1" "$BASE" o p" | dc
 23 # o sets radix (numerical base) of output.
 24 # p prints the top of stack.
 25 # For other options: 'man dc' ...
 26 return
 27 }
 28
 29 hexcvt "$1"
 30
 31 exit

Studying the info page for dc is a painful path to understanding its intricacies. There seems to be a
small, select group of dc wizards who delight in showing off their mastery of this powerful, but
arcane utility.

bash$ echo "16i[q]sa[ln0=aln100%Pln100/snlbx]sbA0D68736142snlbxq" | dc
Bash

 1 dc <<< 10k5v1+2/p # 1.6180339887
 2 # ^^^ Feed operations to dc using a Here String.
 3 # ^^^ Pushes 10 and sets that as the precision (10k).
 4 # ^^ Pushes 5 and takes its square root
 5 # (5v, v = square root).
 6 # ^^ Pushes 1 and adds it to the running total (1+).
 7 # ^^ Pushes 2 and divides the running total by that (2/).
 8 # ^ Pops and prints the result (p)
 9 # The result is 1.6180339887 ...
 10 # ... which happens to be the Pythagorean Golden Ratio, to 10 places.

Example 16-52. Factoring

 1 #!/bin/bash
 2 # factr.sh: Factor a number
 3
 4 MIN=2 # Will not work for number smaller than this.
 5 E_NOARGS=85
 6 E_TOOSMALL=86
 7
 8 if [-z $1]
 9 then
 10 echo "Usage: $0 number"
 11 exit $E_NOARGS
 12 fi
 13
 14 if ["$1" -lt "$MIN"]
 15 then
 16 echo "Number to factor must be $MIN or greater."
 17 exit $E_TOOSMALL
 18 fi
 19
 20 # Exercise: Add type checking (to reject non-integer arg).
 21
 22 echo "Factors of $1:"
 23 # ---
 24 echo "$1[p]s2[lip/dli%0=1dvsr]s12sid2%0=13sidvsr[dli%0=\
 25 1lrli2+dsi!>.]ds.xd1<2" | dc
 26 # ---
 27 # Above code written by Michel Charpentier <charpov@cs.unh.edu>
 28 # (as a one-liner, here broken into two lines for display purposes).
 29 # Used in ABS Guide with permission (thanks!).
 30
 31 exit
 32
 33 # $ sh factr.sh 270138
 34 # 2
 35 # 3
 36 # 11
 37 # 4093

awk
Yet another way of doing floating point math in a script is using awk's built-in math functions in a
shell wrapper.

Example 16-53. Calculating the hypotenuse of a triangle

 1 #!/bin/bash
 2 # hypotenuse.sh: Returns the "hypotenuse" of a right triangle.
 3 # (square root of sum of squares of the "legs")
 4
 5 ARGS=2 # Script needs sides of triangle passed.
 6 E_BADARGS=85 # Wrong number of arguments.
 7
 8 if [$# -ne "$ARGS"] # Test number of arguments to script.
 9 then
 10 echo "Usage: `basename $0` side_1 side_2"
 11 exit $E_BADARGS
 12 fi
 13
 14
 15 AWKSCRIPT=' { printf("%3.7f\n", sqrt($1*$1 + $2*$2)) } '
 16 # command(s) / parameters passed to awk
 17
 18
 19 # Now, pipe the parameters to awk.
 20 echo -n "Hypotenuse of $1 and $2 = "
 21 echo $1 $2 | awk "$AWKSCRIPT"
 22 # ^^^^^^^^^^^^
 23 # An echo-and-pipe is an easy way of passing shell parameters to awk.
 24
 25 exit
 26
 27 # Exercise: Rewrite this script using 'bc' rather than awk.
 28 # Which method is more intuitive?

Prev Home Next
Terminal Control Commands Up Miscellaneous Commands

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Chapter 16. External Filters, Programs and Commands Next

16.9. Miscellaneous Commands
Command that fit in no special category

jot, seq
These utilities emit a sequence of integers, with a user-selectable increment.

The default separator character between each integer is a newline, but this can be changed with the -s
option.

bash$ seq 5
1

 2
 3
 4
 5

bash$ seq -s : 5
1:2:3:4:5

Both jot and seq come in handy in a for loop.

Example 16-54. Using seq to generate loop arguments

 1 #!/bin/bash
 2 # Using "seq"
 3
 4 echo
 5
 6 for a in `seq 80` # or for a in $(seq 80)
 7 # Same as for a in 1 2 3 4 5 ... 80 (saves much typing!).
 8 # May also use 'jot' (if present on system).
 9 do
 10 echo -n "$a "
 11 done # 1 2 3 4 5 ... 80
 12 # Example of using the output of a command to generate
 13 # the [list] in a "for" loop.
 14
 15 echo; echo
 16
 17
 18 COUNT=80 # Yes, 'seq' also accepts a replaceable parameter.
 19
 20 for a in `seq $COUNT` # or for a in $(seq $COUNT)
 21 do
 22 echo -n "$a "
 23 done # 1 2 3 4 5 ... 80
 24
 25 echo; echo
 26
 27 BEGIN=75
 28 END=80
 29
 30 for a in `seq $BEGIN $END`
 31 # Giving "seq" two arguments starts the count at the first one,
 32 #+ and continues until it reaches the second.
 33 do
 34 echo -n "$a "

 35 done # 75 76 77 78 79 80
 36
 37 echo; echo
 38
 39 BEGIN=45
 40 INTERVAL=5
 41 END=80
 42
 43 for a in `seq $BEGIN $INTERVAL $END`
 44 # Giving "seq" three arguments starts the count at the first one,
 45 #+ uses the second for a step interval,
 46 #+ and continues until it reaches the third.
 47 do
 48 echo -n "$a "
 49 done # 45 50 55 60 65 70 75 80
 50
 51 echo; echo
 52
 53 exit 0

A simpler example:

 1 # Create a set of 10 files,
 2 #+ named file.1, file.2 . . . file.10.
 3 COUNT=10
 4 PREFIX=file
 5
 6 for filename in `seq $COUNT`
 7 do
 8 touch $PREFIX.$filename
 9 # Or, can do other operations,
 10 #+ such as rm, grep, etc.
 11 done

Example 16-55. Letter Count"

 1 #!/bin/bash
 2 # letter-count.sh: Counting letter occurrences in a text file.
 3 # Written by Stefano Palmeri.
 4 # Used in ABS Guide with permission.
 5 # Slightly modified by document author.
 6
 7 MINARGS=2 # Script requires at least two arguments.
 8 E_BADARGS=65
 9 FILE=$1
 10
 11 let LETTERS=$#-1 # How many letters specified (as command-line args).
 12 # (Subtract 1 from number of command-line args.)
 13
 14
 15 show_help(){
 16 echo
 17 echo Usage: `basename $0` file letters
 18 echo Note: `basename $0` arguments are case sensitive.
 19 echo Example: `basename $0` foobar.txt G n U L i N U x.
 20 echo
 21 }
 22
 23 # Checks number of arguments.
 24 if [$# -lt $MINARGS]; then
 25 echo
 26 echo "Not enough arguments."
 27 echo

 28 show_help
 29 exit $E_BADARGS
 30 fi
 31
 32
 33 # Checks if file exists.
 34 if [! -f $FILE]; then
 35 echo "File \"$FILE\" does not exist."
 36 exit $E_BADARGS
 37 fi
 38
 39
 40
 41 # Counts letter occurrences .
 42 for n in `seq $LETTERS`; do
 43 shift
 44 if [[`echo -n "$1" | wc -c` -eq 1]]; then # Checks arg.
 45 echo "$1" -\> `cat $FILE | tr -cd "$1" | wc -c` # Counting.
 46 else
 47 echo "$1 is not a single char."
 48 fi
 49 done
 50
 51 exit $?
 52
 53 # This script has exactly the same functionality as letter-count2.sh,
 54 #+ but executes faster.
 55 # Why?

Somewhat more capable than seq, jot is a classic UNIX utility that is not normally
included in a standard Linux distro. However, the source rpm is available for
download from the MIT repository.

Unlike seq, jot can generate a sequence of random numbers, using the -r option.

bash$ jot -r 3 999
1069

 1272
 1428

getopt
The getopt command parses command-line options preceded by a dash. This external command
corresponds to the getopts Bash builtin. Using getopt permits handling long options by means of the
-l flag, and this also allows parameter reshuffling.

Example 16-56. Using getopt to parse command-line options

 1 #!/bin/bash
 2 # Using getopt
 3
 4 # Try the following when invoking this script:
 5 # sh ex33a.sh -a
 6 # sh ex33a.sh -abc
 7 # sh ex33a.sh -a -b -c
 8 # sh ex33a.sh -d
 9 # sh ex33a.sh -dXYZ
 10 # sh ex33a.sh -d XYZ
 11 # sh ex33a.sh -abcd
 12 # sh ex33a.sh -abcdZ
 13 # sh ex33a.sh -z

http://www.mit.edu/afs/athena/system/rhlinux/athena-9.0/free/SRPMS/athena-jot-9.0-3.src.rpm

 14 # sh ex33a.sh a
 15 # Explain the results of each of the above.
 16
 17 E_OPTERR=65
 18
 19 if ["$#" -eq 0]
 20 then # Script needs at least one command-line argument.
 21 echo "Usage $0 -[options a,b,c]"
 22 exit $E_OPTERR
 23 fi
 24
 25 set -- `getopt "abcd:" "$@"`
 26 # Sets positional parameters to command-line arguments.
 27 # What happens if you use "$*" instead of "$@"?
 28
 29 while [! -z "$1"]
 30 do
 31 case "$1" in
 32 -a) echo "Option \"a\"";;
 33 -b) echo "Option \"b\"";;
 34 -c) echo "Option \"c\"";;
 35 -d) echo "Option \"d\" $2";;
 36 *) break;;
 37 esac
 38
 39 shift
 40 done
 41
 42 # It is usually better to use the 'getopts' builtin in a script.
 43 # See "ex33.sh."
 44
 45 exit 0

As Peggy Russell points out:

It is often necessary to include an eval to correctly process whitespace and quotes.

 1 args=$(getopt -o a:bc:d -- "$@")
 2 eval set -- "$args"

See Example 10-5 for a simplified emulation of getopt.
run-parts

The run-parts command [1] executes all the scripts in a target directory, sequentially in ASCII-sorted
filename order. Of course, the scripts need to have execute permission.

The cron daemon invokes run-parts to run the scripts in the /etc/cron.* directories.
yes

In its default behavior the yes command feeds a continuous string of the character y followed by a
line feed to stdout. A control-C terminates the run. A different output string may be specified, as
in yes different string, which would continually output different string to
stdout.

One might well ask the purpose of this. From the command-line or in a script, the output of yes can be
redirected or piped into a program expecting user input. In effect, this becomes a sort of poor man's
version of expect.

yes | fsck /dev/hda1 runs fsck non-interactively (careful!).

yes | rm -r dirname has same effect as rm -rf dirname (careful!).

Caution advised when piping yes to a potentially dangerous system command, such as
fsck or fdisk. It might have unintended consequences.
The yes command parses variables, or more accurately, it echoes parsed variables. For
example:

bash$ yes $BASH_VERSION
3.1.17(1)-release

 3.1.17(1)-release
 3.1.17(1)-release
 3.1.17(1)-release
 3.1.17(1)-release
 . . .

This particular "feature" may be used to create a very large ASCII file on the fly:

bash$ yes $PATH > huge_file.txt
Ctl-C

Hit Ctl-C very quickly, or you just might get more than you bargained for. . . .
The yes command may be emulated in a very simple script function.

 1 yes ()
 2 { # Trivial emulation of "yes" ...
 3 local DEFAULT_TEXT="y"
 4 while [true] # Endless loop.
 5 do
 6 if [-z "$1"]
 7 then
 8 echo "$DEFAULT_TEXT"
 9 else # If argument ...
 10 echo "$1" # ... expand and echo it.
 11 fi
 12 done # The only things missing are the
 13 } #+ --help and --version options.

banner
Prints arguments as a large vertical banner to stdout, using an ASCII character (default '#'). This
may be redirected to a printer for hardcopy.

Note that banner has been dropped from many Linux distros, presumably because it is no longer
considered useful.

printenv
Show all the environmental variables set for a particular user.

bash$ printenv | grep HOME
HOME=/home/bozo

lp
The lp and lpr commands send file(s) to the print queue, to be printed as hard copy. [2] These
commands trace the origin of their names to the line printers of another era. [3]

bash$ lp file1.txt or bash lp <file1.txt

It is often useful to pipe the formatted output from pr to lp.

bash$ pr -options file1.txt | lp

Formatting packages, such as groff and Ghostscript may send their output directly to lp.

bash$ groff -Tascii file.tr | lp

bash$ gs -options | lp file.ps

Related commands are lpq, for viewing the print queue, and lprm, for removing jobs from the print
queue.

tee
[UNIX borrows an idea from the plumbing trade.]

This is a redirection operator, but with a difference. Like the plumber's tee, it permits "siphoning off"
to a file the output of a command or commands within a pipe, but without affecting the result. This is
useful for printing an ongoing process to a file or paper, perhaps to keep track of it for debugging
purposes.

 (redirection)
 |----> to file
 |
 ==========================|====================
 command ---> command ---> |tee ---> command ---> ---> output of pipe
 ===

 1 cat listfile* | sort | tee check.file | uniq > result.file
 2 # ^^^^^^^^^^^^^^ ^^^^
 3
 4 # The file "check.file" contains the concatenated sorted "listfiles,"
 5 #+ before the duplicate lines are removed by 'uniq.'

mkfifo
This obscure command creates a named pipe, a temporary first-in-first-out buffer for transferring data
between processes. [4] Typically, one process writes to the FIFO, and the other reads from it. See
Example A-14.

 1 #!/bin/bash
 2 # This short script by Omair Eshkenazi.
 3 # Used in ABS Guide with permission (thanks!).
 4
 5 mkfifo pipe1 # Yes, pipes can be given names.
 6 mkfifo pipe2 # Hence the designation "named pipe."
 7
 8 (cut -d' ' -f1 | tr "a-z" "A-Z") >pipe2 <pipe1 &
 9 ls -l | tr -s ' ' | cut -d' ' -f3,9- | tee pipe1 |
 10 cut -d' ' -f2 | paste - pipe2
 11
 12 rm -f pipe1
 13 rm -f pipe2
 14
 15 # No need to kill background processes when script terminates (why not?).
 16
 17 exit $?
 18
 19 Now, invoke the script and explain the output:
 20 sh mkfifo-example.sh
 21
 22 4830.tar.gz BOZO
 23 pipe1 BOZO
 24 pipe2 BOZO
 25 mkfifo-example.sh BOZO
 26 Mixed.msg BOZO

pathchk

This command checks the validity of a filename. If the filename exceeds the maximum allowable
length (255 characters) or one or more of the directories in its path is not searchable, then an error
message results.

Unfortunately, pathchk does not return a recognizable error code, and it is therefore pretty much
useless in a script. Consider instead the file test operators.

dd
Though this somewhat obscure and much feared data duplicator command originated as a utility for
exchanging data on magnetic tapes between UNIX minicomputers and IBM mainframes, it still has its
uses. The dd command simply copies a file (or stdin/stdout), but with conversions. Possible
conversions include ASCII/EBCDIC, [5] upper/lower case, swapping of byte pairs between input and
output, and skipping and/or truncating the head or tail of the input file.

 1 # Converting a file to all uppercase:
 2
 3 dd if=$filename conv=ucase > $filename.uppercase
 4 # lcase # For lower case conversion

Some basic options to dd are:

if=INFILE

INFILE is the source file.

◊

of=OUTFILE

OUTFILE is the target file, the file that will have the data written to it.

◊

bs=BLOCKSIZE

This is the size of each block of data being read and written, usually a power of 2.

◊

skip=BLOCKS

How many blocks of data to skip in INFILE before starting to copy. This is useful when the
INFILE has "garbage" or garbled data in its header or when it is desirable to copy only a
portion of the INFILE.

◊

seek=BLOCKS

How many blocks of data to skip in OUTFILE before starting to copy, leaving blank data at
beginning of OUTFILE.

◊

count=BLOCKS

Copy only this many blocks of data, rather than the entire INFILE.

◊

conv=CONVERSION

Type of conversion to be applied to INFILE data before copying operation.

◊

A dd --help lists all the options this powerful utility takes.

Example 16-57. A script that copies itself

 1 #!/bin/bash
 2 # self-copy.sh
 3
 4 # This script copies itself.
 5
 6 file_subscript=copy
 7

 8 dd if=$0 of=$0.$file_subscript 2>/dev/null
 9 # Suppress messages from dd: ^^^^^^^^^^^
 10
 11 exit $?
 12
 13 # A program whose only output is its own source code
 14 #+ is called a "quine" per Willard Quine.
 15 # Does this script qualify as a quine?

Example 16-58. Exercising dd

 1 #!/bin/bash
 2 # exercising-dd.sh
 3
 4 # Script by Stephane Chazelas.
 5 # Somewhat modified by ABS Guide author.
 6
 7 infile=$0 # This script.
 8 outfile=log.txt # Output file left behind.
 9 n=8
 10 p=11
 11
 12 dd if=$infile of=$outfile bs=1 skip=$((n-1)) count=$((p-n+1)) 2> /dev/null
 13 # Extracts characters n to p (8 to 11) from this script ("bash").
 14
 15 # --
 16
 17 echo -n "hello vertical world" | dd cbs=1 conv=unblock 2> /dev/null
 18 # Echoes "hello vertical world" vertically downward.
 19 # Why? A newline follows each character dd emits.
 20
 21 exit $?

To demonstrate just how versatile dd is, let's use it to capture keystrokes.

Example 16-59. Capturing Keystrokes

 1 #!/bin/bash
 2 # dd-keypress.sh: Capture keystrokes without needing to press ENTER.
 3
 4
 5 keypresses=4 # Number of keypresses to capture.
 6
 7
 8 old_tty_setting=$(stty -g) # Save old terminal settings.
 9
 10 echo "Press $keypresses keys."
 11 stty -icanon -echo # Disable canonical mode.
 12 # Disable local echo.
 13 keys=$(dd bs=1 count=$keypresses 2> /dev/null)
 14 # 'dd' uses stdin, if "if" (input file) not specified.
 15
 16 stty "$old_tty_setting" # Restore old terminal settings.
 17
 18 echo "You pressed the \"$keys\" keys."
 19
 20 # Thanks, Stephane Chazelas, for showing the way.
 21 exit 0

The dd command can do random access on a data stream.

 1 echo -n . | dd bs=1 seek=4 of=file conv=notrunc
 2 # The "conv=notrunc" option means that the output file
 3 #+ will not be truncated.
 4
 5 # Thanks, S.C.

The dd command can copy raw data and disk images to and from devices, such as floppies and tape
drives (Example A-5). A common use is creating boot floppies.

dd if=kernel-image of=/dev/fd0H1440

Similarly, dd can copy the entire contents of a floppy, even one formatted with a "foreign" OS, to the
hard drive as an image file.

dd if=/dev/fd0 of=/home/bozo/projects/floppy.img

Likewise, dd can create bootable flash drives and SD cards.

dd if=image.iso of=/dev/sdb

Example 16-60. Preparing a bootable SD card for the Raspberry Pi

 1 #!/bin/bash
 2 # rp.sdcard.sh
 3 # Preparing an SD card with a bootable image for the Raspberry Pi.
 4
 5 # $1 = imagefile name
 6 # $2 = sdcard (device file)
 7 # Otherwise defaults to the defaults, see below.
 8
 9 DEFAULTbs=4M # Block size, 4 mb default.
 10 DEFAULTif="2013-07-26-wheezy-raspbian.img" # Commonly used distro.
 11 DEFAULTsdcard="/dev/mmcblk0" # May be different. Check!
 12 ROOTUSER_NAME=root # Must run as root!
 13 E_NOTROOT=81
 14 E_NOIMAGE=82
 15
 16 username=$(id -nu) # Who is running this script?
 17 if ["$username" != "$ROOTUSER_NAME"]
 18 then
 19 echo "This script must run as root or with root privileges."
 20 exit $E_NOTROOT
 21 fi
 22
 23 if [-n "$1"]
 24 then
 25 imagefile="$1"
 26 else
 27 imagefile="$DEFAULTif"
 28 fi
 29
 30 if [-n "$2"]
 31 then
 32 sdcard="$2"

 33 else
 34 sdcard="$DEFAULTsdcard"
 35 fi
 36
 37 if [! -e $imagefile]
 38 then
 39 echo "Image file \"$imagefile\" not found!"
 40 exit $E_NOIMAGE
 41 fi
 42
 43 echo "Last chance to change your mind!"; echo
 44 read -s -n1 -p "Hit a key to write $imagefile to $sdcard [Ctl-c to exit]."
 45 echo; echo
 46
 47 echo "Writing $imagefile to $sdcard ..."
 48 dd bs=$DEFAULTbs if=$imagefile of=$sdcard
 49
 50 exit $?
 51
 52 # Exercises:
 53 # ---------
 54 # 1) Provide additional error checking.
 55 # 2) Have script autodetect device file for SD card (difficult!).
 56 # 3) Have script sutodetect image file (*img) in $PWD.

Other applications of dd include initializing temporary swap files (Example 31-2) and ramdisks
(Example 31-3). It can even do a low-level copy of an entire hard drive partition, although this is not
necessarily recommended.

People (with presumably nothing better to do with their time) are constantly thinking of interesting
applications of dd.

Example 16-61. Securely deleting a file

 1 #!/bin/bash
 2 # blot-out.sh: Erase "all" traces of a file.
 3
 4 # This script overwrites a target file alternately
 5 #+ with random bytes, then zeros before finally deleting it.
 6 # After that, even examining the raw disk sectors by conventional methods
 7 #+ will not reveal the original file data.
 8
 9 PASSES=7 # Number of file-shredding passes.
 10 # Increasing this slows script execution,
 11 #+ especially on large target files.
 12 BLOCKSIZE=1 # I/O with /dev/urandom requires unit block size,
 13 #+ otherwise you get weird results.
 14 E_BADARGS=70 # Various error exit codes.
 15 E_NOT_FOUND=71
 16 E_CHANGED_MIND=72
 17
 18 if [-z "$1"] # No filename specified.
 19 then
 20 echo "Usage: `basename $0` filename"
 21 exit $E_BADARGS
 22 fi
 23
 24 file=$1
 25
 26 if [! -e "$file"]

 27 then
 28 echo "File \"$file\" not found."
 29 exit $E_NOT_FOUND
 30 fi
 31
 32 echo; echo -n "Are you absolutely sure you want to blot out \"$file\" (y/n)? "
 33 read answer
 34 case "$answer" in
 35 [nN]) echo "Changed your mind, huh?"
 36 exit $E_CHANGED_MIND
 37 ;;
 38 *) echo "Blotting out file \"$file\".";;
 39 esac
 40
 41
 42 flength=$(ls -l "$file" | awk '{print $5}') # Field 5 is file length.
 43 pass_count=1
 44
 45 chmod u+w "$file" # Allow overwriting/deleting the file.
 46
 47 echo
 48
 49 while ["$pass_count" -le "$PASSES"]
 50 do
 51 echo "Pass #$pass_count"
 52 sync # Flush buffers.
 53 dd if=/dev/urandom of=$file bs=$BLOCKSIZE count=$flength
 54 # Fill with random bytes.
 55 sync # Flush buffers again.
 56 dd if=/dev/zero of=$file bs=$BLOCKSIZE count=$flength
 57 # Fill with zeros.
 58 sync # Flush buffers yet again.
 59 let "pass_count += 1"
 60 echo
 61 done
 62
 63
 64 rm -f $file # Finally, delete scrambled and shredded file.
 65 sync # Flush buffers a final time.
 66
 67 echo "File \"$file\" blotted out and deleted."; echo
 68
 69
 70 exit 0
 71
 72 # This is a fairly secure, if inefficient and slow method
 73 #+ of thoroughly "shredding" a file.
 74 # The "shred" command, part of the GNU "fileutils" package,
 75 #+ does the same thing, although more efficiently.
 76
 77 # The file cannot not be "undeleted" or retrieved by normal methods.
 78 # However . . .
 79 #+ this simple method would *not* likely withstand
 80 #+ sophisticated forensic analysis.
 81
 82 # This script may not play well with a journaled file system.
 83 # Exercise (difficult): Fix it so it does.
 84
 85
 86
 87 # Tom Vier's "wipe" file-deletion package does a much more thorough job
 88 #+ of file shredding than this simple script.
 89 # http://www.ibiblio.org/pub/Linux/utils/file/wipe-2.0.0.tar.bz2
 90
 91 # For an in-depth analysis on the topic of file deletion and security,
 92 #+ see Peter Gutmann's paper,

 93 #+ "Secure Deletion of Data From Magnetic and Solid-State Memory".
 94 # http://www.cs.auckland.ac.nz/~pgut001/pubs/secure_del.html

See also the dd thread entry in the bibliography.
od

The od, or octal dump filter converts input (or files) to octal (base-8) or other bases. This is useful for
viewing or processing binary data files or otherwise unreadable system device files, such as
/dev/urandom, and as a filter for binary data.

 1 head -c4 /dev/urandom | od -N4 -tu4 | sed -ne '1s/.* //p'
 2 # Sample output: 1324725719, 3918166450, 2989231420, etc.
 3
 4 # From rnd.sh example script, by Stéphane Chazelas

See also Example 9-16 and Example A-36.
hexdump

Performs a hexadecimal, octal, decimal, or ASCII dump of a binary file. This command is the rough
equivalent of od, above, but not nearly as useful. May be used to view the contents of a binary file, in
combination with dd and less.

 1 dd if=/bin/ls | hexdump -C | less
 2 # The -C option nicely formats the output in tabular form.

objdump
Displays information about an object file or binary executable in either hexadecimal form or as a
disassembled listing (with the -d option).

bash$ objdump -d /bin/ls
/bin/ls: file format elf32-i386

 Disassembly of section .init:

 080490bc <.init>:
 80490bc: 55 push %ebp
 80490bd: 89 e5 mov %esp,%ebp
 . . .

mcookie
This command generates a "magic cookie," a 128-bit (32-character) pseudorandom hexadecimal
number, normally used as an authorization "signature" by the X server. This also available for use in a
script as a "quick 'n dirty" random number.

 1 random000=$(mcookie)

Of course, a script could use md5sum for the same purpose.

 1 # Generate md5 checksum on the script itself.
 2 random001=`md5sum $0 | awk '{print $1}'`
 3 # Uses 'awk' to strip off the filename.

The mcookie command gives yet another way to generate a "unique" filename.

Example 16-62. Filename generator

 1 #!/bin/bash
 2 # tempfile-name.sh: temp filename generator
 3
 4 BASE_STR=`mcookie` # 32-character magic cookie.
 5 POS=11 # Arbitrary position in magic cookie string.
 6 LEN=5 # Get $LEN consecutive characters.
 7

 8 prefix=temp # This is, after all, a "temp" file.
 9 # For more "uniqueness," generate the
 10 #+ filename prefix using the same method
 11 #+ as the suffix, below.
 12
 13 suffix=${BASE_STR:POS:LEN}
 14 # Extract a 5-character string,
 15 #+ starting at position 11.
 16
 17 temp_filename=$prefix.$suffix
 18 # Construct the filename.
 19
 20 echo "Temp filename = "$temp_filename""
 21
 22 # sh tempfile-name.sh
 23 # Temp filename = temp.e19ea
 24
 25 # Compare this method of generating "unique" filenames
 26 #+ with the 'date' method in ex51.sh.
 27
 28 exit 0

units
This utility converts between different units of measure. While normally invoked in interactive mode,
units may find use in a script.

Example 16-63. Converting meters to miles

 1 #!/bin/bash
 2 # unit-conversion.sh
 3 # Must have 'units' utility installed.
 4
 5
 6 convert_units () # Takes as arguments the units to convert.
 7 {
 8 cf=$(units "$1" "$2" | sed --silent -e '1p' | awk '{print $2}')
 9 # Strip off everything except the actual conversion factor.
 10 echo "$cf"
 11 }
 12
 13 Unit1=miles
 14 Unit2=meters
 15 cfactor=`convert_units $Unit1 $Unit2`
 16 quantity=3.73
 17
 18 result=$(echo $quantity*$cfactor | bc)
 19
 20 echo "There are $result $Unit2 in $quantity $Unit1."
 21
 22 # What happens if you pass incompatible units,
 23 #+ such as "acres" and "miles" to the function?
 24
 25 exit 0
 26
 27 # Exercise: Edit this script to accept command-line parameters,
 28 # with appropriate error checking, of course.

m4
A hidden treasure, m4 is a powerful macro [6] processing filter, virtually a complete language.
Although originally written as a pre-processor for RatFor, m4 turned out to be useful as a stand-alone
utility. In fact, m4 combines some of the functionality of eval, tr, and awk, in addition to its extensive

macro expansion facilities.

The April, 2002 issue of Linux Journal has a very nice article on m4 and its uses.

Example 16-64. Using m4

 1 #!/bin/bash
 2 # m4.sh: Using the m4 macro processor
 3
 4 # Strings
 5 string=abcdA01
 6 echo "len($string)" | m4 # 7
 7 echo "substr($string,4)" | m4 # A01
 8 echo "regexp($string,[0-1][0-1],\&Z)" | m4 # 01Z
 9
 10 # Arithmetic
 11 var=99
 12 echo "incr($var)" | m4 # 100
 13 echo "eval($var / 3)" | m4 # 33
 14
 15 exit

xmessage
This X-based variant of echo pops up a message/query window on the desktop.

 1 xmessage Left click to continue -button okay

zenity
The zenity utility is adept at displaying GTK+ dialog widgets and very suitable for scripting purposes.

doexec
The doexec command enables passing an arbitrary list of arguments to a binary executable. In
particular, passing argv[0] (which corresponds to $0 in a script) lets the executable be invoked by
various names, and it can then carry out different sets of actions, according to the name by which it
was called. What this amounts to is roundabout way of passing options to an executable.

For example, the /usr/local/bin directory might contain a binary called "aaa". Invoking doexec
/usr/local/bin/aaa list would list all those files in the current working directory beginning with an "a",
while invoking (the same executable with) doexec /usr/local/bin/aaa delete would delete those files.

The various behaviors of the executable must be defined within the code of the
executable itself, analogous to something like the following in a shell script:

 1 case `basename $0` in
 2 "name1") do_something;;
 3 "name2") do_something_else;;
 4 "name3") do_yet_another_thing;;
 5 *) bail_out;;
 6 esac

dialog
The dialog family of tools provide a method of calling interactive "dialog" boxes from a script. The
more elaborate variations of dialog -- gdialog, Xdialog, and kdialog -- actually invoke X-Windows
widgets.

sox
The sox, or "sound exchange" command plays and performs transformations on sound files. In fact,
the /usr/bin/play executable (now deprecated) is nothing but a shell wrapper for sox.

http://www.linuxjournal.com
http://freshmeat.net/projects/zenity

For example, sox soundfile.wav soundfile.au changes a WAV sound file into a (Sun audio format)
AU sound file.

Shell scripts are ideally suited for batch-processing sox operations on sound files. For examples, see
the Linux Radio Timeshift HOWTO and the MP3do Project.

Notes

[1] This is actually a script adapted from the Debian Linux distribution.
[2] The print queue is the group of jobs "waiting in line" to be printed.
[3] Large mechanical line printers printed a single line of type at a time onto joined sheets of greenbar

paper, to the accompaniment of a great deal of noise. The hardcopy thusly printed was referred to as a
printout.

[4] For an excellent overview of this topic, see Andy Vaught's article, Introduction to Named Pipes, in the
September, 1997 issue of Linux Journal.

[5] EBCDIC (pronounced "ebb-sid-ick") is an acronym for Extended Binary Coded Decimal Interchange
Code, an obsolete IBM data format. A bizarre application of the conv=ebcdic option of dd is as a
quick 'n easy, but not very secure text file encoder.

 1 cat $file | dd conv=swab,ebcdic > $file_encrypted
 2 # Encode (looks like gibberish).
 3 # Might as well switch bytes (swab), too, for a little extra obscurity.
 4
 5 cat $file_encrypted | dd conv=swab,ascii > $file_plaintext
 6 # Decode.

[6] A macro is a symbolic constant that expands into a command string or a set of operations on
parameters. Simply put, it's a shortcut or abbreviation.

Prev Home Next
Math Commands Up System and Administrative

Commands
Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting

Prev Next

http://osl.iu.edu/~tveldhui/radio/
http://savannah.nongnu.org/projects/audiodo
http://www.columbia.edu/cu/computinghistory/1403.html
http://www2.linuxjournal.com/lj-issues/issue41/2156.html
http://www.linuxjournal.com

Chapter 17. System and Administrative Commands
The startup and shutdown scripts in /etc/rc.d illustrate the uses (and usefulness) of many of these
comands. These are usually invoked by root and used for system maintenance or emergency filesystem
repairs. Use with caution, as some of these commands may damage your system if misused.

Users and Groups

users
Show all logged on users. This is the approximate equivalent of who -q.

groups
Lists the current user and the groups she belongs to. This corresponds to the $GROUPS internal
variable, but gives the group names, rather than the numbers.

bash$ groups
bozita cdrom cdwriter audio xgrp

bash$ echo $GROUPS
501

chown, chgrp
The chown command changes the ownership of a file or files. This command is a useful method that
root can use to shift file ownership from one user to another. An ordinary user may not change the
ownership of files, not even her own files. [1]

root# chown bozo *.txt

The chgrp command changes the group ownership of a file or files. You must be owner of the
file(s) as well as a member of the destination group (or root) to use this operation.

 1 chgrp --recursive dunderheads *.data
 2 # The "dunderheads" group will now own all the "*.data" files
 3 #+ all the way down the $PWD directory tree (that's what "recursive" means).

useradd, userdel
The useradd administrative command adds a user account to the system and creates a home directory
for that particular user, if so specified. The corresponding userdel command removes a user account
from the system [2] and deletes associated files.

The adduser command is a synonym for useradd and is usually a symbolic link to it.

usermod
Modify a user account. Changes may be made to the password, group membership, expiration date,
and other attributes of a given user's account. With this command, a user's password may be locked,
which has the effect of disabling the account.

groupmod
Modify a given group. The group name and/or ID number may be changed using this command.

id
The id command lists the real and effective user IDs and the group IDs of the user associated with the
current process. This is the counterpart to the $UID, $EUID, and $GROUPS internal Bash variables.

bash$ id
uid=501(bozo) gid=501(bozo) groups=501(bozo),22(cdrom),80(cdwriter),81(audio)

bash$ echo $UID
501

The id command shows the effective IDs only when they differ from the real ones.

Also see Example 9-5.
lid

The lid (list ID) command shows the group(s) that a given user belongs to, or alternately, the users
belonging to a given group. May be invoked only by root.

root# lid bozo
bozo(gid=500)

root# lid daemon
bin(gid=1)

 daemon(gid=2)
 adm(gid=4)
 lp(gid=7)

who
Show all users logged on to the system.

bash$ who
bozo tty1 Apr 27 17:45

 bozo pts/0 Apr 27 17:46
 bozo pts/1 Apr 27 17:47
 bozo pts/2 Apr 27 17:49

The -m gives detailed information about only the current user. Passing any two arguments to who is
the equivalent of who -m, as in who am i or who The Man.

bash$ who -m
localhost.localdomain!bozo pts/2 Apr 27 17:49

whoami is similar to who -m, but only lists the user name.

bash$ whoami
bozo

w
Show all logged on users and the processes belonging to them. This is an extended version of who.
The output of w may be piped to grep to find a specific user and/or process.

bash$ w | grep startx
bozo tty1 - 4:22pm 6:41 4.47s 0.45s startx

logname
Show current user's login name (as found in /var/run/utmp). This is a near-equivalent to
whoami, above.

bash$ logname
bozo

bash$ whoami
bozo

However . . .

bash$ su
Password:

bash# whoami
root
bash# logname

bozo

While logname prints the name of the logged in user, whoami gives the name of the
user attached to the current process. As we have just seen, sometimes these are not the
same.

su
Runs a program or script as a substitute user. su rjones starts a shell as user rjones. A naked su
defaults to root. See Example A-14.

sudo
Runs a command as root (or another user). This may be used in a script, thus permitting a regular
user to run the script.

 1 #!/bin/bash
 2
 3 # Some commands.
 4 sudo cp /root/secretfile /home/bozo/secret
 5 # Some more commands.

The file /etc/sudoers holds the names of users permitted to invoke sudo.
passwd

Sets, changes, or manages a user's password.

The passwd command can be used in a script, but probably should not be.

Example 17-1. Setting a new password

 1 #!/bin/bash
 2 # setnew-password.sh: For demonstration purposes only.
 3 # Not a good idea to actually run this script.
 4 # This script must be run as root.
 5
 6 ROOT_UID=0 # Root has $UID 0.
 7 E_WRONG_USER=65 # Not root?
 8
 9 E_NOSUCHUSER=70
 10 SUCCESS=0
 11
 12
 13 if ["$UID" -ne "$ROOT_UID"]
 14 then
 15 echo; echo "Only root can run this script."; echo
 16 exit $E_WRONG_USER
 17 else
 18 echo
 19 echo "You should know better than to run this script, root."
 20 echo "Even root users get the blues... "
 21 echo
 22 fi
 23
 24
 25 username=bozo
 26 NEWPASSWORD=security_violation
 27
 28 # Check if bozo lives here.
 29 grep -q "$username" /etc/passwd
 30 if [$? -ne $SUCCESS]
 31 then
 32 echo "User $username does not exist."
 33 echo "No password changed."
 34 exit $E_NOSUCHUSER
 35 fi
 36

 37 echo "$NEWPASSWORD" | passwd --stdin "$username"
 38 # The '--stdin' option to 'passwd' permits
 39 #+ getting a new password from stdin (or a pipe).
 40
 41 echo; echo "User $username's password changed!"
 42
 43 # Using the 'passwd' command in a script is dangerous.
 44
 45 exit 0

The passwd command's -l, -u, and -d options permit locking, unlocking, and deleting a user's
password. Only root may use these options.

ac
Show users' logged in time, as read from /var/log/wtmp. This is one of the GNU accounting
utilities.

bash$ ac
 total 68.08

last
List last logged in users, as read from /var/log/wtmp. This command can also show remote
logins.

For example, to show the last few times the system rebooted:

bash$ last reboot
reboot system boot 2.6.9-1.667 Fri Feb 4 18:18 (00:02)

 reboot system boot 2.6.9-1.667 Fri Feb 4 15:20 (01:27)
 reboot system boot 2.6.9-1.667 Fri Feb 4 12:56 (00:49)
 reboot system boot 2.6.9-1.667 Thu Feb 3 21:08 (02:17)
 . . .

 wtmp begins Tue Feb 1 12:50:09 2005

newgrp
Change user's group ID without logging out. This permits access to the new group's files. Since users
may be members of multiple groups simultaneously, this command finds only limited use.

Kurt Glaesemann points out that the newgrp command could prove helpful in setting
the default group permissions for files a user writes. However, the chgrp command
might be more convenient for this purpose.

Terminals

tty
Echoes the name (filename) of the current user's terminal. Note that each separate xterm window
counts as a different terminal.

bash$ tty
/dev/pts/1

stty
Shows and/or changes terminal settings. This complex command, used in a script, can control
terminal behavior and the way output displays. See the info page, and study it carefully.

Example 17-2. Setting an erase character

 1 #!/bin/bash
 2 # erase.sh: Using "stty" to set an erase character when reading input.

 3
 4 echo -n "What is your name? "
 5 read name # Try to backspace
 6 #+ to erase characters of input.
 7 # Problems?
 8 echo "Your name is $name."
 9
 10 stty erase '#' # Set "hashmark" (#) as erase character.
 11 echo -n "What is your name? "
 12 read name # Use # to erase last character typed.
 13 echo "Your name is $name."
 14
 15 exit 0
 16
 17 # Even after the script exits, the new key value remains set.
 18 # Exercise: How would you reset the erase character to the default value?

Example 17-3. secret password: Turning off terminal echoing

 1 #!/bin/bash
 2 # secret-pw.sh: secret password
 3
 4 echo
 5 echo -n "Enter password "
 6 read passwd
 7 echo "password is $passwd"
 8 echo -n "If someone had been looking over your shoulder, "
 9 echo "your password would have been compromised."
 10
 11 echo && echo # Two line-feeds in an "and list."
 12
 13
 14 stty -echo # Turns off screen echo.
 15 # May also be done with
 16 # read -sp passwd
 17 # A big Thank You to Leigh James for pointing this out.
 18
 19 echo -n "Enter password again "
 20 read passwd
 21 echo
 22 echo "password is $passwd"
 23 echo
 24
 25 stty echo # Restores screen echo.
 26
 27 exit 0
 28
 29 # Do an 'info stty' for more on this useful-but-tricky command.

A creative use of stty is detecting a user keypress (without hitting ENTER).

Example 17-4. Keypress detection

 1 #!/bin/bash
 2 # keypress.sh: Detect a user keypress ("hot keys").
 3
 4 echo
 5
 6 old_tty_settings=$(stty -g) # Save old settings (why?).

 7 stty -icanon
 8 Keypress=$(head -c1) # or $(dd bs=1 count=1 2> /dev/null)
 9 # on non-GNU systems
 10
 11 echo
 12 echo "Key pressed was \""$Keypress"\"."
 13 echo
 14
 15 stty "$old_tty_settings" # Restore old settings.
 16
 17 # Thanks, Stephane Chazelas.
 18
 19 exit 0

Also see Example 9-3 and Example A-43.

terminals and modes

Normally, a terminal works in the canonical mode. When a user hits a key, the resulting character does
not immediately go to the program actually running in this terminal. A buffer local to the terminal stores
keystrokes. When the user hits the ENTER key, this sends all the stored keystrokes to the program
running. There is even a basic line editor inside the terminal.

bash$ stty -a
speed 9600 baud; rows 36; columns 96; line = 0;
 intr = ^C; quit = ^\; erase = ^H; kill = ^U; eof = ^D; eol = <undef>; eol2 = <undef>;
 start = ^Q; stop = ^S; susp = ^Z; rprnt = ^R; werase = ^W; lnext = ^V; flush = ^O;
 ...
 isig icanon iexten echo echoe echok -echonl -noflsh -xcase -tostop -echoprt

Using canonical mode, it is possible to redefine the special keys for the local terminal line editor.

bash$ cat > filexxx
wha<ctl-W>I<ctl-H>foo bar<ctl-U>hello world<ENTER>
<ctl-D>
bash$ cat filexxx
hello world
bash$ wc -c < filexxx
12

The process controlling the terminal receives only 12 characters (11 alphabetic ones, plus a newline),
although the user hit 26 keys.

In non-canonical ("raw") mode, every key hit (including special editing keys such as ctl-H) sends a
character immediately to the controlling process.

The Bash prompt disables both icanon and echo, since it replaces the basic terminal line editor with its
own more elaborate one. For example, when you hit ctl-A at the Bash prompt, there's no ^A echoed by
the terminal, but Bash gets a \1 character, interprets it, and moves the cursor to the begining of the line.

Stéphane Chazelas

setterm
Set certain terminal attributes. This command writes to its terminal's stdout a string that changes
the behavior of that terminal.

bash$ setterm -cursor off
bash$

The setterm command can be used within a script to change the appearance of text written to
stdout, although there are certainly better tools available for this purpose.

 1 setterm -bold on
 2 echo bold hello
 3
 4 setterm -bold off
 5 echo normal hello

tset
Show or initialize terminal settings. This is a less capable version of stty.

bash$ tset -r
Terminal type is xterm-xfree86.

 Kill is control-U (^U).
 Interrupt is control-C (^C).

setserial
Set or display serial port parameters. This command must be run by root and is usually found in a
system setup script.

 1 # From /etc/pcmcia/serial script:
 2
 3 IRQ=`setserial /dev/$DEVICE | sed -e 's/.*IRQ: //'`
 4 setserial /dev/$DEVICE irq 0 ; setserial /dev/$DEVICE irq $IRQ

getty, agetty
The initialization process for a terminal uses getty or agetty to set it up for login by a user. These
commands are not used within user shell scripts. Their scripting counterpart is stty.

mesg
Enables or disables write access to the current user's terminal. Disabling access would prevent another
user on the network to write to the terminal.

It can be quite annoying to have a message about ordering pizza suddenly appear in
the middle of the text file you are editing. On a multi-user network, you might
therefore wish to disable write access to your terminal when you need to avoid
interruptions.

wall
This is an acronym for "write all," i.e., sending a message to all users at every terminal logged into the
network. It is primarily a system administrator's tool, useful, for example, when warning everyone
that the system will shortly go down due to a problem (see Example 19-1).

bash$ wall System going down for maintenance in 5 minutes!
Broadcast message from bozo (pts/1) Sun Jul 8 13:53:27 2001...

 System going down for maintenance in 5 minutes!

If write access to a particular terminal has been disabled with mesg, then wall cannot
send a message to that terminal.

Information and Statistics

uname
Output system specifications (OS, kernel version, etc.) to stdout. Invoked with the -a option, gives
verbose system info (see Example 16-5). The -s option shows only the OS type.

bash$ uname
Linux

bash$ uname -s
Linux

bash$ uname -a
Linux iron.bozo 2.6.15-1.2054_FC5 #1 Tue Mar 14 15:48:33 EST 2006

 i686 i686 i386 GNU/Linux

arch
Show system architecture. Equivalent to uname -m. See Example 11-27.

bash$ arch
i686

bash$ uname -m
i686

lastcomm
Gives information about previous commands, as stored in the /var/account/pacct file.
Command name and user name can be specified by options. This is one of the GNU accounting
utilities.

lastlog
List the last login time of all system users. This references the /var/log/lastlog file.

bash$ lastlog
root tty1 Fri Dec 7 18:43:21 -0700 2001

 bin **Never logged in**
 daemon **Never logged in**
 ...
 bozo tty1 Sat Dec 8 21:14:29 -0700 2001

bash$ lastlog | grep root
root tty1 Fri Dec 7 18:43:21 -0700 2001

This command will fail if the user invoking it does not have read permission for the
/var/log/lastlog file.

lsof
List open files. This command outputs a detailed table of all currently open files and gives
information about their owner, size, the processes associated with them, and more. Of course, lsof
may be piped to grep and/or awk to parse and analyze its results.

bash$ lsof
COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME

 init 1 root mem REG 3,5 30748 30303 /sbin/init
 init 1 root mem REG 3,5 73120 8069 /lib/ld-2.1.3.so
 init 1 root mem REG 3,5 931668 8075 /lib/libc-2.1.3.so
 cardmgr 213 root mem REG 3,5 36956 30357 /sbin/cardmgr
 ...

The lsof command is a useful, if complex administrative tool. If you are unable to dismount a
filesystem and get an error message that it is still in use, then running lsof helps determine which files
are still open on that filesystem. The -i option lists open network socket files, and this can help trace
intrusion or hack attempts.

bash$ lsof -an -i tcp
COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME

 firefox 2330 bozo 32u IPv4 9956 TCP 66.0.118.137:57596->67.112.7.104:http ...

 firefox 2330 bozo 38u IPv4 10535 TCP 66.0.118.137:57708->216.79.48.24:http ...

See Example 30-2 for an effective use of lsof.
strace

System trace: diagnostic and debugging tool for tracing system calls and signals. This command and
ltrace, following, are useful for diagnosing why a given program or package fails to run . . . perhaps
due to missing libraries or related causes.

bash$ strace df
execve("/bin/df", ["df"], [/* 45 vars */]) = 0

 uname({sys="Linux", node="bozo.localdomain", ...}) = 0
 brk(0) = 0x804f5e4

 ...

This is the Linux equivalent of the Solaris truss command.
ltrace

Library trace: diagnostic and debugging tool that traces library calls invoked by a given command.

bash$ ltrace df
__libc_start_main(0x804a910, 1, 0xbfb589a4, 0x804fb70, 0x804fb68 <unfinished ...>:

 setlocale(6, "") = "en_US.UTF-8"
bindtextdomain("coreutils", "/usr/share/locale") = "/usr/share/locale"
textdomain("coreutils") = "coreutils"
__cxa_atexit(0x804b650, 0, 0, 0x8052bf0, 0xbfb58908) = 0
getenv("DF_BLOCK_SIZE") = NULL

 ...

nc
The nc (netcat) utility is a complete toolkit for connecting to and listening to TCP and UDP ports. It is
useful as a diagnostic and testing tool and as a component in simple script-based HTTP clients and
servers.

bash$ nc localhost.localdomain 25
220 localhost.localdomain ESMTP Sendmail 8.13.1/8.13.1;

 Thu, 31 Mar 2005 15:41:35 -0700

A real-life usage example.

Example 17-5. Checking a remote server for identd

 1 #! /bin/sh
 2 ## Duplicate DaveG's ident-scan thingie using netcat. Oooh, he'll be p*ssed.
 3 ## Args: target port [port port port ...]
 4 ## Hose stdout _and_ stderr together.
 5 ##
 6 ## Advantages: runs slower than ident-scan, giving remote inetd less cause
 7 ##+ for alarm, and only hits the few known daemon ports you specify.
 8 ## Disadvantages: requires numeric-only port args, the output sleazitude,
 9 ##+ and won't work for r-services when coming from high source ports.
 10 # Script author: Hobbit <hobbit@avian.org>
 11 # Used in ABS Guide with permission.
 12
 13 # ---
 14 E_BADARGS=65 # Need at least two args.
 15 TWO_WINKS=2 # How long to sleep.
 16 THREE_WINKS=3
 17 IDPORT=113 # Authentication "tap ident" port.
 18 RAND1=999

 19 RAND2=31337
 20 TIMEOUT0=9
 21 TIMEOUT1=8
 22 TIMEOUT2=4
 23 # ---
 24
 25 case "${2}" in
 26 "") echo "Need HOST and at least one PORT." ; exit $E_BADARGS ;;
 27 esac
 28
 29 # Ping 'em once and see if they *are* running identd.
 30 nc -z -w $TIMEOUT0 "$1" $IDPORT || \
 31 { echo "Oops, $1 isn't running identd." ; exit 0 ; }
 32 # -z scans for listening daemons.
 33 # -w $TIMEOUT = How long to try to connect.
 34
 35 # Generate a randomish base port.
 36 RP=`expr $$ % $RAND1 + $RAND2`
 37
 38 TRG="$1"
 39 shift
 40
 41 while test "$1" ; do
 42 nc -v -w $TIMEOUT1 -p ${RP} "$TRG" ${1} < /dev/null > /dev/null &
 43 PROC=$!
 44 sleep $THREE_WINKS
 45 echo "${1},${RP}" | nc -w $TIMEOUT2 -r "$TRG" $IDPORT 2>&1
 46 sleep $TWO_WINKS
 47
 48 # Does this look like a lamer script or what . . . ?
 49 # ABS Guide author comments: "Ain't really all that bad . . .
 50 #+ kinda clever, actually."
 51
 52 kill -HUP $PROC
 53 RP=`expr ${RP} + 1`
 54 shift
 55 done
 56
 57 exit $?
 58
 59 # Notes:
 60 # -----
 61
 62 # Try commenting out line 30 and running this script
 63 #+ with "localhost.localdomain 25" as arguments.
 64
 65 # For more of Hobbit's 'nc' example scripts,
 66 #+ look in the documentation:
 67 #+ the /usr/share/doc/nc-X.XX/scripts directory.

And, of course, there's Dr. Andrew Tridgell's notorious one-line script in the BitKeeper Affair:

 1 echo clone | nc thunk.org 5000 > e2fsprogs.dat

free
Shows memory and cache usage in tabular form. The output of this command lends itself to parsing,
using grep, awk or Perl. The procinfo command shows all the information that free does, and much
more.

bash$ free
 total used free shared buffers cached

 Mem: 30504 28624 1880 15820 1608 16376
 -/+ buffers/cache: 10640 19864
 Swap: 68540 3128 65412

To show unused RAM memory:

bash$ free | grep Mem | awk '{ print $4 }'
1880

procinfo
Extract and list information and statistics from the /proc pseudo-filesystem. This gives a very
extensive and detailed listing.

bash$ procinfo | grep Bootup
Bootup: Wed Mar 21 15:15:50 2001 Load average: 0.04 0.21 0.34 3/47 6829

lsdev
List devices, that is, show installed hardware.

bash$ lsdev
Device DMA IRQ I/O Ports

 --
 cascade 4 2
 dma 0080-008f
 dma1 0000-001f
 dma2 00c0-00df
 fpu 00f0-00ff
 ide0 14 01f0-01f7 03f6-03f6
 ...

du
Show (disk) file usage, recursively. Defaults to current working directory, unless otherwise specified.

bash$ du -ach
1.0k ./wi.sh

 1.0k ./tst.sh
 1.0k ./random.file
 6.0k .
 6.0k total

df
Shows filesystem usage in tabular form.

bash$ df
Filesystem 1k-blocks Used Available Use% Mounted on

 /dev/hda5 273262 92607 166547 36% /
 /dev/hda8 222525 123951 87085 59% /home
 /dev/hda7 1408796 1075744 261488 80% /usr

dmesg
Lists all system bootup messages to stdout. Handy for debugging and ascertaining which device
drivers were installed and which system interrupts in use. The output of dmesg may, of course, be
parsed with grep, sed, or awk from within a script.

bash$ dmesg | grep hda
Kernel command line: ro root=/dev/hda2

 hda: IBM-DLGA-23080, ATA DISK drive
 hda: 6015744 sectors (3080 MB) w/96KiB Cache, CHS=746/128/63
 hda: hda1 hda2 hda3 < hda5 hda6 hda7 > hda4

stat
Gives detailed and verbose statistics on a given file (even a directory or device file) or set of files.

bash$ stat test.cru
 File: "test.cru"

 Size: 49970 Allocated Blocks: 100 Filetype: Regular File
 Mode: (0664/-rw-rw-r--) Uid: (501/ bozo) Gid: (501/ bozo)

 Device: 3,8 Inode: 18185 Links: 1
 Access: Sat Jun 2 16:40:24 2001
 Modify: Sat Jun 2 16:40:24 2001
 Change: Sat Jun 2 16:40:24 2001

If the target file does not exist, stat returns an error message.

bash$ stat nonexistent-file
nonexistent-file: No such file or directory

In a script, you can use stat to extract information about files (and filesystems) and set variables
accordingly.

 1 #!/bin/bash
 2 # fileinfo2.sh
 3
 4 # Per suggestion of Joël Bourquard and . . .
 5 # http://www.linuxquestions.org/questions/showthread.php?t=410766
 6
 7
 8 FILENAME=testfile.txt
 9 file_name=$(stat -c%n "$FILENAME") # Same as "$FILENAME" of course.
 10 file_owner=$(stat -c%U "$FILENAME")
 11 file_size=$(stat -c%s "$FILENAME")
 12 # Certainly easier than using "ls -l $FILENAME"
 13 #+ and then parsing with sed.
 14 file_inode=$(stat -c%i "$FILENAME")
 15 file_type=$(stat -c%F "$FILENAME")
 16 file_access_rights=$(stat -c%A "$FILENAME")
 17
 18 echo "File name: $file_name"
 19 echo "File owner: $file_owner"
 20 echo "File size: $file_size"
 21 echo "File inode: $file_inode"
 22 echo "File type: $file_type"
 23 echo "File access rights: $file_access_rights"
 24
 25 exit 0
 26
 27 sh fileinfo2.sh
 28
 29 File name: testfile.txt
 30 File owner: bozo
 31 File size: 418
 32 File inode: 1730378
 33 File type: regular file
 34 File access rights: -rw-rw-r--

vmstat
Display virtual memory statistics.

bash$ vmstat
 procs memory swap io system cpu

 r b w swpd free buff cache si so bi bo in cs us sy id
 0 0 0 0 11040 2636 38952 0 0 33 7 271 88 8 3 89

uptime
Shows how long the system has been running, along with associated statistics.

bash$ uptime
10:28pm up 1:57, 3 users, load average: 0.17, 0.34, 0.27

A load average of 1 or less indicates that the system handles processes
immediately. A load average greater than 1 means that processes are being

queued. When the load average gets above 3 (on a single-core processor), then
system performance is significantly degraded.

hostname
Lists the system's host name. This command sets the host name in an /etc/rc.d setup script
(/etc/rc.d/rc.sysinit or similar). It is equivalent to uname -n, and a counterpart to the
$HOSTNAME internal variable.

bash$ hostname
localhost.localdomain

bash$ echo $HOSTNAME
localhost.localdomain

Similar to the hostname command are the domainname, dnsdomainname, nisdomainname, and
ypdomainname commands. Use these to display or set the system DNS or NIS/YP domain name.
Various options to hostname also perform these functions.

hostid
Echo a 32-bit hexadecimal numerical identifier for the host machine.

bash$ hostid
7f0100

This command allegedly fetches a "unique" serial number for a particular system.
Certain product registration procedures use this number to brand a particular user
license. Unfortunately, hostid only returns the machine network address in
hexadecimal, with pairs of bytes transposed.

The network address of a typical non-networked Linux machine, is found in
/etc/hosts.

bash$ cat /etc/hosts
127.0.0.1 localhost.localdomain localhost

As it happens, transposing the bytes of 127.0.0.1, we get 0.127.1.0, which
translates in hex to 007f0100, the exact equivalent of what hostid returns, above.
There exist only a few million other Linux machines with this identical hostid.

sar
Invoking sar (System Activity Reporter) gives a very detailed rundown on system statistics. The
Santa Cruz Operation ("Old" SCO) released sar as Open Source in June, 1999.

This command is not part of the base Linux distribution, but may be obtained as part of the sysstat
utilities package, written by Sebastien Godard.

bash$ sar
Linux 2.4.9 (brooks.seringas.fr) 09/26/03

10:30:00 CPU %user %nice %system %iowait %idle
10:40:00 all 2.21 10.90 65.48 0.00 21.41
10:50:00 all 3.36 0.00 72.36 0.00 24.28
11:00:00 all 1.12 0.00 80.77 0.00 18.11
Average: all 2.23 3.63 72.87 0.00 21.27

14:32:30 LINUX RESTART

15:00:00 CPU %user %nice %system %iowait %idle
15:10:00 all 8.59 2.40 17.47 0.00 71.54
15:20:00 all 4.07 1.00 11.95 0.00 82.98
15:30:00 all 0.79 2.94 7.56 0.00 88.71
Average: all 6.33 1.70 14.71 0.00 77.26

http://perso.wanadoo.fr/sebastien.godard/
http://perso.wanadoo.fr/sebastien.godard/
mailto:sebastien.godard@wanadoo.fr

readelf
Show information and statistics about a designated elf binary. This is part of the binutils package.

bash$ readelf -h /bin/bash
ELF Header:

 Magic: 7f 45 4c 46 01 01 01 00 00 00 00 00 00 00 00 00
 Class: ELF32
 Data: 2's complement, little endian
 Version: 1 (current)
 OS/ABI: UNIX - System V
 ABI Version: 0
 Type: EXEC (Executable file)
 . . .

size
The size [/path/to/binary] command gives the segment sizes of a binary executable or archive file.
This is mainly of use to programmers.

bash$ size /bin/bash
 text data bss dec hex filename

 495971 22496 17392 535859 82d33 /bin/bash

System Logs

logger
Appends a user-generated message to the system log (/var/log/messages). You do not have to
be root to invoke logger.

 1 logger Experiencing instability in network connection at 23:10, 05/21.
 2 # Now, do a 'tail /var/log/messages'.

By embedding a logger command in a script, it is possible to write debugging information to
/var/log/messages.

 1 logger -t $0 -i Logging at line "$LINENO".
 2 # The "-t" option specifies the tag for the logger entry.
 3 # The "-i" option records the process ID.
 4
 5 # tail /var/log/message
 6 # ...
 7 # Jul 7 20:48:58 localhost ./test.sh[1712]: Logging at line 3.

logrotate
This utility manages the system log files, rotating, compressing, deleting, and/or e-mailing them, as
appropriate. This keeps the /var/log from getting cluttered with old log files. Usually cron runs
logrotate on a daily basis.

Adding an appropriate entry to /etc/logrotate.conf makes it possible to manage personal log
files, as well as system-wide ones.

Stefano Falsetto has created rottlog, which he considers to be an improved version of
logrotate.

Job Control

ps
Process Statistics: lists currently executing processes by owner and PID (process ID). This is usually
invoked with ax or aux options, and may be piped to grep or sed to search for a specific process (see
Example 15-14 and Example 29-3).

http://www.gnu.org/software/rottlog/

bash$ ps ax | grep sendmail
295 ? S 0:00 sendmail: accepting connections on port 25

To display system processes in graphical "tree" format: ps afjx or ps ax --forest.
pgrep, pkill

Combining the ps command with grep or kill.

bash$ ps a | grep mingetty
2212 tty2 Ss+ 0:00 /sbin/mingetty tty2

 2213 tty3 Ss+ 0:00 /sbin/mingetty tty3
 2214 tty4 Ss+ 0:00 /sbin/mingetty tty4
 2215 tty5 Ss+ 0:00 /sbin/mingetty tty5
 2216 tty6 Ss+ 0:00 /sbin/mingetty tty6
 4849 pts/2 S+ 0:00 grep mingetty

bash$ pgrep mingetty
2212 mingetty

 2213 mingetty
 2214 mingetty
 2215 mingetty
 2216 mingetty

Compare the action of pkill with killall.
pstree

Lists currently executing processes in "tree" format. The -p option shows the PIDs, as well as the
process names.

top
Continuously updated display of most cpu-intensive processes. The -b option displays in text mode,
so that the output may be parsed or accessed from a script.

bash$ top -b
 8:30pm up 3 min, 3 users, load average: 0.49, 0.32, 0.13

 45 processes: 44 sleeping, 1 running, 0 zombie, 0 stopped
 CPU states: 13.6% user, 7.3% system, 0.0% nice, 78.9% idle
 Mem: 78396K av, 65468K used, 12928K free, 0K shrd, 2352K buff
 Swap: 157208K av, 0K used, 157208K free 37244K cached

 PID USER PRI NI SIZE RSS SHARE STAT %CPU %MEM TIME COMMAND
 848 bozo 17 0 996 996 800 R 5.6 1.2 0:00 top
 1 root 8 0 512 512 444 S 0.0 0.6 0:04 init
 2 root 9 0 0 0 0 SW 0.0 0.0 0:00 keventd
 ...

nice

Run a background job with an altered priority. Priorities run from 19 (lowest) to -20 (highest). Only
root may set the negative (higher) priorities. Related commands are renice and snice, which change
the priority of a running process or processes, and skill, which sends a kill signal to a process or
processes.

nohup
Keeps a command running even after user logs off. The command will run as a foreground process
unless followed by &. If you use nohup within a script, consider coupling it with a wait to avoid
creating an orphan or zombie process.

pidof
Identifies process ID (PID) of a running job. Since job control commands, such as kill and renice act
on the PID of a process (not its name), it is sometimes necessary to identify that PID. The pidof
command is the approximate counterpart to the $PPID internal variable.

bash$ pidof xclock

880

Example 17-6. pidof helps kill a process

 1 #!/bin/bash
 2 # kill-process.sh
 3
 4 NOPROCESS=2
 5
 6 process=xxxyyyzzz # Use nonexistent process.
 7 # For demo purposes only...
 8 # ... don't want to actually kill any actual process with this script.
 9 #
 10 # If, for example, you wanted to use this script to logoff the Internet,
 11 # process=pppd
 12
 13 t=`pidof $process` # Find pid (process id) of $process.
 14 # The pid is needed by 'kill' (can't 'kill' by program name).
 15
 16 if [-z "$t"] # If process not present, 'pidof' returns null.
 17 then
 18 echo "Process $process was not running."
 19 echo "Nothing killed."
 20 exit $NOPROCESS
 21 fi
 22
 23 kill $t # May need 'kill -9' for stubborn process.
 24
 25 # Need a check here to see if process allowed itself to be killed.
 26 # Perhaps another " t=`pidof $process` " or ...
 27
 28
 29 # This entire script could be replaced by
 30 # kill $(pidof -x process_name)
 31 # or
 32 # killall process_name
 33 # but it would not be as instructive.
 34
 35 exit 0

fuser
Identifies the processes (by PID) that are accessing a given file, set of files, or directory. May also be
invoked with the -k option, which kills those processes. This has interesting implications for system
security, especially in scripts preventing unauthorized users from accessing system services.

bash$ fuser -u /usr/bin/vim
/usr/bin/vim: 3207e(bozo)

bash$ fuser -u /dev/null
/dev/null: 3009(bozo) 3010(bozo) 3197(bozo) 3199(bozo)

One important application for fuser is when physically inserting or removing storage media, such as
CD ROM disks or USB flash drives. Sometimes trying a umount fails with a device is busy error
message. This means that some user(s) and/or process(es) are accessing the device. An fuser -um
/dev/device_name will clear up the mystery, so you can kill any relevant processes.

bash$ umount /mnt/usbdrive
umount: /mnt/usbdrive: device is busy

bash$ fuser -um /dev/usbdrive
/mnt/usbdrive: 1772c(bozo)

bash$ kill -9 1772
bash$ umount /mnt/usbdrive

The fuser command, invoked with the -n option identifies the processes accessing a port. This is
especially useful in combination with nmap.

root# nmap localhost.localdomain
PORT STATE SERVICE

 25/tcp open smtp

root# fuser -un tcp 25
25/tcp: 2095(root)

root# ps ax | grep 2095 | grep -v grep
2095 ? Ss 0:00 sendmail: accepting connections

cron
Administrative program scheduler, performing such duties as cleaning up and deleting system log
files and updating the slocate database. This is the superuser version of at (although each user may
have their own crontab file which can be changed with the crontab command). It runs as a daemon
and executes scheduled entries from /etc/crontab.

Some flavors of Linux run crond, Matthew Dillon's version of cron.

Process Control and Booting

init

The init command is the parent of all processes. Called in the final step of a bootup, init determines
the runlevel of the system from /etc/inittab. Invoked by its alias telinit, and by root only.

telinit
Symlinked to init, this is a means of changing the system runlevel, usually done for system
maintenance or emergency filesystem repairs. Invoked only by root. This command can be dangerous
-- be certain you understand it well before using!

runlevel
Shows the current and last runlevel, that is, whether the system is halted (runlevel 0), in single-user
mode (1), in multi-user mode (2 or 3), in X Windows (5), or rebooting (6). This command accesses
the /var/run/utmp file.

halt, shutdown, reboot
Command set to shut the system down, usually just prior to a power down.

On some Linux distros, the halt command has 755 permissions, so it can be invoked
by a non-root user. A careless halt in a terminal or a script may shut down the system!

service
Starts or stops a system service. The startup scripts in /etc/init.d and /etc/rc.d use this
command to start services at bootup.

root# /sbin/service iptables stop
Flushing firewall rules: [OK]

 Setting chains to policy ACCEPT: filter [OK]
 Unloading iptables modules: [OK]

Network

nmap
Network mapper and port scanner. This command scans a server to locate open ports and the services
associated with those ports. It can also report information about packet filters and firewalls. This is an
important security tool for locking down a network against hacking attempts.

 1 #!/bin/bash
 2
 3 SERVER=$HOST # localhost.localdomain (127.0.0.1).
 4 PORT_NUMBER=25 # SMTP port.
 5
 6 nmap $SERVER | grep -w "$PORT_NUMBER" # Is that particular port open?
 7 # grep -w matches whole words only,
 8 #+ so this wouldn't match port 1025, for example.
 9
 10 exit 0
 11
 12 # 25/tcp open smtp

ifconfig
Network interface configuration and tuning utility.

bash$ ifconfig -a
lo Link encap:Local Loopback

 inet addr:127.0.0.1 Mask:255.0.0.0
 UP LOOPBACK RUNNING MTU:16436 Metric:1
 RX packets:10 errors:0 dropped:0 overruns:0 frame:0
 TX packets:10 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:700 (700.0 b) TX bytes:700 (700.0 b)

The ifconfig command is most often used at bootup to set up the interfaces, or to shut them down
when rebooting.

 1 # Code snippets from /etc/rc.d/init.d/network
 2
 3 # ...
 4
 5 # Check that networking is up.
 6 [${NETWORKING} = "no"] && exit 0
 7
 8 [-x /sbin/ifconfig] || exit 0
 9
 10 # ...
 11
 12 for i in $interfaces ; do
 13 if ifconfig $i 2>/dev/null | grep -q "UP" >/dev/null 2>&1 ; then
 14 action "Shutting down interface $i: " ./ifdown $i boot
 15 fi
 16 # The GNU-specific "-q" option to "grep" means "quiet", i.e.,
 17 #+ producing no output.
 18 # Redirecting output to /dev/null is therefore not strictly necessary.
 19
 20 # ...
 21
 22 echo "Currently active devices:"
 23 echo `/sbin/ifconfig | grep ^[a-z] | awk '{print $1}'`

 24 # ^^^^^ should be quoted to prevent globbing.
 25 # The following also work.
 26 # echo $(/sbin/ifconfig | awk '/^[a-z]/ { print $1 })'
 27 # echo $(/sbin/ifconfig | sed -e 's/ .*//')
 28 # Thanks, S.C., for additional comments.

See also Example 32-6.
netstat

Show current network statistics and information, such as routing tables and active connections. This
utility accesses information in /proc/net (Chapter 29). See Example 29-4.

netstat -r is equivalent to route.

bash$ netstat
Active Internet connections (w/o servers)

 Proto Recv-Q Send-Q Local Address Foreign Address State
 Active UNIX domain sockets (w/o servers)
 Proto RefCnt Flags Type State I-Node Path
 unix 11 [] DGRAM 906 /dev/log
 unix 3 [] STREAM CONNECTED 4514 /tmp/.X11-unix/X0
 unix 3 [] STREAM CONNECTED 4513
 . . .

A netstat -lptu shows sockets that are listening to ports, and the associated processes.
This can be useful for determining whether a computer has been hacked or
compromised.

iwconfig
This is the command set for configuring a wireless network. It is the wireless equivalent of ifconfig,
above.

ip
General purpose utility for setting up, changing, and analyzing IP (Internet Protocol) networks and
attached devices. This command is part of the iproute2 package.

bash$ ip link show
1: lo: <LOOPBACK,UP> mtu 16436 qdisc noqueue

 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 2: eth0: <BROADCAST,MULTICAST> mtu 1500 qdisc pfifo_fast qlen 1000
 link/ether 00:d0:59:ce:af:da brd ff:ff:ff:ff:ff:ff
 3: sit0: <NOARP> mtu 1480 qdisc noop
 link/sit 0.0.0.0 brd 0.0.0.0

bash$ ip route list
169.254.0.0/16 dev lo scope link

Or, in a script:

 1 #!/bin/bash
 2 # Script by Juan Nicolas Ruiz
 3 # Used with his kind permission.
 4
 5 # Setting up (and stopping) a GRE tunnel.
 6
 7
 8 # --- start-tunnel.sh ---
 9
 10 LOCAL_IP="192.168.1.17"
 11 REMOTE_IP="10.0.5.33"
 12 OTHER_IFACE="192.168.0.100"
 13 REMOTE_NET="192.168.3.0/24"
 14
 15 /sbin/ip tunnel add netb mode gre remote $REMOTE_IP \

 16 local $LOCAL_IP ttl 255
 17 /sbin/ip addr add $OTHER_IFACE dev netb
 18 /sbin/ip link set netb up
 19 /sbin/ip route add $REMOTE_NET dev netb
 20
 21 exit 0 ###
 22
 23 # --- stop-tunnel.sh ---
 24
 25 REMOTE_NET="192.168.3.0/24"
 26
 27 /sbin/ip route del $REMOTE_NET dev netb
 28 /sbin/ip link set netb down
 29 /sbin/ip tunnel del netb
 30
 31 exit 0

route
Show info about or make changes to the kernel routing table.

bash$ route
Destination Gateway Genmask Flags MSS Window irtt Iface

 pm3-67.bozosisp * 255.255.255.255 UH 40 0 0 ppp0
 127.0.0.0 * 255.0.0.0 U 40 0 0 lo
 default pm3-67.bozosisp 0.0.0.0 UG 40 0 0 ppp0

iptables
The iptables command set is a packet filtering tool used mainly for such security purposes as setting
up network firewalls. This is a complex tool, and a detailed explanation of its use is beyond the scope
of this document. Oskar Andreasson's tutorial is a reasonable starting point.

See also shutting down iptables and Example 30-2.
chkconfig

Check network and system configuration. This command lists and manages the network and system
services started at bootup in the /etc/rc?.d directory.

Originally a port from IRIX to Red Hat Linux, chkconfig may not be part of the core installation of
some Linux flavors.

bash$ chkconfig --list
atd 0:off 1:off 2:off 3:on 4:on 5:on 6:off

 rwhod 0:off 1:off 2:off 3:off 4:off 5:off 6:off
 ...

tcpdump
Network packet "sniffer." This is a tool for analyzing and troubleshooting traffic on a network by
dumping packet headers that match specified criteria.

Dump ip packet traffic between hosts bozoville and caduceus:

bash$ tcpdump ip host bozoville and caduceus

Of course, the output of tcpdump can be parsed with certain of the previously discussed text
processing utilities.

Filesystem

mount
Mount a filesystem, usually on an external device, such as a floppy or CDROM. The file

http://www.frozentux.net/iptables-tutorial/iptables-tutorial.html

/etc/fstab provides a handy listing of available filesystems, partitions, and devices, including
options, that may be automatically or manually mounted. The file /etc/mtab shows the currently
mounted filesystems and partitions (including the virtual ones, such as /proc).

mount -a mounts all filesystems and partitions listed in /etc/fstab, except those with a noauto
option. At bootup, a startup script in /etc/rc.d (rc.sysinit or something similar) invokes this
to get everything mounted.

 1 mount -t iso9660 /dev/cdrom /mnt/cdrom
 2 # Mounts CD ROM. ISO 9660 is a standard CD ROM filesystem.
 3 mount /mnt/cdrom
 4 # Shortcut, if /mnt/cdrom listed in /etc/fstab

The versatile mount command can even mount an ordinary file on a block device, and the file will act
as if it were a filesystem. Mount accomplishes that by associating the file with a loopback device. One
application of this is to mount and examine an ISO9660 filesystem image before burning it onto a
CDR. [3]

Example 17-7. Checking a CD image

 1 # As root...
 2
 3 mkdir /mnt/cdtest # Prepare a mount point, if not already there.
 4
 5 mount -r -t iso9660 -o loop cd-image.iso /mnt/cdtest # Mount the image.
 6 # "-o loop" option equivalent to "losetup /dev/loop0"
 7 cd /mnt/cdtest # Now, check the image.
 8 ls -alR # List the files in the directory tree there.
 9 # And so forth.

umount
Unmount a currently mounted filesystem. Before physically removing a previously mounted floppy or
CDROM disk, the device must be umounted, else filesystem corruption may result.

 1 umount /mnt/cdrom
 2 # You may now press the eject button and safely remove the disk.

The automount utility, if properly installed, can mount and unmount floppies or
CDROM disks as they are accessed or removed. On "multispindle" laptops with
swappable floppy and optical drives, this can cause problems, however.

gnome-mount
The newer Linux distros have deprecated mount and umount. The successor, for command-line
mounting of removable storage devices, is gnome-mount. It can take the -d option to mount a device
file by its listing in /dev.

For example, to mount a USB flash drive:

bash$ gnome-mount -d /dev/sda1
gnome-mount 0.4

bash$ df
. . .

 /dev/sda1 63584 12034 51550 19% /media/disk

sync

Forces an immediate write of all updated data from buffers to hard drive (synchronize drive with
buffers). While not strictly necessary, a sync assures the sys admin or user that the data just changed
will survive a sudden power failure. In the olden days, a sync; sync (twice, just to make
absolutely sure) was a useful precautionary measure before a system reboot.

At times, you may wish to force an immediate buffer flush, as when securely deleting a file (see
Example 16-61) or when the lights begin to flicker.

losetup
Sets up and configures loopback devices.

Example 17-8. Creating a filesystem in a file

 1 SIZE=1000000 # 1 meg
 2
 3 head -c $SIZE < /dev/zero > file # Set up file of designated size.
 4 losetup /dev/loop0 file # Set it up as loopback device.
 5 mke2fs /dev/loop0 # Create filesystem.
 6 mount -o loop /dev/loop0 /mnt # Mount it.
 7
 8 # Thanks, S.C.

mkswap
Creates a swap partition or file. The swap area must subsequently be enabled with swapon.

swapon, swapoff
Enable / disable swap partitition or file. These commands usually take effect at bootup and shutdown.

mke2fs
Create a Linux ext2 filesystem. This command must be invoked as root.

Example 17-9. Adding a new hard drive

 1 #!/bin/bash
 2
 3 # Adding a second hard drive to system.
 4 # Software configuration. Assumes hardware already mounted.
 5 # From an article by the author of the ABS Guide.
 6 # In issue #38 of _Linux Gazette_, http://www.linuxgazette.com.
 7
 8 ROOT_UID=0 # This script must be run as root.
 9 E_NOTROOT=67 # Non-root exit error.
 10
 11 if ["$UID" -ne "$ROOT_UID"]
 12 then
 13 echo "Must be root to run this script."
 14 exit $E_NOTROOT
 15 fi
 16
 17 # Use with extreme caution!
 18 # If something goes wrong, you may wipe out your current filesystem.
 19
 20
 21 NEWDISK=/dev/hdb # Assumes /dev/hdb vacant. Check!
 22 MOUNTPOINT=/mnt/newdisk # Or choose another mount point.
 23
 24
 25 fdisk $NEWDISK
 26 mke2fs -cv $NEWDISK1 # Check for bad blocks (verbose output).
 27 # Note: ^ /dev/hdb1, *not* /dev/hdb!
 28 mkdir $MOUNTPOINT

 29 chmod 777 $MOUNTPOINT # Makes new drive accessible to all users.
 30
 31
 32 # Now, test ...
 33 # mount -t ext2 /dev/hdb1 /mnt/newdisk
 34 # Try creating a directory.
 35 # If it works, umount it, and proceed.
 36
 37 # Final step:
 38 # Add the following line to /etc/fstab.
 39 # /dev/hdb1 /mnt/newdisk ext2 defaults 1 1
 40
 41 exit

See also Example 17-8 and Example 31-3.
mkdosfs

Create a DOS FAT filesystem.
tune2fs

Tune ext2 filesystem. May be used to change filesystem parameters, such as maximum mount count.
This must be invoked as root.

This is an extremely dangerous command. Use it at your own risk, as you may
inadvertently destroy your filesystem.

dumpe2fs
Dump (list to stdout) very verbose filesystem info. This must be invoked as root.

root# dumpe2fs /dev/hda7 | grep 'ount count'
dumpe2fs 1.19, 13-Jul-2000 for EXT2 FS 0.5b, 95/08/09

 Mount count: 6
 Maximum mount count: 20

hdparm
List or change hard disk parameters. This command must be invoked as root, and it may be dangerous
if misused.

fdisk
Create or change a partition table on a storage device, usually a hard drive. This command must be
invoked as root.

Use this command with extreme caution. If something goes wrong, you may destroy
an existing filesystem.

fsck, e2fsck, debugfs
Filesystem check, repair, and debug command set.

fsck: a front end for checking a UNIX filesystem (may invoke other utilities). The actual filesystem
type generally defaults to ext2.

e2fsck: ext2 filesystem checker.

debugfs: ext2 filesystem debugger. One of the uses of this versatile, but dangerous command is to
(attempt to) recover deleted files. For advanced users only!

All of these should be invoked as root, and they can damage or destroy a filesystem if
misused.

badblocks
Checks for bad blocks (physical media flaws) on a storage device. This command finds use when
formatting a newly installed hard drive or testing the integrity of backup media. [4] As an example,
badblocks /dev/fd0 tests a floppy disk.

The badblocks command may be invoked destructively (overwrite all data) or in non-destructive
read-only mode. If root user owns the device to be tested, as is generally the case, then root must
invoke this command.

lsusb, usbmodules
The lsusb command lists all USB (Universal Serial Bus) buses and the devices hooked up to them.

The usbmodules command outputs information about the driver modules for connected USB devices.

bash$ lsusb
Bus 001 Device 001: ID 0000:0000

 Device Descriptor:
 bLength 18
 bDescriptorType 1
 bcdUSB 1.00
 bDeviceClass 9 Hub
 bDeviceSubClass 0
 bDeviceProtocol 0
 bMaxPacketSize0 8
 idVendor 0x0000
 idProduct 0x0000

 . . .

lspci
Lists pci busses present.

bash$ lspci
00:00.0 Host bridge: Intel Corporation 82845 845

 (Brookdale) Chipset Host Bridge (rev 04)
 00:01.0 PCI bridge: Intel Corporation 82845 845
 (Brookdale) Chipset AGP Bridge (rev 04)
 00:1d.0 USB Controller: Intel Corporation 82801CA/CAM USB (Hub #1) (rev 02)
 00:1d.1 USB Controller: Intel Corporation 82801CA/CAM USB (Hub #2) (rev 02)
 00:1d.2 USB Controller: Intel Corporation 82801CA/CAM USB (Hub #3) (rev 02)
 00:1e.0 PCI bridge: Intel Corporation 82801 Mobile PCI Bridge (rev 42)

 . . .

mkbootdisk
Creates a boot floppy which can be used to bring up the system if, for example, the MBR (master boot
record) becomes corrupted. Of special interest is the --iso option, which uses mkisofs to create a
bootable ISO9660 filesystem image suitable for burning a bootable CDR.

The mkbootdisk command is actually a Bash script, written by Erik Troan, in the /sbin directory.
mkisofs

Creates an ISO9660 filesystem suitable for a CDR image.
chroot

CHange ROOT directory. Normally commands are fetched from $PATH, relative to /, the default
root directory. This changes the root directory to a different one (and also changes the working
directory to there). This is useful for security purposes, for instance when the system administrator
wishes to restrict certain users, such as those telnetting in, to a secured portion of the filesystem (this
is sometimes referred to as confining a guest user to a "chroot jail"). Note that after a chroot, the
execution path for system binaries is no longer valid.

A chroot /opt would cause references to /usr/bin to be translated to /opt/usr/bin.
Likewise, chroot /aaa/bbb /bin/ls would redirect future instances of ls to /aaa/bbb as
the base directory, rather than / as is normally the case. An alias XX 'chroot /aaa/bbb ls' in a user's
~/.bashrc effectively restricts which portion of the filesystem she may run command "XX" on.

The chroot command is also handy when running from an emergency boot floppy (chroot to
/dev/fd0), or as an option to lilo when recovering from a system crash. Other uses include
installation from a different filesystem (an rpm option) or running a readonly filesystem from a CD
ROM. Invoke only as root, and use with care.

It might be necessary to copy certain system files to a chrooted directory, since the
normal $PATH can no longer be relied upon.

lockfile
This utility is part of the procmail package (www.procmail.org). It creates a lock file, a semaphore
that controls access to a file, device, or resource.

Definition: A semaphore is a flag or signal. (The usage originated in railroading, where a
colored flag, lantern, or striped movable arm semaphore indicated whether a particular track was in
use and therefore unavailable for another train.) A UNIX process can check the appropriate
semaphore to determine whether a particular resource is available/accessible.

The lock file serves as a flag that this particular file, device, or resource is in use by a process (and is
therefore "busy"). The presence of a lock file permits only restricted access (or no access) to other
processes.

 1 lockfile /home/bozo/lockfiles/$0.lock
 2 # Creates a write-protected lockfile prefixed with the name of the script.
 3
 4 lockfile /home/bozo/lockfiles/${0##*/}.lock
 5 # A safer version of the above, as pointed out by E. Choroba.

Lock files are used in such applications as protecting system mail folders from simultaneously being
changed by multiple users, indicating that a modem port is being accessed, and showing that an
instance of Firefox is using its cache. Scripts may check for the existence of a lock file created by a
certain process to check if that process is running. Note that if a script attempts to create a lock file
that already exists, the script will likely hang.

Normally, applications create and check for lock files in the /var/lock directory. [5] A script can
test for the presence of a lock file by something like the following.

 1 appname=xyzip
 2 # Application "xyzip" created lock file "/var/lock/xyzip.lock".
 3
 4 if [-e "/var/lock/$appname.lock"]
 5 then #+ Prevent other programs & scripts
 6 # from accessing files/resources used by xyzip.
 7 ...

flock
Much less useful than the lockfile command is flock. It sets an "advisory" lock on a file and then
executes a command while the lock is on. This is to prevent any other process from setting a lock on
that file until completion of the specified command.

 1 flock $0 cat $0 > lockfile__$0
 2 # Set a lock on the script the above line appears in,
 3 #+ while listing the script to stdout.

Unlike lockfile, flock does not automatically create a lock file.

mknod
Creates block or character device files (may be necessary when installing new hardware on the
system). The MAKEDEV utility has virtually all of the functionality of mknod, and is easier to use.

MAKEDEV

http://www.procmail.org

Utility for creating device files. It must be run as root, and in the /dev directory. It is a sort of
advanced version of mknod.

tmpwatch
Automatically deletes files which have not been accessed within a specified period of time. Usually
invoked by cron to remove stale log files.

Backup

dump, restore
The dump command is an elaborate filesystem backup utility, generally used on larger installations
and networks. [6] It reads raw disk partitions and writes a backup file in a binary format. Files to be
backed up may be saved to a variety of storage media, including disks and tape drives. The restore
command restores backups made with dump.

fdformat
Perform a low-level format on a floppy disk (/dev/fd0*).

System Resources

ulimit
Sets an upper limit on use of system resources. Usually invoked with the -f option, which sets a limit
on file size (ulimit -f 1000 limits files to 1 meg maximum). [7] The -t option limits the coredump
size (ulimit -c 0 eliminates coredumps). Normally, the value of ulimit would be set in
/etc/profile and/or ~/.bash_profile (see Appendix H).

Judicious use of ulimit can protect a system against the dreaded fork bomb.

 1 #!/bin/bash
 2 # This script is for illustrative purposes only.
 3 # Run it at your own peril -- it WILL freeze your system.
 4
 5 while true # Endless loop.
 6 do
 7 $0 & # This script invokes itself . . .
 8 #+ forks an infinite number of times . . .
 9 #+ until the system freezes up because all resources exhausted.
 10 done # This is the notorious "sorcerer's appentice" scenario.
 11
 12 exit 0 # Will not exit here, because this script will never terminate.

A ulimit -Hu XX (where XX is the user process limit) in /etc/profile would abort this script
when it exceeded the preset limit.

quota
Display user or group disk quotas.

setquota
Set user or group disk quotas from the command-line.

umask
User file creation permissions mask. Limit the default file attributes for a particular user. All files
created by that user take on the attributes specified by umask. The (octal) value passed to umask
defines the file permissions disabled. For example, umask 022 ensures that new files will have at
most 755 permissions (777 NAND 022). [8] Of course, the user may later change the attributes of
particular files with chmod. The usual practice is to set the value of umask in /etc/profile
and/or ~/.bash_profile (see Appendix H).

Example 17-10. Using umask to hide an output file from prying eyes

 1 #!/bin/bash
 2 # rot13a.sh: Same as "rot13.sh" script, but writes output to "secure" file.
 3
 4 # Usage: ./rot13a.sh filename
 5 # or ./rot13a.sh <filename
 6 # or ./rot13a.sh and supply keyboard input (stdin)
 7
 8 umask 177 # File creation mask.
 9 # Files created by this script
 10 #+ will have 600 permissions.
 11
 12 OUTFILE=decrypted.txt # Results output to file "decrypted.txt"
 13 #+ which can only be read/written
 14 # by invoker of script (or root).
 15
 16 cat "$@" | tr 'a-zA-Z' 'n-za-mN-ZA-M' > $OUTFILE
 17 # ^^ Input from stdin or a file. ^^^^^^^^^^ Output redirected to file.
 18
 19 exit 0

rdev
Get info about or make changes to root device, swap space, or video mode. The functionality of rdev
has generally been taken over by lilo, but rdev remains useful for setting up a ram disk. This is a
dangerous command, if misused.

Modules

lsmod
List installed kernel modules.

bash$ lsmod
Module Size Used by

 autofs 9456 2 (autoclean)
 opl3 11376 0
 serial_cs 5456 0 (unused)
 sb 34752 0
 uart401 6384 0 [sb]
 sound 58368 0 [opl3 sb uart401]
 soundlow 464 0 [sound]
 soundcore 2800 6 [sb sound]
 ds 6448 2 [serial_cs]
 i82365 22928 2
 pcmcia_core 45984 0 [serial_cs ds i82365]

Doing a cat /proc/modules gives the same information.

insmod
Force installation of a kernel module (use modprobe instead, when possible). Must be invoked as
root.

rmmod
Force unloading of a kernel module. Must be invoked as root.

modprobe
Module loader that is normally invoked automatically in a startup script. Must be invoked as root.

depmod
Creates module dependency file. Usually invoked from a startup script.

modinfo
Output information about a loadable module.

bash$ modinfo hid
filename: /lib/modules/2.4.20-6/kernel/drivers/usb/hid.o

 description: "USB HID support drivers"
 author: "Andreas Gal, Vojtech Pavlik <vojtech@suse.cz>"
 license: "GPL"

Miscellaneous

env
Runs a program or script with certain environmental variables set or changed (without changing the
overall system environment). The [varname=xxx] permits changing the environmental variable
varname for the duration of the script. With no options specified, this command lists all the
environmental variable settings. [9]

The first line of a script (the "sha-bang" line) may use env when the path to the shell or
interpreter is unknown.

 1 #! /usr/bin/env perl
 2
 3 print "This Perl script will run,\n";
 4 print "even when I don't know where to find Perl.\n";
 5
 6 # Good for portable cross-platform scripts,
 7 # where the Perl binaries may not be in the expected place.
 8 # Thanks, S.C.

Or even ...

 1 #!/bin/env bash
 2 # Queries the $PATH enviromental variable for the location of bash.
 3 # Therefore ...
 4 # This script will run where Bash is not in its usual place, in /bin.
 5 ...

ldd
Show shared lib dependencies for an executable file.

bash$ ldd /bin/ls
libc.so.6 => /lib/libc.so.6 (0x4000c000)

/lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x80000000)

watch
Run a command repeatedly, at specified time intervals.

The default is two-second intervals, but this may be changed with the -n option.

 1 watch -n 5 tail /var/log/messages
 2 # Shows tail end of system log, /var/log/messages, every five seconds.

Unfortunately, piping the output of watch command to grep does not work.

strip
Remove the debugging symbolic references from an executable binary. This decreases its size, but
makes debugging it impossible.

This command often occurs in a Makefile, but rarely in a shell script.
nm

List symbols in an unstripped compiled binary.
xrandr

Command-line tool for manipulating the root window of the screen.

Example 17-11. Backlight: changes the brightness of the (laptop) screen backlight

 1 #!/bin/bash
 2 # backlight.sh
 3 # reldate 02dec2011
 4
 5 # A bug in Fedora Core 16/17 messes up the keyboard backlight controls.
 6 # This script is a quick-n-dirty workaround, essentially a shell wrapper
 7 #+ for xrandr. It gives more control than on-screen sliders and widgets.
 8
 9 OUTPUT=$(xrandr | grep LV | awk '{print $1}') # Get display name!
 10 INCR=.05 # For finer-grained control, set INCR to .03 or .02.
 11
 12 old_brightness=$(xrandr --verbose | grep rightness | awk '{ print $2 }')
 13
 14
 15 if [-z "$1"]
 16 then
 17 bright=1 # If no command-line arg, set brightness to 1.0 (default).
 18
 19 else
 20 if ["$1" = "+"]
 21 then
 22 bright=$(echo "scale=2; $old_brightness + $INCR" | bc) # +.05
 23
 24 else
 25 if ["$1" = "-"]
 26 then
 27 bright=$(echo "scale=2; $old_brightness - $INCR" | bc) # -.05
 28
 29 else
 30 if ["$1" = "#"] # Echoes current brightness; does not change it.
 31 then
 32 bright=$old_brightness
 33
 34 else
 35 if [["$1" = "h" || "$1" = "H"]]
 36 then
 37 echo
 38 echo "Usage:"
 39 echo "$0 [No args] Sets/resets brightness to default (1.0)."
 40 echo "$0 + Increments brightness by 0.5."
 41 echo "$0 - Decrements brightness by 0.5."
 42 echo "$0 # Echoes current brightness without changing it."
 43 echo "$0 N (number) Sets brightness to N (useful range .7 - 1.2)."
 44 echo "$0 h [H] Echoes this help message."
 45 echo "$0 any-other Gives xrandr usage message."
 46
 47 bright=$old_brightness
 48
 49 else
 50 bright="$1"
 51
 52 fi
 53 fi
 54 fi
 55 fi
 56 fi
 57
 58
 59 xrandr --output "$OUTPUT" --brightness "$bright" # See xrandr manpage.
 60 # As root!
 61 E_CHANGE0=$?
 62 echo "Current brightness = $bright"
 63
 64 exit $E_CHANGE0

 65
 66
 67 # =========== Or, alternately . . . ==================== #
 68
 69 #!/bin/bash
 70 # backlight2.sh
 71 # reldate 20jun2012
 72
 73 # A bug in Fedora Core 16/17 messes up the keyboard backlight controls.
 74 # This is a quick-n-dirty workaround, an alternate to backlight.sh.
 75
 76 target_dir=\
 77 /sys/devices/pci0000:00/0000:00:01.0/0000:01:00.0/backlight/acpi_video0
 78 # Hardware directory.
 79
 80 actual_brightness=$(cat $target_dir/actual_brightness)
 81 max_brightness=$(cat $target_dir/max_brightness)
 82 Brightness=$target_dir/brightness
 83
 84 let "req_brightness = actual_brightness" # Requested brightness.
 85
 86 if ["$1" = "-"]
 87 then # Decrement brightness 1 notch.
 88 let "req_brightness = $actual_brightness - 1"
 89 else
 90 if ["$1" = "+"]
 91 then # Increment brightness 1 notch.
 92 let "req_brightness = $actual_brightness + 1"
 93 fi
 94 fi
 95
 96 if [$req_brightness -gt $max_brightness]
 97 then
 98 req_brightness=$max_brightness
 99 fi # Do not exceed max. hardware design brightness.
 100
 101 echo
 102
 103 echo "Old brightness = $actual_brightness"
 104 echo "Max brightness = $max_brightness"
 105 echo "Requested brightness = $req_brightness"
 106 echo
 107
 108 # =====================================
 109 echo $req_brightness > $Brightness
 110 # Must be root for this to take effect.
 111 E_CHANGE1=$? # Successful?
 112 # =====================================
 113
 114 if ["$?" -eq 0]
 115 then
 116 echo "Changed brightness!"
 117 else
 118 echo "Failed to change brightness!"
 119 fi
 120
 121 act_brightness=$(cat $Brightness)
 122 echo "Actual brightness = $act_brightness"
 123
 124 scale0=2
 125 sf=100 # Scale factor.
 126 pct=$(echo "scale=$scale0; $act_brightness / $max_brightness * $sf" | bc)
 127 echo "Percentage brightness = $pct%"
 128
 129 exit $E_CHANGE1

rdist
Remote distribution client: synchronizes, clones, or backs up a file system on a remote server.

17.1. Analyzing a System Script

Using our knowledge of administrative commands, let us examine a system script. One of the shortest and
simplest to understand scripts is "killall," [10] used to suspend running processes at system shutdown.

Example 17-12. killall, from /etc/rc.d/init.d

 1 #!/bin/sh
 2
 3 # --> Comments added by the author of this document marked by "# -->".
 4
 5 # --> This is part of the 'rc' script package
 6 # --> by Miquel van Smoorenburg, <miquels@drinkel.nl.mugnet.org>.
 7
 8 # --> This particular script seems to be Red Hat / FC specific
 9 # --> (may not be present in other distributions).
 10
 11 # Bring down all unneeded services that are still running
 12 #+ (there shouldn't be any, so this is just a sanity check)
 13
 14 for i in /var/lock/subsys/*; do
 15 # --> Standard for/in loop, but since "do" is on same line,
 16 # --> it is necessary to add ";".
 17 # Check if the script is there.
 18 [! -f $i] && continue
 19 # --> This is a clever use of an "and list", equivalent to:
 20 # --> if [! -f "$i"]; then continue
 21
 22 # Get the subsystem name.
 23 subsys=${i#/var/lock/subsys/}
 24 # --> Match variable name, which, in this case, is the file name.
 25 # --> This is the exact equivalent of subsys=`basename $i`.
 26
 27 # --> It gets it from the lock file name
 28 # -->+ (if there is a lock file,
 29 # -->+ that's proof the process has been running).
 30 # --> See the "lockfile" entry, above.
 31
 32
 33 # Bring the subsystem down.
 34 if [-f /etc/rc.d/init.d/$subsys.init]; then
 35 /etc/rc.d/init.d/$subsys.init stop
 36 else
 37 /etc/rc.d/init.d/$subsys stop
 38 # --> Suspend running jobs and daemons.
 39 # --> Note that "stop" is a positional parameter,
 40 # -->+ not a shell builtin.
 41 fi
 42 done

That wasn't so bad. Aside from a little fancy footwork with variable matching, there is no new material there.

Exercise 1. In /etc/rc.d/init.d, analyze the halt script. It is a bit longer than killall, but similar in
concept. Make a copy of this script somewhere in your home directory and experiment with it (do not run it as
root). Do a simulated run with the -vn flags (sh -vn scriptname). Add extensive comments. Change
the commands to echos.

Exercise 2. Look at some of the more complex scripts in /etc/rc.d/init.d. Try to understand at least

portions of them. Follow the above procedure to analyze them. For some additional insight, you might also
examine the file sysvinitfiles in /usr/share/doc/initscripts-?.??, which is part of the
"initscripts" documentation.

Notes

[1] This is the case on a Linux machine or a UNIX system with disk quotas.
[2] The userdel command will fail if the particular user being deleted is still logged on.
[3] For more detail on burning CDRs, see Alex Withers' article, Creating CDs, in the October, 1999 issue

of Linux Journal.
[4] The -c option to mke2fs also invokes a check for bad blocks.
[5] Since only root has write permission in the /var/lock directory, a user script cannot set a lock file

there.
[6] Operators of single-user Linux systems generally prefer something simpler for backups, such as tar.
[7] As of the version 4 update of Bash, the -f and -c options take a block size of 512 when in POSIX

mode. Additionally, there are two new options: -b for socket buffer size, and -T for the limit on the
number of threads.

[8] NAND is the logical not-and operator. Its effect is somewhat similar to subtraction.
[9] In Bash and other Bourne shell derivatives, it is possible to set variables in a single command's

environment.

 1 var1=value1 var2=value2 commandXXX
 2 # $var1 and $var2 set in the environment of 'commandXXX' only.

[10] The killall system script should not be confused with the killall command in /usr/bin.

Prev Home Next
Miscellaneous Commands Up Advanced Topics

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Next

http://www2.linuxjournal.com/lj-issues/issue66/3335.html
http://www.linuxjournal.com

Part 5. Advanced Topics

At this point, we are ready to delve into certain of the difficult and unusual aspects of scripting. Along the
way, we will attempt to "push the envelope" in various ways and examine boundary conditions (what happens
when we move into uncharted territory?).

Table of Contents
18. Regular Expressions
19. Here Documents
20. I/O Redirection
21. Subshells
22. Restricted Shells
23. Process Substitution
24. Functions
25. Aliases
26. List Constructs
27. Arrays
28. Indirect References
29. /dev and /proc
30. Network Programming
31. Of Zeros and Nulls
32. Debugging
33. Options
34. Gotchas
35. Scripting With Style
36. Miscellany
37. Bash, versions 2, 3, and 4

Prev Home Next
System and Administrative
Commands

Regular Expressions

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Next

Chapter 18. Regular Expressions
. . . the intellectual activity associated with
software development is largely one of gaining
insight.

--Stowe Boyd

To fully utilize the power of shell scripting, you need to master Regular Expressions. Certain commands and
utilities commonly used in scripts, such as grep, expr, sed and awk, interpret and use REs. As of version 3,
Bash has acquired its own RE-match operator: =~.

18.1. A Brief Introduction to Regular Expressions
An expression is a string of characters. Those characters having an interpretation above and beyond their
literal meaning are called metacharacters. A quote symbol, for example, may denote speech by a person,
ditto, or a meta-meaning [1] for the symbols that follow. Regular Expressions are sets of characters and/or
metacharacters that match (or specify) patterns.

A Regular Expression contains one or more of the following:

A character set. These are the characters retaining their literal meaning. The simplest type of Regular
Expression consists only of a character set, with no metacharacters.

•

An anchor. These designate (anchor) the position in the line of text that the RE is to match. For
example, ^, and $ are anchors.

•

Modifiers. These expand or narrow (modify) the range of text the RE is to match. Modifiers include
the asterisk, brackets, and the backslash.

•

The main uses for Regular Expressions (REs) are text searches and string manipulation. An RE matches a
single character or a set of characters -- a string or a part of a string.

The asterisk -- * -- matches any number of repeats of the character string or RE preceding it,
including zero instances.

"1133*" matches 11 + one or more 3's: 113, 1133, 1133333, and so forth.

•

The dot -- . -- matches any one character, except a newline. [2]

"13." matches 13 + at least one of any character (including a space):
1133, 11333, but not 13 (additional character missing).

See Example 16-18 for a demonstration of dot single-character matching.

•

The caret -- ^ -- matches the beginning of a line, but sometimes, depending on context, negates the
meaning of a set of characters in an RE.

•

The dollar sign -- $ -- at the end of an RE matches the end of a line.

"XXX$" matches XXX at the end of a line.

"^$" matches blank lines.

•

Brackets -- [...] -- enclose a set of characters to match in a single RE.

"[xyz]" matches any one of the characters x, y, or z.

"[c-n]" matches any one of the characters in the range c to n.

"[B-Pk-y]" matches any one of the characters in the ranges B to P and k to y.

"[a-z0-9]" matches any single lowercase letter or any digit.

"[^b-d]" matches any character except those in the range b to d. This is an instance of ^ negating or
inverting the meaning of the following RE (taking on a role similar to ! in a different context).

•

Combined sequences of bracketed characters match common word patterns. "[Yy][Ee][Ss]" matches
yes, Yes, YES, yEs, and so forth. "[0-9][0-9][0-9]-[0-9][0-9]-[0-9][0-9][0-9][0-9]" matches any
Social Security number.

The backslash -- \ -- escapes a special character, which means that character gets interpreted literally
(and is therefore no longer special).

A "\$" reverts back to its literal meaning of "$", rather than its RE meaning of end-of-line. Likewise a
"\\" has the literal meaning of "\".

•

Escaped "angle brackets" -- \<...\> -- mark word boundaries.

The angle brackets must be escaped, since otherwise they have only their literal character meaning.

"\<the\>" matches the word "the," but not the words "them," "there," "other," etc.

bash$ cat textfile
This is line 1, of which there is only one instance.

 This is the only instance of line 2.
 This is line 3, another line.
 This is line 4.

bash$ grep 'the' textfile
This is line 1, of which there is only one instance.

 This is the only instance of line 2.
 This is line 3, another line.

bash$ grep '\<the\>' textfile
This is the only instance of line 2.

•

The only way to be certain that a particular RE works is to test it.

 1 TEST FILE: tstfile # No match.
 2 # No match.
 3 Run grep "1133*" on this file. # Match.
 4 # No match.
 5 # No match.
 6 This line contains the number 113. # Match.
 7 This line contains the number 13. # No match.
 8 This line contains the number 133. # No match.
 9 This line contains the number 1133. # Match.
 10 This line contains the number 113312. # Match.
 11 This line contains the number 1112. # No match.
 12 This line contains the number 113312312. # Match.
 13 This line contains no numbers at all. # No match.

bash$ grep "1133*" tstfile
Run grep "1133*" on this file. # Match.

 This line contains the number 113. # Match.
 This line contains the number 1133. # Match.
 This line contains the number 113312. # Match.
 This line contains the number 113312312. # Match.

Extended REs. Additional metacharacters added to the basic set. Used in egrep, awk, and Perl.•

The question mark -- ? -- matches zero or one of the previous RE. It is generally used for matching
single characters.

•

The plus -- + -- matches one or more of the previous RE. It serves a role similar to the *, but does not
match zero occurrences.

 1 # GNU versions of sed and awk can use "+",
 2 # but it needs to be escaped.
 3
 4 echo a111b | sed -ne '/a1\+b/p'
 5 echo a111b | grep 'a1\+b'
 6 echo a111b | gawk '/a1+b/'
 7 # All of above are equivalent.
 8
 9 # Thanks, S.C.

•

Escaped "curly brackets" -- \{ \} -- indicate the number of occurrences of a preceding RE to match.

It is necessary to escape the curly brackets since they have only their literal character meaning
otherwise. This usage is technically not part of the basic RE set.

"[0-9]\{5\}" matches exactly five digits (characters in the range of 0 to 9).

Curly brackets are not available as an RE in the "classic" (non-POSIX compliant)
version of awk. However, the GNU extended version of awk, gawk, has the
--re-interval option that permits them (without being escaped).

bash$ echo 2222 | gawk --re-interval '/2{3}/'
2222

Perl and some egrep versions do not require escaping the curly brackets.

•

Parentheses -- () -- enclose a group of REs. They are useful with the following "|" operator and in
substring extraction using expr.

•

The -- | -- "or" RE operator matches any of a set of alternate characters.

bash$ egrep 're(a|e)d' misc.txt
People who read seem to be better informed than those who do not.

 The clarinet produces sound by the vibration of its reed.

•

Some versions of sed, ed, and ex support escaped versions of the extended Regular Expressions
described above, as do the GNU utilities.

POSIX Character Classes. [:class:]

This is an alternate method of specifying a range of characters to match.

•

[:alnum:] matches alphabetic or numeric characters. This is equivalent to A-Za-z0-9.•
[:alpha:] matches alphabetic characters. This is equivalent to A-Za-z.•
[:blank:] matches a space or a tab.•
[:cntrl:] matches control characters.•
[:digit:] matches (decimal) digits. This is equivalent to 0-9.•
[:graph:] (graphic printable characters). Matches characters in the range of ASCII 33 - 126. This
is the same as [:print:], below, but excluding the space character.

•

[:lower:] matches lowercase alphabetic characters. This is equivalent to a-z.•
[:print:] (printable characters). Matches characters in the range of ASCII 32 - 126. This is the
same as [:graph:], above, but adding the space character.

•

[:space:] matches whitespace characters (space and horizontal tab).•
[:upper:] matches uppercase alphabetic characters. This is equivalent to A-Z.•
[:xdigit:] matches hexadecimal digits. This is equivalent to 0-9A-Fa-f.

POSIX character classes generally require quoting or double brackets ([[]]).

bash$ grep [[:digit:]] test.file
abc=723

 1 # ...
 2 if [[$arow =~ [[:digit:]]]] # Numerical input?
 3 then # POSIX char class
 4 if [[$acol =~ [[:alpha:]]]] # Number followed by a letter? Illegal!
 5 # ...
 6 # From ktour.sh example script.

These character classes may even be used with globbing, to a limited extent.

bash$ ls -l ?[[:digit:]][[:digit:]]?
-rw-rw-r-- 1 bozo bozo 0 Aug 21 14:47 a33b

POSIX character classes are used in Example 16-21 and Example 16-22.

•

Sed, awk, and Perl, used as filters in scripts, take REs as arguments when "sifting" or transforming files or I/O
streams. See Example A-12 and Example A-16 for illustrations of this.

The standard reference on this complex topic is Friedl's Mastering Regular Expressions. Sed & Awk, by
Dougherty and Robbins, also gives a very lucid treatment of REs. See the Bibliography for more information
on these books.

Notes

[1] A meta-meaning is the meaning of a term or expression on a higher level of abstraction. For example,
the literal meaning of regular expression is an ordinary expression that conforms to accepted usage.
The meta-meaning is drastically different, as discussed at length in this chapter.

[2] Since sed, awk, and grep process single lines, there will usually not be a newline to match. In those
cases where there is a newline in a multiple line expression, the dot will match the newline.

 1 #!/bin/bash
 2
 3 sed -e 'N;s/.*/[&]/' << EOF # Here Document
 4 line1
 5 line2
 6 EOF
 7 # OUTPUT:
 8 # [line1
 9 # line2]
 10
 11
 12
 13 echo
 14
 15 awk '{ $0=$1 "\n" $2; if (/line.1/) {print}}' << EOF
 16 line 1
 17 line 2
 18 EOF
 19 # OUTPUT:
 20 # line

 21 # 1
 22
 23
 24 # Thanks, S.C.
 25
 26 exit 0

Prev Home Next
Advanced Topics Up Globbing

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Chapter 18. Regular Expressions Next

18.2. Globbing

Bash itself cannot recognize Regular Expressions. Inside scripts, it is commands and utilities -- such as sed
and awk -- that interpret RE's.

Bash does carry out filename expansion [1] -- a process known as globbing -- but this does not use the
standard RE set. Instead, globbing recognizes and expands wild cards. Globbing interprets the standard wild
card characters [2] -- * and ?, character lists in square brackets, and certain other special characters (such as ^
for negating the sense of a match). There are important limitations on wild card characters in globbing,
however. Strings containing * will not match filenames that start with a dot, as, for example, .bashrc. [3]
Likewise, the ? has a different meaning in globbing than as part of an RE.

bash$ ls -l
total 2

 -rw-rw-r-- 1 bozo bozo 0 Aug 6 18:42 a.1
 -rw-rw-r-- 1 bozo bozo 0 Aug 6 18:42 b.1
 -rw-rw-r-- 1 bozo bozo 0 Aug 6 18:42 c.1
 -rw-rw-r-- 1 bozo bozo 466 Aug 6 17:48 t2.sh
 -rw-rw-r-- 1 bozo bozo 758 Jul 30 09:02 test1.txt

bash$ ls -l t?.sh
-rw-rw-r-- 1 bozo bozo 466 Aug 6 17:48 t2.sh

bash$ ls -l [ab]*
-rw-rw-r-- 1 bozo bozo 0 Aug 6 18:42 a.1

 -rw-rw-r-- 1 bozo bozo 0 Aug 6 18:42 b.1

bash$ ls -l [a-c]*
-rw-rw-r-- 1 bozo bozo 0 Aug 6 18:42 a.1

 -rw-rw-r-- 1 bozo bozo 0 Aug 6 18:42 b.1
 -rw-rw-r-- 1 bozo bozo 0 Aug 6 18:42 c.1

bash$ ls -l [^ab]*
-rw-rw-r-- 1 bozo bozo 0 Aug 6 18:42 c.1

 -rw-rw-r-- 1 bozo bozo 466 Aug 6 17:48 t2.sh
 -rw-rw-r-- 1 bozo bozo 758 Jul 30 09:02 test1.txt

bash$ ls -l {b*,c*,*est*}
-rw-rw-r-- 1 bozo bozo 0 Aug 6 18:42 b.1

 -rw-rw-r-- 1 bozo bozo 0 Aug 6 18:42 c.1
 -rw-rw-r-- 1 bozo bozo 758 Jul 30 09:02 test1.txt

Bash performs filename expansion on unquoted command-line arguments. The echo command demonstrates
this.

bash$ echo *
a.1 b.1 c.1 t2.sh test1.txt

bash$ echo t*
t2.sh test1.txt

bash$ echo t?.sh
t2.sh

It is possible to modify the way Bash interprets special characters in globbing. A set -f command
disables globbing, and the nocaseglob and nullglob options to shopt change globbing behavior.

See also Example 11-5.

Filenames with embedded whitespace can cause globbing to choke. David Wheeler shows how to avoid
many such pitfalls.

 1 IFS="$(printf '\n\t')" # Remove space.
 2
 3 # Correct glob use:
 4 # Always use for-loop, prefix glob, check if exists file.
 5 for file in ./* ; do # Use ./* ... NEVER bare *
 6 if [-e "$file"] ; then # Check whether file exists.
 7 COMMAND ... "$file" ...
 8 fi
 9 done
 10
 11 # This example taken from David Wheeler's site, with permission.

Notes

[1] Filename expansion means expanding filename patterns or templates containing special characters. For
example, example.??? might expand to example.001 and/or example.txt.

[2] A wild card character, analogous to a wild card in poker, can represent (almost) any other character.
[3] Filename expansion can match dotfiles, but only if the pattern explicitly includes the dot as a literal

character.

 1 ~/[.]bashrc # Will not expand to ~/.bashrc
 2 ~/?bashrc # Neither will this.
 3 # Wild cards and metacharacters will NOT
 4 #+ expand to a dot in globbing.
 5
 6 ~/.[b]ashrc # Will expand to ~/.bashrc
 7 ~/.ba?hrc # Likewise.
 8 ~/.bashr* # Likewise.
 9
 10 # Setting the "dotglob" option turns this off.
 11
 12 # Thanks, S.C.

Prev Home Next
Regular Expressions Up Here Documents

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Next

http://www.dwheeler.com/essays/filenames-in-shell.html

Chapter 19. Here Documents
Here and now, boys.

--Aldous Huxley, Island

A here document is a special-purpose code block. It uses a form of I/O redirection to feed a command list to
an interactive program or a command, such as ftp, cat, or the ex text editor.

 1 COMMAND <<InputComesFromHERE
 2 ...
 3 ...
 4 ...
 5 InputComesFromHERE

A limit string delineates (frames) the command list. The special symbol << precedes the limit string. This has
the effect of redirecting the output of a command block into the stdin of the program or command. It is
similar to interactive-program < command-file, where command-file contains

 1 command #1
 2 command #2
 3 ...

The here document equivalent looks like this:

 1 interactive-program <<LimitString
 2 command #1
 3 command #2
 4 ...
 5 LimitString

Choose a limit string sufficiently unusual that it will not occur anywhere in the command list and confuse
matters.

Note that here documents may sometimes be used to good effect with non-interactive utilities and commands,
such as, for example, wall.

Example 19-1. broadcast: Sends message to everyone logged in

 1 #!/bin/bash
 2
 3 wall <<zzz23EndOfMessagezzz23
 4 E-mail your noontime orders for pizza to the system administrator.
 5 (Add an extra dollar for anchovy or mushroom topping.)
 6 # Additional message text goes here.
 7 # Note: 'wall' prints comment lines.
 8 zzz23EndOfMessagezzz23
 9
 10 # Could have been done more efficiently by
 11 # wall <message-file
 12 # However, embedding the message template in a script
 13 #+ is a quick-and-dirty one-off solution.
 14
 15 exit

Even such unlikely candidates as the vi text editor lend themselves to here documents.

Example 19-2. dummyfile: Creates a 2-line dummy file

 1 #!/bin/bash
 2
 3 # Noninteractive use of 'vi' to edit a file.
 4 # Emulates 'sed'.
 5
 6 E_BADARGS=85
 7
 8 if [-z "$1"]
 9 then
 10 echo "Usage: `basename $0` filename"
 11 exit $E_BADARGS
 12 fi
 13
 14 TARGETFILE=$1
 15
 16 # Insert 2 lines in file, then save.
 17 #--------Begin here document-----------#
 18 vi $TARGETFILE <<x23LimitStringx23
 19 i
 20 This is line 1 of the example file.
 21 This is line 2 of the example file.
 22 ^[
 23 ZZ
 24 x23LimitStringx23
 25 #----------End here document-----------#
 26
 27 # Note that ^[above is a literal escape
 28 #+ typed by Control-V <Esc>.
 29
 30 # Bram Moolenaar points out that this may not work with 'vim'
 31 #+ because of possible problems with terminal interaction.
 32
 33 exit

The above script could just as effectively have been implemented with ex, rather than vi. Here documents
containing a list of ex commands are common enough to form their own category, known as ex scripts.

 1 #!/bin/bash
 2 # Replace all instances of "Smith" with "Jones"
 3 #+ in files with a ".txt" filename suffix.
 4
 5 ORIGINAL=Smith
 6 REPLACEMENT=Jones
 7
 8 for word in $(fgrep -l $ORIGINAL *.txt)
 9 do
 10 # -------------------------------------
 11 ex $word <<EOF
 12 :%s/$ORIGINAL/$REPLACEMENT/g
 13 :wq
 14 EOF
 15 # :%s is the "ex" substitution command.
 16 # :wq is write-and-quit.
 17 # -------------------------------------
 18 done

Analogous to "ex scripts" are cat scripts.

Example 19-3. Multi-line message using cat

 1 #!/bin/bash
 2
 3 # 'echo' is fine for printing single line messages,
 4 #+ but somewhat problematic for for message blocks.
 5 # A 'cat' here document overcomes this limitation.
 6
 7 cat <<End-of-message
 8 -------------------------------------
 9 This is line 1 of the message.
 10 This is line 2 of the message.
 11 This is line 3 of the message.
 12 This is line 4 of the message.
 13 This is the last line of the message.
 14 -------------------------------------
 15 End-of-message
 16
 17 # Replacing line 7, above, with
 18 #+ cat > $Newfile <<End-of-message
 19 #+ ^^^^^^^^^^
 20 #+ writes the output to the file $Newfile, rather than to stdout.
 21
 22 exit 0
 23
 24
 25 #--
 26 # Code below disabled, due to "exit 0" above.
 27
 28 # S.C. points out that the following also works.
 29 echo "-------------------------------------
 30 This is line 1 of the message.
 31 This is line 2 of the message.
 32 This is line 3 of the message.
 33 This is line 4 of the message.
 34 This is the last line of the message.
 35 -------------------------------------"
 36 # However, text may not include double quotes unless they are escaped.

The - option to mark a here document limit string (<<-LimitString) suppresses leading tabs (but not
spaces) in the output. This may be useful in making a script more readable.

Example 19-4. Multi-line message, with tabs suppressed

 1 #!/bin/bash
 2 # Same as previous example, but...
 3
 4 # The - option to a here document <<-
 5 #+ suppresses leading tabs in the body of the document,
 6 #+ but *not* spaces.
 7
 8 cat <<-ENDOFMESSAGE
 9 This is line 1 of the message.
 10 This is line 2 of the message.
 11 This is line 3 of the message.
 12 This is line 4 of the message.
 13 This is the last line of the message.
 14 ENDOFMESSAGE
 15 # The output of the script will be flush left.
 16 # Leading tab in each line will not show.
 17
 18 # Above 5 lines of "message" prefaced by a tab, not spaces.
 19 # Spaces not affected by <<- .
 20

 21 # Note that this option has no effect on *embedded* tabs.
 22
 23 exit 0

A here document supports parameter and command substitution. It is therefore possible to pass different
parameters to the body of the here document, changing its output accordingly.

Example 19-5. Here document with replaceable parameters

 1 #!/bin/bash
 2 # Another 'cat' here document, using parameter substitution.
 3
 4 # Try it with no command-line parameters, ./scriptname
 5 # Try it with one command-line parameter, ./scriptname Mortimer
 6 # Try it with one two-word quoted command-line parameter,
 7 # ./scriptname "Mortimer Jones"
 8
 9 CMDLINEPARAM=1 # Expect at least command-line parameter.
 10
 11 if [$# -ge $CMDLINEPARAM]
 12 then
 13 NAME=$1 # If more than one command-line param,
 14 #+ then just take the first.
 15 else
 16 NAME="John Doe" # Default, if no command-line parameter.
 17 fi
 18
 19 RESPONDENT="the author of this fine script"
 20
 21
 22 cat <<Endofmessage
 23
 24 Hello, there, $NAME.
 25 Greetings to you, $NAME, from $RESPONDENT.
 26
 27 # This comment shows up in the output (why?).
 28
 29 Endofmessage
 30
 31 # Note that the blank lines show up in the output.
 32 # So does the comment.
 33
 34 exit

This is a useful script containing a here document with parameter substitution.

Example 19-6. Upload a file pair to Sunsite incoming directory

 1 #!/bin/bash
 2 # upload.sh
 3
 4 # Upload file pair (Filename.lsm, Filename.tar.gz)
 5 #+ to incoming directory at Sunsite/UNC (ibiblio.org).
 6 # Filename.tar.gz is the tarball itself.
 7 # Filename.lsm is the descriptor file.
 8 # Sunsite requires "lsm" file, otherwise will bounce contributions.
 9

 10
 11 E_ARGERROR=85
 12
 13 if [-z "$1"]
 14 then
 15 echo "Usage: `basename $0` Filename-to-upload"
 16 exit $E_ARGERROR
 17 fi
 18
 19
 20 Filename=`basename $1` # Strips pathname out of file name.
 21
 22 Server="ibiblio.org"
 23 Directory="/incoming/Linux"
 24 # These need not be hard-coded into script,
 25 #+ but may instead be changed to command-line argument.
 26
 27 Password="your.e-mail.address" # Change above to suit.
 28
 29 ftp -n $Server <<End-Of-Session
 30 # -n option disables auto-logon
 31
 32 user anonymous "$Password" # If this doesn't work, then try:
 33 # quote user anonymous "$Password"
 34 binary
 35 bell # Ring 'bell' after each file transfer.
 36 cd $Directory
 37 put "$Filename.lsm"
 38 put "$Filename.tar.gz"
 39 bye
 40 End-Of-Session
 41
 42 exit 0

Quoting or escaping the "limit string" at the head of a here document disables parameter substitution within its
body. The reason for this is that quoting/escaping the limit string effectively escapes the $, `, and \ special
characters, and causes them to be interpreted literally. (Thank you, Allen Halsey, for pointing this out.)

Example 19-7. Parameter substitution turned off

 1 #!/bin/bash
 2 # A 'cat' here-document, but with parameter substitution disabled.
 3
 4 NAME="John Doe"
 5 RESPONDENT="the author of this fine script"
 6
 7 cat <<'Endofmessage'
 8
 9 Hello, there, $NAME.
 10 Greetings to you, $NAME, from $RESPONDENT.
 11
 12 Endofmessage
 13
 14 # No parameter substitution when the "limit string" is quoted or escaped.
 15 # Either of the following at the head of the here document would have
 16 #+ the same effect.
 17 # cat <<"Endofmessage"
 18 # cat <<\Endofmessage
 19
 20
 21

 22 # And, likewise:
 23
 24 cat <<"SpecialCharTest"
 25
 26 Directory listing would follow
 27 if limit string were not quoted.
 28 `ls -l`
 29
 30 Arithmetic expansion would take place
 31 if limit string were not quoted.
 32 $((5 + 3))
 33
 34 A a single backslash would echo
 35 if limit string were not quoted.
 36 \\
 37
 38 SpecialCharTest
 39
 40
 41 exit

Disabling parameter substitution permits outputting literal text. Generating scripts or even program code is
one use for this.

Example 19-8. A script that generates another script

 1 #!/bin/bash
 2 # generate-script.sh
 3 # Based on an idea by Albert Reiner.
 4
 5 OUTFILE=generated.sh # Name of the file to generate.
 6
 7
 8 # ---
 9 # 'Here document containing the body of the generated script.
 10 (
 11 cat <<'EOF'
 12 #!/bin/bash
 13
 14 echo "This is a generated shell script."
 15 # Note that since we are inside a subshell,
 16 #+ we can't access variables in the "outside" script.
 17
 18 echo "Generated file will be named: $OUTFILE"
 19 # Above line will not work as normally expected
 20 #+ because parameter expansion has been disabled.
 21 # Instead, the result is literal output.
 22
 23 a=7
 24 b=3
 25
 26 let "c = $a * $b"
 27 echo "c = $c"
 28
 29 exit 0
 30 EOF
 31) > $OUTFILE
 32 # ---
 33
 34 # Quoting the 'limit string' prevents variable expansion
 35 #+ within the body of the above 'here document.'
 36 # This permits outputting literal strings in the output file.

 37
 38 if [-f "$OUTFILE"]
 39 then
 40 chmod 755 $OUTFILE
 41 # Make the generated file executable.
 42 else
 43 echo "Problem in creating file: \"$OUTFILE\""
 44 fi
 45
 46 # This method also works for generating
 47 #+ C programs, Perl programs, Python programs, Makefiles,
 48 #+ and the like.
 49
 50 exit 0

It is possible to set a variable from the output of a here document. This is actually a devious form of command
substitution.

 1 variable=$(cat <<SETVAR
 2 This variable
 3 runs over multiple lines.
 4 SETVAR
 5)
 6
 7 echo "$variable"

A here document can supply input to a function in the same script.

Example 19-9. Here documents and functions

 1 #!/bin/bash
 2 # here-function.sh
 3
 4 GetPersonalData ()
 5 {
 6 read firstname
 7 read lastname
 8 read address
 9 read city
 10 read state
 11 read zipcode
 12 } # This certainly appears to be an interactive function, but . . .
 13
 14
 15 # Supply input to the above function.
 16 GetPersonalData <<RECORD001
 17 Bozo
 18 Bozeman
 19 2726 Nondescript Dr.
 20 Bozeman
 21 MT
 22 21226
 23 RECORD001
 24
 25
 26 echo
 27 echo "$firstname $lastname"
 28 echo "$address"
 29 echo "$city, $state $zipcode"
 30 echo
 31

 32 exit 0

It is possible to use : as a dummy command accepting output from a here document. This, in effect, creates an
"anonymous" here document.

Example 19-10. "Anonymous" Here Document

 1 #!/bin/bash
 2
 3 : <<TESTVARIABLES
 4 ${HOSTNAME?}${USER?}${MAIL?} # Print error message if one of the variables not set.
 5 TESTVARIABLES
 6
 7 exit $?

A variation of the above technique permits "commenting out" blocks of code.

Example 19-11. Commenting out a block of code

 1 #!/bin/bash
 2 # commentblock.sh
 3
 4 : <<COMMENTBLOCK
 5 echo "This line will not echo."
 6 This is a comment line missing the "#" prefix.
 7 This is another comment line missing the "#" prefix.
 8
 9 &*@!!++=
 10 The above line will cause no error message,
 11 because the Bash interpreter will ignore it.
 12 COMMENTBLOCK
 13
 14 echo "Exit value of above \"COMMENTBLOCK\" is $?." # 0
 15 # No error shown.
 16 echo
 17
 18
 19 # The above technique also comes in useful for commenting out
 20 #+ a block of working code for debugging purposes.
 21 # This saves having to put a "#" at the beginning of each line,
 22 #+ then having to go back and delete each "#" later.
 23 # Note that the use of of colon, above, is optional.
 24
 25 echo "Just before commented-out code block."
 26 # The lines of code between the double-dashed lines will not execute.
 27 # ===
 28 : <<DEBUGXXX
 29 for file in *
 30 do
 31 cat "$file"
 32 done
 33 DEBUGXXX
 34 # ===
 35 echo "Just after commented-out code block."
 36
 37 exit 0
 38

 39
 40
 41 ##
 42 # Note, however, that if a bracketed variable is contained within
 43 #+ the commented-out code block,
 44 #+ then this could cause problems.
 45 # for example:
 46
 47
 48 #/!/bin/bash
 49
 50 : <<COMMENTBLOCK
 51 echo "This line will not echo."
 52 &*@!!++=
 53 ${foo_bar_bazz?}
 54 $(rm -rf /tmp/foobar/)
 55 $(touch my_build_directory/cups/Makefile)
 56 COMMENTBLOCK
 57
 58
 59 $ sh commented-bad.sh
 60 commented-bad.sh: line 3: foo_bar_bazz: parameter null or not set
 61
 62 # The remedy for this is to strong-quote the 'COMMENTBLOCK' in line 49, above.
 63
 64 : <<'COMMENTBLOCK'
 65
 66 # Thank you, Kurt Pfeifle, for pointing this out.

Yet another twist of this nifty trick makes "self-documenting" scripts possible.

Example 19-12. A self-documenting script

 1 #!/bin/bash
 2 # self-document.sh: self-documenting script
 3 # Modification of "colm.sh".
 4
 5 DOC_REQUEST=70
 6
 7 if ["$1" = "-h" -o "$1" = "--help"] # Request help.
 8 then
 9 echo; echo "Usage: $0 [directory-name]"; echo
 10 sed --silent -e '/DOCUMENTATIONXX$/,/^DOCUMENTATIONXX$/p' "$0" |
 11 sed -e '/DOCUMENTATIONXX$/d'; exit $DOC_REQUEST; fi
 12
 13
 14 : <<DOCUMENTATIONXX
 15 List the statistics of a specified directory in tabular format.
 16 ---
 17 The command-line parameter gives the directory to be listed.
 18 If no directory specified or directory specified cannot be read,
 19 then list the current working directory.
 20
 21 DOCUMENTATIONXX
 22
 23 if [-z "$1" -o ! -r "$1"]
 24 then
 25 directory=.
 26 else
 27 directory="$1"
 28 fi

 29
 30 echo "Listing of "$directory":"; echo
 31 (printf "PERMISSIONS LINKS OWNER GROUP SIZE MONTH DAY HH:MM PROG-NAME\n" \
 32 ; ls -l "$directory" | sed 1d) | column -t
 33
 34 exit 0

Using a cat script is an alternate way of accomplishing this.

 1 DOC_REQUEST=70
 2
 3 if ["$1" = "-h" -o "$1" = "--help"] # Request help.
 4 then # Use a "cat script" . . .
 5 cat <<DOCUMENTATIONXX
 6 List the statistics of a specified directory in tabular format.
 7 ---
 8 The command-line parameter gives the directory to be listed.
 9 If no directory specified or directory specified cannot be read,
 10 then list the current working directory.
 11
 12 DOCUMENTATIONXX
 13 exit $DOC_REQUEST
 14 fi

See also Example A-28, Example A-40, Example A-41, and Example A-42 for more examples of
self-documenting scripts.

Here documents create temporary files, but these files are deleted after opening and are not accessible to
any other process.

bash$ bash -c 'lsof -a -p $$ -d0' << EOF
> EOF
lsof 1213 bozo 0r REG 3,5 0 30386 /tmp/t1213-0-sh (deleted)

Some utilities will not work inside a here document.

The closing limit string, on the final line of a here document, must start in the first character position.
There can be no leading whitespace. Trailing whitespace after the limit string likewise causes
unexpected behavior. The whitespace prevents the limit string from being recognized. [1]

 1 #!/bin/bash
 2
 3 echo "--"
 4
 5 cat <<LimitString
 6 echo "This is line 1 of the message inside the here document."
 7 echo "This is line 2 of the message inside the here document."
 8 echo "This is the final line of the message inside the here document."
 9 LimitString
 10 #^^^^Indented limit string. Error! This script will not behave as expected.
 11
 12 echo "--"
 13
 14 # These comments are outside the 'here document',
 15 #+ and should not echo.
 16
 17 echo "Outside the here document."
 18
 19 exit 0
 20

 21 echo "This line had better not echo." # Follows an 'exit' command.

Some people very cleverly use a single ! as a limit string. But, that's not necessarily a good idea.

 1 # This works.
 2 cat <<!
 3 Hello!
 4 ! Three more exclamations !!!
 5 !
 6
 7
 8 # But . . .
 9 cat <<!
 10 Hello!
 11 Single exclamation point follows!
 12 !
 13 !
 14 # Crashes with an error message.
 15
 16
 17 # However, the following will work.
 18 cat <<EOF
 19 Hello!
 20 Single exclamation point follows!
 21 !
 22 EOF
 23 # It's safer to use a multi-character limit string.

For those tasks too complex for a here document, consider using the expect scripting language, which was
specifically designed for feeding input into interactive programs.

19.1. Here Strings

A here string can be considered as a stripped-down form of a here document.
It consists of nothing more than COMMAND <<< $WORD,
where $WORD is expanded and fed to the stdin of COMMAND.

As a simple example, consider this alternative to the echo-grep construction.

 1 # Instead of:
 2 if echo "$VAR" | grep -q txt # if [[$VAR = *txt*]]
 3 # etc.
 4
 5 # Try:
 6 if grep -q "txt" <<< "$VAR"
 7 then # ^^^
 8 echo "$VAR contains the substring sequence \"txt\""
 9 fi
 10 # Thank you, Sebastian Kaminski, for the suggestion.

Or, in combination with read:

 1 String="This is a string of words."
 2
 3 read -r -a Words <<< "$String"
 4 # The -a option to "read"
 5 #+ assigns the resulting values to successive members of an array.
 6
 7 echo "First word in String is: ${Words[0]}" # This
 8 echo "Second word in String is: ${Words[1]}" # is
 9 echo "Third word in String is: ${Words[2]}" # a
 10 echo "Fourth word in String is: ${Words[3]}" # string
 11 echo "Fifth word in String is: ${Words[4]}" # of
 12 echo "Sixth word in String is: ${Words[5]}" # words.
 13 echo "Seventh word in String is: ${Words[6]}" # (null)
 14 # Past end of $String.
 15
 16 # Thank you, Francisco Lobo, for the suggestion.

It is, of course, possible to feed the output of a here string into the stdin of a loop.

 1 # As Seamus points out . . .
 2
 3 ArrayVar=(element0 element1 element2 {A..D})
 4
 5 while read element ; do
 6 echo "$element" 1>&2
 7 done <<< $(echo ${ArrayVar[*]})
 8
 9 # element0 element1 element2 A B C D

Example 19-13. Prepending a line to a file

 1 #!/bin/bash
 2 # prepend.sh: Add text at beginning of file.
 3 #
 4 # Example contributed by Kenny Stauffer,
 5 #+ and slightly modified by document author.

 6
 7
 8 E_NOSUCHFILE=85
 9
 10 read -p "File: " file # -p arg to 'read' displays prompt.
 11 if [! -e "$file"]
 12 then # Bail out if no such file.
 13 echo "File $file not found."
 14 exit $E_NOSUCHFILE
 15 fi
 16
 17 read -p "Title: " title
 18 cat - $file <<<$title > $file.new
 19
 20 echo "Modified file is $file.new"
 21
 22 exit # Ends script execution.
 23
 24 from 'man bash':
 25 Here Strings
 26 A variant of here documents, the format is:
 27
 28 <<<word
 29
 30 The word is expanded and supplied to the command on its standard input.
 31
 32
 33 Of course, the following also works:
 34 sed -e '1i\
 35 Title: ' $file

Example 19-14. Parsing a mailbox

 1 #!/bin/bash
 2 # Script by Francisco Lobo,
 3 #+ and slightly modified and commented by ABS Guide author.
 4 # Used in ABS Guide with permission. (Thank you!)
 5
 6 # This script will not run under Bash versions -lt 3.0.
 7
 8
 9 E_MISSING_ARG=87
 10 if [-z "$1"]
 11 then
 12 echo "Usage: $0 mailbox-file"
 13 exit $E_MISSING_ARG
 14 fi
 15
 16 mbox_grep() # Parse mailbox file.
 17 {
 18 declare -i body=0 match=0
 19 declare -a date sender
 20 declare mail header value
 21
 22
 23 while IFS= read -r mail
 24 # ^^^^ Reset $IFS.
 25 # Otherwise "read" will strip leading & trailing space from its input.
 26
 27 do
 28 if [[$mail =~ ^From]] # Match "From" field in message.
 29 then

 30 ((body = 0)) # "Zero out" variables.
 31 ((match = 0))
 32 unset date
 33
 34 elif ((body))
 35 then
 36 ((match))
 37 # echo "$mail"
 38 # Uncomment above line if you want entire body
 39 #+ of message to display.
 40
 41 elif [[$mail]]; then
 42 IFS=: read -r header value <<< "$mail"
 43 # ^^^ "here string"
 44
 45 case "$header" in
 46 [Ff][Rr][Oo][Mm]) [[$value =~ "$2"]] && ((match++)) ;;
 47 # Match "From" line.
 48 [Dd][Aa][Tt][Ee]) read -r -a date <<< "$value" ;;
 49 # ^^^
 50 # Match "Date" line.
 51 [Rr][Ee][Cc][Ee][Ii][Vv][Ee][Dd]) read -r -a sender <<< "$value" ;;
 52 # ^^^
 53 # Match IP Address (may be spoofed).
 54 esac
 55
 56 else
 57 ((body++))
 58 ((match)) &&
 59 echo "MESSAGE ${date:+of: ${date[*]} }"
 60 # Entire $date array ^
 61 echo "IP address of sender: ${sender[1]}"
 62 # Second field of "Received" line ^
 63
 64 fi
 65
 66
 67 done < "$1" # Redirect stdout of file into loop.
 68 }
 69
 70
 71 mbox_grep "$1" # Send mailbox file to function.
 72
 73 exit $?
 74
 75 # Exercises:
 76 # ---------
 77 # 1) Break the single function, above, into multiple functions,
 78 #+ for the sake of readability.
 79 # 2) Add additional parsing to the script, checking for various keywords.
 80
 81
 82
 83 $ mailbox_grep.sh scam_mail
 84 MESSAGE of Thu, 5 Jan 2006 08:00:56 -0500 (EST)
 85 IP address of sender: 196.3.62.4

Exercise: Find other uses for here strings, such as, for example, feeding input to dc.

Notes

[1] Except, as Dennis Benzinger points out, if using <<- to suppress tabs.

Prev Home Next
Globbing Up I/O Redirection

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Next

Chapter 20. I/O Redirection

There are always three default files [1] open, stdin (the keyboard), stdout (the screen), and stderr
(error messages output to the screen). These, and any other open files, can be redirected. Redirection simply
means capturing output from a file, command, program, script, or even code block within a script (see
Example 3-1 and Example 3-2) and sending it as input to another file, command, program, or script.

Each open file gets assigned a file descriptor. [2] The file descriptors for stdin, stdout, and stderr are
0, 1, and 2, respectively. For opening additional files, there remain descriptors 3 to 9. It is sometimes useful to
assign one of these additional file descriptors to stdin, stdout, or stderr as a temporary duplicate link.
[3] This simplifies restoration to normal after complex redirection and reshuffling (see Example 20-1).

 1 COMMAND_OUTPUT >
 2 # Redirect stdout to a file.
 3 # Creates the file if not present, otherwise overwrites it.
 4
 5 ls -lR > dir-tree.list
 6 # Creates a file containing a listing of the directory tree.
 7
 8 : > filename
 9 # The > truncates file "filename" to zero length.
 10 # If file not present, creates zero-length file (same effect as 'touch').
 11 # The : serves as a dummy placeholder, producing no output.
 12
 13 > filename
 14 # The > truncates file "filename" to zero length.
 15 # If file not present, creates zero-length file (same effect as 'touch').
 16 # (Same result as ": >", above, but this does not work with some shells.)
 17
 18 COMMAND_OUTPUT >>
 19 # Redirect stdout to a file.
 20 # Creates the file if not present, otherwise appends to it.
 21
 22
 23 # Single-line redirection commands (affect only the line they are on):
 24 # --
 25
 26 1>filename
 27 # Redirect stdout to file "filename."
 28 1>>filename
 29 # Redirect and append stdout to file "filename."
 30 2>filename
 31 # Redirect stderr to file "filename."
 32 2>>filename
 33 # Redirect and append stderr to file "filename."
 34 &>filename
 35 # Redirect both stdout and stderr to file "filename."
 36 # This operator is now functional, as of Bash 4, final release.
 37
 38 M>N
 39 # "M" is a file descriptor, which defaults to 1, if not explicitly set.
 40 # "N" is a filename.
 41 # File descriptor "M" is redirect to file "N."
 42 M>&N
 43 # "M" is a file descriptor, which defaults to 1, if not set.
 44 # "N" is another file descriptor.
 45
 46 #==
 47
 48 # Redirecting stdout, one line at a time.

 49 LOGFILE=script.log
 50
 51 echo "This statement is sent to the log file, \"$LOGFILE\"." 1>$LOGFILE
 52 echo "This statement is appended to \"$LOGFILE\"." 1>>$LOGFILE
 53 echo "This statement is also appended to \"$LOGFILE\"." 1>>$LOGFILE
 54 echo "This statement is echoed to stdout, and will not appear in \"$LOGFILE\"."
 55 # These redirection commands automatically "reset" after each line.
 56
 57
 58
 59 # Redirecting stderr, one line at a time.
 60 ERRORFILE=script.errors
 61
 62 bad_command1 2>$ERRORFILE # Error message sent to $ERRORFILE.
 63 bad_command2 2>>$ERRORFILE # Error message appended to $ERRORFILE.
 64 bad_command3 # Error message echoed to stderr,
 65 #+ and does not appear in $ERRORFILE.
 66 # These redirection commands also automatically "reset" after each line.
 67 #===

 1 2>&1
 2 # Redirects stderr to stdout.
 3 # Error messages get sent to same place as standard output.
 4 >>filename 2>&1
 5 bad_command >>filename 2>&1
 6 # Appends both stdout and stderr to the file "filename" ...
 7 2>&1 | [command(s)]
 8 bad_command 2>&1 | awk '{print $5}' # found
 9 # Sends stderr through a pipe.
 10 # |& was added to Bash 4 as an abbreviation for 2>&1 |.
 11
 12 i>&j
 13 # Redirects file descriptor i to j.
 14 # All output of file pointed to by i gets sent to file pointed to by j.
 15
 16 >&j
 17 # Redirects, by default, file descriptor 1 (stdout) to j.
 18 # All stdout gets sent to file pointed to by j.

 1 0< FILENAME
 2 < FILENAME
 3 # Accept input from a file.
 4 # Companion command to ">", and often used in combination with it.
 5 #
 6 # grep search-word <filename
 7
 8
 9 [j]<>filename
 10 # Open file "filename" for reading and writing,
 11 #+ and assign file descriptor "j" to it.
 12 # If "filename" does not exist, create it.
 13 # If file descriptor "j" is not specified, default to fd 0, stdin.
 14 #
 15 # An application of this is writing at a specified place in a file.
 16 echo 1234567890 > File # Write string to "File".
 17 exec 3<> File # Open "File" and assign fd 3 to it.
 18 read -n 4 <&3 # Read only 4 characters.
 19 echo -n . >&3 # Write a decimal point there.
 20 exec 3>&- # Close fd 3.
 21 cat File # ==> 1234.67890
 22 # Random access, by golly.
 23
 24
 25
 26 |

 27 # Pipe.
 28 # General purpose process and command chaining tool.
 29 # Similar to ">", but more general in effect.
 30 # Useful for chaining commands, scripts, files, and programs together.
 31 cat *.txt | sort | uniq > result-file
 32 # Sorts the output of all the .txt files and deletes duplicate lines,
 33 # finally saves results to "result-file".

Multiple instances of input and output redirection and/or pipes can be combined in a single command line.

 1 command < input-file > output-file
 2 # Or the equivalent:
 3 < input-file command > output-file # Although this is non-standard.
 4
 5 command1 | command2 | command3 > output-file

See Example 16-31 and Example A-14.

Multiple output streams may be redirected to one file.

 1 ls -yz >> command.log 2>&1
 2 # Capture result of illegal options "yz" in file "command.log."
 3 # Because stderr is redirected to the file,
 4 #+ any error messages will also be there.
 5
 6 # Note, however, that the following does *not* give the same result.
 7 ls -yz 2>&1 >> command.log
 8 # Outputs an error message, but does not write to file.
 9 # More precisely, the command output (in this case, null)
 10 #+ writes to the file, but the error message goes only to stdout.
 11
 12 # If redirecting both stdout and stderr,
 13 #+ the order of the commands makes a difference.

Closing File Descriptors

n<&-
Close input file descriptor n.

0<&-, <&-
Close stdin.

n>&-
Close output file descriptor n.

1>&-, >&-
Close stdout.

Child processes inherit open file descriptors. This is why pipes work. To prevent an fd from being inherited,
close it.

 1 # Redirecting only stderr to a pipe.
 2
 3 exec 3>&1 # Save current "value" of stdout.
 4 ls -l 2>&1 >&3 3>&- | grep bad 3>&- # Close fd 3 for 'grep' (but not 'ls').
 5 # ^^^^ ^^^^
 6 exec 3>&- # Now close it for the remainder of the script.
 7
 8 # Thanks, S.C.

For a more detailed introduction to I/O redirection see Appendix F.

20.1. Using exec

An exec <filename command redirects stdin to a file. From that point on, all stdin comes from that file,
rather than its normal source (usually keyboard input). This provides a method of reading a file line by line
and possibly parsing each line of input using sed and/or awk.

Example 20-1. Redirecting stdin using exec

 1 #!/bin/bash
 2 # Redirecting stdin using 'exec'.
 3
 4
 5 exec 6<&0 # Link file descriptor #6 with stdin.
 6 # Saves stdin.
 7
 8 exec < data-file # stdin replaced by file "data-file"
 9
 10 read a1 # Reads first line of file "data-file".
 11 read a2 # Reads second line of file "data-file."
 12
 13 echo
 14 echo "Following lines read from file."
 15 echo "-------------------------------"
 16 echo $a1
 17 echo $a2
 18
 19 echo; echo; echo
 20
 21 exec 0<&6 6<&-
 22 # Now restore stdin from fd #6, where it had been saved,
 23 #+ and close fd #6 (6<&-) to free it for other processes to use.
 24 #
 25 # <&6 6<&- also works.
 26
 27 echo -n "Enter data "
 28 read b1 # Now "read" functions as expected, reading from normal stdin.
 29 echo "Input read from stdin."
 30 echo "----------------------"
 31 echo "b1 = $b1"
 32
 33 echo
 34
 35 exit 0

Similarly, an exec >filename command redirects stdout to a designated file. This sends all command
output that would normally go to stdout to that file.

exec N > filename affects the entire script or current shell. Redirection in the PID of the script or shell
from that point on has changed. However . . .

N > filename affects only the newly-forked process, not the entire script or shell.

Thank you, Ahmed Darwish, for pointing this out.

Example 20-2. Redirecting stdout using exec

 1 #!/bin/bash
 2 # reassign-stdout.sh
 3
 4 LOGFILE=logfile.txt
 5
 6 exec 6>&1 # Link file descriptor #6 with stdout.
 7 # Saves stdout.
 8
 9 exec > $LOGFILE # stdout replaced with file "logfile.txt".
 10
 11 # --- #
 12 # All output from commands in this block sent to file $LOGFILE.
 13
 14 echo -n "Logfile: "
 15 date
 16 echo "-------------------------------------"
 17 echo
 18
 19 echo "Output of \"ls -al\" command"
 20 echo
 21 ls -al
 22 echo; echo
 23 echo "Output of \"df\" command"
 24 echo
 25 df
 26
 27 # --- #
 28
 29 exec 1>&6 6>&- # Restore stdout and close file descriptor #6.
 30
 31 echo
 32 echo "== stdout now restored to default == "
 33 echo
 34 ls -al
 35 echo
 36
 37 exit 0

Example 20-3. Redirecting both stdin and stdout in the same script with exec

 1 #!/bin/bash
 2 # upperconv.sh
 3 # Converts a specified input file to uppercase.
 4
 5 E_FILE_ACCESS=70
 6 E_WRONG_ARGS=71
 7
 8 if [! -r "$1"] # Is specified input file readable?
 9 then
 10 echo "Can't read from input file!"
 11 echo "Usage: $0 input-file output-file"
 12 exit $E_FILE_ACCESS
 13 fi # Will exit with same error
 14 #+ even if input file ($1) not specified (why?).
 15
 16 if [-z "$2"]
 17 then
 18 echo "Need to specify output file."
 19 echo "Usage: $0 input-file output-file"
 20 exit $E_WRONG_ARGS
 21 fi
 22

 23
 24 exec 4<&0
 25 exec < $1 # Will read from input file.
 26
 27 exec 7>&1
 28 exec > $2 # Will write to output file.
 29 # Assumes output file writable (add check?).
 30
 31 # ---
 32 cat - | tr a-z A-Z # Uppercase conversion.
 33 # ^^^^^ # Reads from stdin.
 34 # ^^^^^^^^^^ # Writes to stdout.
 35 # However, both stdin and stdout were redirected.
 36 # Note that the 'cat' can be omitted.
 37 # ---
 38
 39 exec 1>&7 7>&- # Restore stout.
 40 exec 0<&4 4<&- # Restore stdin.
 41
 42 # After restoration, the following line prints to stdout as expected.
 43 echo "File \"$1\" written to \"$2\" as uppercase conversion."
 44
 45 exit 0

I/O redirection is a clever way of avoiding the dreaded inaccessible variables within a subshell problem.

Example 20-4. Avoiding a subshell

 1 #!/bin/bash
 2 # avoid-subshell.sh
 3 # Suggested by Matthew Walker.
 4
 5 Lines=0
 6
 7 echo
 8
 9 cat myfile.txt | while read line;
 10 do {
 11 echo $line
 12 ((Lines++)); # Incremented values of this variable
 13 #+ inaccessible outside loop.
 14 # Subshell problem.
 15 }
 16 done
 17
 18 echo "Number of lines read = $Lines" # 0
 19 # Wrong!
 20
 21 echo "------------------------"
 22
 23
 24 exec 3<> myfile.txt
 25 while read line <&3
 26 do {
 27 echo "$line"
 28 ((Lines++)); # Incremented values of this variable
 29 #+ accessible outside loop.
 30 # No subshell, no problem.
 31 }
 32 done
 33 exec 3>&-
 34
 35 echo "Number of lines read = $Lines" # 8

 36
 37 echo
 38
 39 exit 0
 40
 41 # Lines below not seen by script.
 42
 43 $ cat myfile.txt
 44
 45 Line 1.
 46 Line 2.
 47 Line 3.
 48 Line 4.
 49 Line 5.
 50 Line 6.
 51 Line 7.
 52 Line 8.

Notes

[1] By convention in UNIX and Linux, data streams and peripherals (device files) are treated as files, in a
fashion analogous to ordinary files.

[2] A file descriptor is simply a number that the operating system assigns to an open file to keep track of it.
Consider it a simplified type of file pointer. It is analogous to a file handle in C.

[3] Using file descriptor 5 might cause problems. When Bash creates a child process, as with
exec, the child inherits fd 5 (see Chet Ramey's archived e-mail, SUBJECT: RE: File descriptor 5 is held
open). Best leave this particular fd alone.

Prev Home Next
Here Documents Up Redirecting Code Blocks

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Chapter 20. I/O Redirection Next

http://groups.google.com/group/gnu.bash.bug/browse_thread/thread/13955daafded3b5c/18c17050087f9f37
http://groups.google.com/group/gnu.bash.bug/browse_thread/thread/13955daafded3b5c/18c17050087f9f37

20.2. Redirecting Code Blocks
Blocks of code, such as while, until, and for loops, even if/then test blocks can also incorporate redirection of
stdin. Even a function may use this form of redirection (see Example 24-11). The < operator at the end of
the code block accomplishes this.

Example 20-5. Redirected while loop

 1 #!/bin/bash
 2 # redir2.sh
 3
 4 if [-z "$1"]
 5 then
 6 Filename=names.data # Default, if no filename specified.
 7 else
 8 Filename=$1
 9 fi
 10 #+ Filename=${1:-names.data}
 11 # can replace the above test (parameter substitution).
 12
 13 count=0
 14
 15 echo
 16
 17 while ["$name" != Smith] # Why is variable $name in quotes?
 18 do
 19 read name # Reads from $Filename, rather than stdin.
 20 echo $name
 21 let "count += 1"
 22 done <"$Filename" # Redirects stdin to file $Filename.
 23 # ^^^^^^^^^^^^
 24
 25 echo; echo "$count names read"; echo
 26
 27 exit 0
 28
 29 # Note that in some older shell scripting languages,
 30 #+ the redirected loop would run as a subshell.
 31 # Therefore, $count would return 0, the initialized value outside the loop.
 32 # Bash and ksh avoid starting a subshell *whenever possible*,
 33 #+ so that this script, for example, runs correctly.
 34 # (Thanks to Heiner Steven for pointing this out.)
 35
 36 # However . . .
 37 # Bash *can* sometimes start a subshell in a PIPED "while-read" loop,
 38 #+ as distinct from a REDIRECTED "while" loop.
 39
 40 abc=hi
 41 echo -e "1\n2\n3" | while read l
 42 do abc="$l"
 43 echo $abc
 44 done
 45 echo $abc
 46
 47 # Thanks, Bruno de Oliveira Schneider, for demonstrating this
 48 #+ with the above snippet of code.
 49 # And, thanks, Brian Onn, for correcting an annotation error.

Example 20-6. Alternate form of redirected while loop

 1 #!/bin/bash
 2
 3 # This is an alternate form of the preceding script.
 4
 5 # Suggested by Heiner Steven
 6 #+ as a workaround in those situations when a redirect loop
 7 #+ runs as a subshell, and therefore variables inside the loop
 8 # +do not keep their values upon loop termination.
 9
 10
 11 if [-z "$1"]
 12 then
 13 Filename=names.data # Default, if no filename specified.
 14 else
 15 Filename=$1
 16 fi
 17
 18
 19 exec 3<&0 # Save stdin to file descriptor 3.
 20 exec 0<"$Filename" # Redirect standard input.
 21
 22 count=0
 23 echo
 24
 25
 26 while ["$name" != Smith]
 27 do
 28 read name # Reads from redirected stdin ($Filename).
 29 echo $name
 30 let "count += 1"
 31 done # Loop reads from file $Filename
 32 #+ because of line 20.
 33
 34 # The original version of this script terminated the "while" loop with
 35 #+ done <"$Filename"
 36 # Exercise:
 37 # Why is this unnecessary?
 38
 39
 40 exec 0<&3 # Restore old stdin.
 41 exec 3<&- # Close temporary fd 3.
 42
 43 echo; echo "$count names read"; echo
 44
 45 exit 0

Example 20-7. Redirected until loop

 1 #!/bin/bash
 2 # Same as previous example, but with "until" loop.
 3
 4 if [-z "$1"]
 5 then
 6 Filename=names.data # Default, if no filename specified.
 7 else
 8 Filename=$1
 9 fi
 10
 11 # while ["$name" != Smith]
 12 until ["$name" = Smith] # Change != to =.

 13 do
 14 read name # Reads from $Filename, rather than stdin.
 15 echo $name
 16 done <"$Filename" # Redirects stdin to file $Filename.
 17 # ^^^^^^^^^^^^
 18
 19 # Same results as with "while" loop in previous example.
 20
 21 exit 0

Example 20-8. Redirected for loop

 1 #!/bin/bash
 2
 3 if [-z "$1"]
 4 then
 5 Filename=names.data # Default, if no filename specified.
 6 else
 7 Filename=$1
 8 fi
 9
 10 line_count=`wc $Filename | awk '{ print $1 }'`
 11 # Number of lines in target file.
 12 #
 13 # Very contrived and kludgy, nevertheless shows that
 14 #+ it's possible to redirect stdin within a "for" loop...
 15 #+ if you're clever enough.
 16 #
 17 # More concise is line_count=$(wc -l < "$Filename")
 18
 19
 20 for name in `seq $line_count` # Recall that "seq" prints sequence of numbers.
 21 # while ["$name" != Smith] -- more complicated than a "while" loop --
 22 do
 23 read name # Reads from $Filename, rather than stdin.
 24 echo $name
 25 if ["$name" = Smith] # Need all this extra baggage here.
 26 then
 27 break
 28 fi
 29 done <"$Filename" # Redirects stdin to file $Filename.
 30 # ^^^^^^^^^^^^
 31
 32 exit 0

We can modify the previous example to also redirect the output of the loop.

Example 20-9. Redirected for loop (both stdin and stdout redirected)

 1 #!/bin/bash
 2
 3 if [-z "$1"]
 4 then
 5 Filename=names.data # Default, if no filename specified.
 6 else
 7 Filename=$1
 8 fi
 9
 10 Savefile=$Filename.new # Filename to save results in.

 11 FinalName=Jonah # Name to terminate "read" on.
 12
 13 line_count=`wc $Filename | awk '{ print $1 }'` # Number of lines in target file.
 14
 15
 16 for name in `seq $line_count`
 17 do
 18 read name
 19 echo "$name"
 20 if ["$name" = "$FinalName"]
 21 then
 22 break
 23 fi
 24 done < "$Filename" > "$Savefile" # Redirects stdin to file $Filename,
 25 # ^^^^^^^^^^^^^^^^^^^^^^^^^^^ and saves it to backup file.
 26
 27 exit 0

Example 20-10. Redirected if/then test

 1 #!/bin/bash
 2
 3 if [-z "$1"]
 4 then
 5 Filename=names.data # Default, if no filename specified.
 6 else
 7 Filename=$1
 8 fi
 9
 10 TRUE=1
 11
 12 if ["$TRUE"] # if true and if : also work.
 13 then
 14 read name
 15 echo $name
 16 fi <"$Filename"
 17 # ^^^^^^^^^^^^
 18
 19 # Reads only first line of file.
 20 # An "if/then" test has no way of iterating unless embedded in a loop.
 21
 22 exit 0

Example 20-11. Data file names.data for above examples

 1 Aristotle
 2 Arrhenius
 3 Belisarius
 4 Capablanca
 5 Dickens
 6 Euler
 7 Goethe
 8 Hegel
 9 Jonah
 10 Laplace
 11 Maroczy
 12 Purcell
 13 Schmidt
 14 Schopenhauer

 15 Semmelweiss
 16 Smith
 17 Steinmetz
 18 Tukhashevsky
 19 Turing
 20 Venn
 21 Warshawski
 22 Znosko-Borowski
 23
 24 # This is a data file for
 25 #+ "redir2.sh", "redir3.sh", "redir4.sh", "redir4a.sh", "redir5.sh".

Redirecting the stdout of a code block has the effect of saving its output to a file. See Example 3-2.

Here documents are a special case of redirected code blocks. That being the case, it should be possible to feed
the output of a here document into the stdin for a while loop.

 1 # This example by Albert Siersema
 2 # Used with permission (thanks!).
 3
 4 function doesOutput()
 5 # Could be an external command too, of course.
 6 # Here we show you can use a function as well.
 7 {
 8 ls -al *.jpg | awk '{print $5,$9}'
 9 }
 10
 11
 12 nr=0 # We want the while loop to be able to manipulate these and
 13 totalSize=0 #+ to be able to see the changes after the 'while' finished.
 14
 15 while read fileSize fileName ; do
 16 echo "$fileName is $fileSize bytes"
 17 let nr++
 18 totalSize=$((totalSize+fileSize)) # Or: "let totalSize+=fileSize"
 19 done<<EOF
 20 $(doesOutput)
 21 EOF
 22
 23 echo "$nr files totaling $totalSize bytes"

Prev Home Next
I/O Redirection Up Applications

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Chapter 20. I/O Redirection Next

20.3. Applications
Clever use of I/O redirection permits parsing and stitching together snippets of command output (see Example
15-7). This permits generating report and log files.

Example 20-12. Logging events

 1 #!/bin/bash
 2 # logevents.sh
 3 # Author: Stephane Chazelas.
 4 # Used in ABS Guide with permission.
 5
 6 # Event logging to a file.
 7 # Must be run as root (for write access in /var/log).
 8
 9 ROOT_UID=0 # Only users with $UID 0 have root privileges.
 10 E_NOTROOT=67 # Non-root exit error.
 11
 12
 13 if ["$UID" -ne "$ROOT_UID"]
 14 then
 15 echo "Must be root to run this script."
 16 exit $E_NOTROOT
 17 fi
 18
 19
 20 FD_DEBUG1=3
 21 FD_DEBUG2=4
 22 FD_DEBUG3=5
 23
 24 # === Uncomment one of the two lines below to activate script. ===
 25 # LOG_EVENTS=1
 26 # LOG_VARS=1
 27
 28
 29 log() # Writes time and date to log file.
 30 {
 31 echo "$(date) $*" >&7 # This *appends* the date to the file.
 32 # ^^^^^^^ command substitution
 33 # See below.
 34 }
 35
 36
 37
 38 case $LOG_LEVEL in
 39 1) exec 3>&2 4> /dev/null 5> /dev/null;;
 40 2) exec 3>&2 4>&2 5> /dev/null;;
 41 3) exec 3>&2 4>&2 5>&2;;
 42 *) exec 3> /dev/null 4> /dev/null 5> /dev/null;;
 43 esac
 44
 45 FD_LOGVARS=6
 46 if [[$LOG_VARS]]
 47 then exec 6>> /var/log/vars.log
 48 else exec 6> /dev/null # Bury output.
 49 fi
 50
 51 FD_LOGEVENTS=7
 52 if [[$LOG_EVENTS]]
 53 then
 54 # exec 7 >(exec gawk '{print strftime(), $0}' >> /var/log/event.log)
 55 # Above line fails in versions of Bash more recent than 2.04. Why?

 56 exec 7>> /var/log/event.log # Append to "event.log".
 57 log # Write time and date.
 58 else exec 7> /dev/null # Bury output.
 59 fi
 60
 61 echo "DEBUG3: beginning" >&${FD_DEBUG3}
 62
 63 ls -l >&5 2>&4 # command1 >&5 2>&4
 64
 65 echo "Done" # command2
 66
 67 echo "sending mail" >&${FD_LOGEVENTS}
 68 # Writes "sending mail" to file descriptor #7.
 69
 70
 71 exit 0

Prev Home Next
Redirecting Code Blocks Up Subshells

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Next

Chapter 21. Subshells

Running a shell script launches a new process, a subshell.

Definition: A subshell is a child process launched by a shell (or shell script).

A subshell is a separate instance of the command processor -- the shell that gives you the prompt at the
console or in an xterm window. Just as your commands are interpreted at the command-line prompt, similarly
does a script batch-process a list of commands. Each shell script running is, in effect, a subprocess (child
process) of the parent shell.

A shell script can itself launch subprocesses. These subshells let the script do parallel processing, in effect
executing multiple subtasks simultaneously.

 1 #!/bin/bash
 2 # subshell-test.sh
 3
 4 (
 5 # Inside parentheses, and therefore a subshell . . .
 6 while [1] # Endless loop.
 7 do
 8 echo "Subshell running . . ."
 9 done
 10)
 11
 12 # Script will run forever,
 13 #+ or at least until terminated by a Ctl-C.
 14
 15 exit $? # End of script (but will never get here).
 16
 17
 18
 19 Now, run the script:
 20 sh subshell-test.sh
 21
 22 And, while the script is running, from a different xterm:
 23 ps -ef | grep subshell-test.sh
 24
 25 UID PID PPID C STIME TTY TIME CMD
 26 500 2698 2502 0 14:26 pts/4 00:00:00 sh subshell-test.sh
 27 500 2699 2698 21 14:26 pts/4 00:00:24 sh subshell-test.sh
 28
 29 ^^^^
 30
 31 Analysis:
 32 PID 2698, the script, launched PID 2699, the subshell.
 33
 34 Note: The "UID ..." line would be filtered out by the "grep" command,
 35 but is shown here for illustrative purposes.

In general, an external command in a script forks off a subprocess, [1] whereas a Bash builtin does not. For
this reason, builtins execute more quickly and use fewer system resources than their external command
equivalents.

Command List within Parentheses

(command1; command2; command3; ...)
A command list embedded between parentheses runs as a subshell.

Variables in a subshell are not visible outside the block of code in the subshell. They are not accessible to the
parent process, to the shell that launched the subshell. These are, in effect, variables local to the child process.

Example 21-1. Variable scope in a subshell

 1 #!/bin/bash
 2 # subshell.sh
 3
 4 echo
 5
 6 echo "We are outside the subshell."
 7 echo "Subshell level OUTSIDE subshell = $BASH_SUBSHELL"
 8 # Bash, version 3, adds the new $BASH_SUBSHELL variable.
 9 echo; echo
 10
 11 outer_variable=Outer
 12 global_variable=
 13 # Define global variable for "storage" of
 14 #+ value of subshell variable.
 15
 16 (
 17 echo "We are inside the subshell."
 18 echo "Subshell level INSIDE subshell = $BASH_SUBSHELL"
 19 inner_variable=Inner
 20
 21 echo "From inside subshell, \"inner_variable\" = $inner_variable"
 22 echo "From inside subshell, \"outer\" = $outer_variable"
 23
 24 global_variable="$inner_variable" # Will this allow "exporting"
 25 #+ a subshell variable?
 26)
 27
 28 echo; echo
 29 echo "We are outside the subshell."
 30 echo "Subshell level OUTSIDE subshell = $BASH_SUBSHELL"
 31 echo
 32
 33 if [-z "$inner_variable"]
 34 then
 35 echo "inner_variable undefined in main body of shell"
 36 else
 37 echo "inner_variable defined in main body of shell"
 38 fi
 39
 40 echo "From main body of shell, \"inner_variable\" = $inner_variable"
 41 # $inner_variable will show as blank (uninitialized)
 42 #+ because variables defined in a subshell are "local variables".
 43 # Is there a remedy for this?
 44 echo "global_variable = "$global_variable"" # Why doesn't this work?
 45
 46 echo
 47
 48 # ===
 49
 50 # Additionally ...
 51
 52 echo "-----------------"; echo
 53
 54 var=41 # Global variable.
 55
 56 (let "var+=1"; echo "\$var INSIDE subshell = $var") # 42
 57
 58 echo "\$var OUTSIDE subshell = $var" # 41
 59 # Variable operations inside a subshell, even to a GLOBAL variable

 60 #+ do not affect the value of the variable outside the subshell!
 61
 62
 63 exit 0
 64
 65 # Question:
 66 # --------
 67 # Once having exited a subshell,
 68 #+ is there any way to reenter that very same subshell
 69 #+ to modify or access the subshell variables?

See also $BASHPID and Example 34-2.

Definition: The scope of a variable is the context in which it has meaning, in which it has a value that
can be referenced. For example, the scope of a local variable lies only within the function, block of code, or
subshell within which it is defined, while the scope of a global variable is the entire script in which it
appears.

While the $BASH_SUBSHELL internal variable indicates the nesting level of a subshell, the $SHLVL
variable shows no change within a subshell.

 1 echo " \$BASH_SUBSHELL outside subshell = $BASH_SUBSHELL" # 0
 2 (echo " \$BASH_SUBSHELL inside subshell = $BASH_SUBSHELL") # 1
 3 ((echo " \$BASH_SUBSHELL inside nested subshell = $BASH_SUBSHELL")) # 2
 4 # ^ ^ *** nested *** ^ ^
 5
 6 echo
 7
 8 echo " \$SHLVL outside subshell = $SHLVL" # 3
 9 (echo " \$SHLVL inside subshell = $SHLVL") # 3 (No change!)

Directory changes made in a subshell do not carry over to the parent shell.

Example 21-2. List User Profiles

 1 #!/bin/bash
 2 # allprofs.sh: Print all user profiles.
 3
 4 # This script written by Heiner Steven, and modified by the document author.
 5
 6 FILE=.bashrc # File containing user profile,
 7 #+ was ".profile" in original script.
 8
 9 for home in `awk -F: '{print $6}' /etc/passwd`
 10 do
 11 [-d "$home"] || continue # If no home directory, go to next.
 12 [-r "$home"] || continue # If not readable, go to next.
 13 (cd $home; [-e $FILE] && less $FILE)
 14 done
 15
 16 # When script terminates, there is no need to 'cd' back to original directory,
 17 #+ because 'cd $home' takes place in a subshell.
 18
 19 exit 0

A subshell may be used to set up a "dedicated environment" for a command group.

 1 COMMAND1
 2 COMMAND2
 3 COMMAND3
 4 (
 5 IFS=:
 6 PATH=/bin
 7 unset TERMINFO
 8 set -C
 9 shift 5
 10 COMMAND4
 11 COMMAND5
 12 exit 3 # Only exits the subshell!
 13)
 14 # The parent shell has not been affected, and the environment is preserved.
 15 COMMAND6
 16 COMMAND7

As seen here, the exit command only terminates the subshell in which it is running, not the parent shell or
script.

One application of such a "dedicated environment" is testing whether a variable is defined.

 1 if (set -u; : $variable) 2> /dev/null
 2 then
 3 echo "Variable is set."
 4 fi # Variable has been set in current script,
 5 #+ or is an an internal Bash variable,
 6 #+ or is present in environment (has been exported).
 7
 8 # Could also be written [[${variable-x} != x || ${variable-y} != y]]
 9 # or [[${variable-x} != x$variable]]
 10 # or [[${variable+x} = x]]
 11 # or [[${variable-x} != x]]

Another application is checking for a lock file:

 1 if (set -C; : > lock_file) 2> /dev/null
 2 then
 3 : # lock_file didn't exist: no user running the script
 4 else
 5 echo "Another user is already running that script."
 6 exit 65
 7 fi
 8
 9 # Code snippet by Stéphane Chazelas,
 10 #+ with modifications by Paulo Marcel Coelho Aragao.

+

Processes may execute in parallel within different subshells. This permits breaking a complex task into
subcomponents processed concurrently.

Example 21-3. Running parallel processes in subshells

 1 (cat list1 list2 list3 | sort | uniq > list123) &
 2 (cat list4 list5 list6 | sort | uniq > list456) &
 3 # Merges and sorts both sets of lists simultaneously.
 4 # Running in background ensures parallel execution.
 5 #
 6 # Same effect as
 7 # cat list1 list2 list3 | sort | uniq > list123 &
 8 # cat list4 list5 list6 | sort | uniq > list456 &
 9
 10 wait # Don't execute the next command until subshells finish.

 11
 12 diff list123 list456

Redirecting I/O to a subshell uses the "|" pipe operator, as in ls -al | (command).

A code block between curly brackets does not launch a subshell.

{ command1; command2; command3; . . . commandN; }

 1 var1=23
 2 echo "$var1" # 23
 3
 4 { var1=76; }
 5 echo "$var1" # 76

Notes

[1] An external command invoked with an exec does not (usually) fork off a subprocess / subshell.

Prev Home Next
Applications Up Restricted Shells

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Next

Chapter 22. Restricted Shells

Disabled commands in restricted shells
. Running a script or portion of a script in restricted mode disables certain commands that would
otherwise be available. This is a security measure intended to limit the privileges of the script user and
to minimize possible damage from running the script.

The following commands and actions are disabled:

Using cd to change the working directory.•
Changing the values of the $PATH, $SHELL, $BASH_ENV, or $ENV environmental variables.•
Reading or changing the $SHELLOPTS, shell environmental options.•
Output redirection.•
Invoking commands containing one or more /'s.•
Invoking exec to substitute a different process for the shell.•
Various other commands that would enable monkeying with or attempting to subvert the script for an
unintended purpose.

•

Getting out of restricted mode within the script.•

Example 22-1. Running a script in restricted mode

 1 #!/bin/bash
 2
 3 # Starting the script with "#!/bin/bash -r"
 4 #+ runs entire script in restricted mode.
 5
 6 echo
 7
 8 echo "Changing directory."
 9 cd /usr/local
 10 echo "Now in `pwd`"
 11 echo "Coming back home."
 12 cd
 13 echo "Now in `pwd`"
 14 echo
 15
 16 # Everything up to here in normal, unrestricted mode.
 17
 18 set -r
 19 # set --restricted has same effect.
 20 echo "==> Now in restricted mode. <=="
 21
 22 echo
 23 echo
 24
 25 echo "Attempting directory change in restricted mode."
 26 cd ..
 27 echo "Still in `pwd`"
 28
 29 echo
 30 echo
 31
 32 echo "\$SHELL = $SHELL"
 33 echo "Attempting to change shell in restricted mode."
 34 SHELL="/bin/ash"
 35 echo
 36 echo "\$SHELL= $SHELL"
 37

 38 echo
 39 echo
 40
 41 echo "Attempting to redirect output in restricted mode."
 42 ls -l /usr/bin > bin.files
 43 ls -l bin.files # Try to list attempted file creation effort.
 44
 45 echo
 46
 47 exit 0

Prev Home Next
Subshells Up Process Substitution

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Next

Chapter 23. Process Substitution
Piping the stdout of a command into the stdin of another is a powerful technique. But, what if you need
to pipe the stdout of multiple commands? This is where process substitution comes in.

Process substitution feeds the output of a process (or processes) into the stdin of another process.

Template

Command list enclosed within parentheses
>(command_list)

<(command_list)

Process substitution uses /dev/fd/<n> files to send the results of the process(es) within
parentheses to another process. [1]

There is no space between the the "<" or ">" and the parentheses. Space there
would give an error message.

bash$ echo >(true)
/dev/fd/63

bash$ echo <(true)
/dev/fd/63

bash$ echo >(true) <(true)
/dev/fd/63 /dev/fd/62

bash$ wc <(cat /usr/share/dict/linux.words)
483523 483523 4992010 /dev/fd/63

bash$ grep script /usr/share/dict/linux.words | wc
 262 262 3601

bash$ wc <(grep script /usr/share/dict/linux.words)
 262 262 3601 /dev/fd/63

Bash creates a pipe with two file descriptors, --fIn and fOut--. The stdin of true connects to
fOut (dup2(fOut, 0)), then Bash passes a /dev/fd/fIn argument to echo. On systems lacking
/dev/fd/<n> files, Bash may use temporary files. (Thanks, S.C.)

Process substitution can compare the output of two different commands, or even the output of different
options to the same command.

bash$ comm <(ls -l) <(ls -al)
total 12

-rw-rw-r-- 1 bozo bozo 78 Mar 10 12:58 File0
-rw-rw-r-- 1 bozo bozo 42 Mar 10 12:58 File2
-rw-rw-r-- 1 bozo bozo 103 Mar 10 12:58 t2.sh
 total 20
 drwxrwxrwx 2 bozo bozo 4096 Mar 10 18:10 .
 drwx------ 72 bozo bozo 4096 Mar 10 17:58 ..
 -rw-rw-r-- 1 bozo bozo 78 Mar 10 12:58 File0
 -rw-rw-r-- 1 bozo bozo 42 Mar 10 12:58 File2
 -rw-rw-r-- 1 bozo bozo 103 Mar 10 12:58 t2.sh

Process substitution can compare the contents of two directories -- to see which filenames are in one, but not
the other.

 1 diff <(ls $first_directory) <(ls $second_directory)

Some other usages and uses of process substitution:

 1 read -a list < <(od -Ad -w24 -t u2 /dev/urandom)
 2 # Read a list of random numbers from /dev/urandom,
 3 #+ process with "od"
 4 #+ and feed into stdin of "read" . . .
 5
 6 # From "insertion-sort.bash" example script.
 7 # Courtesy of JuanJo Ciarlante.

 1 PORT=6881 # bittorrent
 2
 3 # Scan the port to make sure nothing nefarious is going on.
 4 netcat -l $PORT | tee>(md5sum ->mydata-orig.md5) |
 5 gzip | tee>(md5sum - | sed 's/-$/mydata.lz2/'>mydata-gz.md5)>mydata.gz
 6
 7 # Check the decompression:
 8 gzip -d<mydata.gz | md5sum -c mydata-orig.md5)
 9 # The MD5sum of the original checks stdin and detects compression issues.
 10
 11 # Bill Davidsen contributed this example
 12 #+ (with light edits by the ABS Guide author).

 1 cat <(ls -l)
 2 # Same as ls -l | cat
 3
 4 sort -k 9 <(ls -l /bin) <(ls -l /usr/bin) <(ls -l /usr/X11R6/bin)
 5 # Lists all the files in the 3 main 'bin' directories, and sorts by filename.
 6 # Note that three (count 'em) distinct commands are fed to 'sort'.
 7
 8
 9 diff <(command1) <(command2) # Gives difference in command output.
 10
 11 tar cf >(bzip2 -c > file.tar.bz2) $directory_name
 12 # Calls "tar cf /dev/fd/?? $directory_name", and "bzip2 -c > file.tar.bz2".
 13 #
 14 # Because of the /dev/fd/<n> system feature,
 15 # the pipe between both commands does not need to be named.
 16 #
 17 # This can be emulated.
 18 #
 19 bzip2 -c < pipe > file.tar.bz2&
 20 tar cf pipe $directory_name
 21 rm pipe
 22 # or
 23 exec 3>&1
 24 tar cf /dev/fd/4 $directory_name 4>&1 >&3 3>&- | bzip2 -c > file.tar.bz2 3>&-
 25 exec 3>&-
 26
 27
 28 # Thanks, Stéphane Chazelas

Here is a method of circumventing the problem of an echo piped to a while-read loop running in a subshell.

Example 23-1. Code block redirection without forking

 1 #!/bin/bash

 2 # wr-ps.bash: while-read loop with process substitution.
 3
 4 # This example contributed by Tomas Pospisek.
 5 # (Heavily edited by the ABS Guide author.)
 6
 7 echo
 8
 9 echo "random input" | while read i
 10 do
 11 global=3D": Not available outside the loop."
 12 # ... because it runs in a subshell.
 13 done
 14
 15 echo "\$global (from outside the subprocess) = $global"
 16 # $global (from outside the subprocess) =
 17
 18 echo; echo "--"; echo
 19
 20 while read i
 21 do
 22 echo $i
 23 global=3D": Available outside the loop."
 24 # ... because it does NOT run in a subshell.
 25 done < <(echo "random input")
 26 # ^ ^
 27
 28 echo "\$global (using process substitution) = $global"
 29 # Random input
 30 # $global (using process substitution) = 3D: Available outside the loop.
 31
 32
 33 echo; echo "##########"; echo
 34
 35
 36
 37 # And likewise . . .
 38
 39 declare -a inloop
 40 index=0
 41 cat $0 | while read line
 42 do
 43 inloop[$index]="$line"
 44 ((index++))
 45 # It runs in a subshell, so ...
 46 done
 47 echo "OUTPUT = "
 48 echo ${inloop[*]} # ... nothing echoes.
 49
 50
 51 echo; echo "--"; echo
 52
 53
 54 declare -a outloop
 55 index=0
 56 while read line
 57 do
 58 outloop[$index]="$line"
 59 ((index++))
 60 # It does NOT run in a subshell, so ...
 61 done < <(cat $0)
 62 echo "OUTPUT = "
 63 echo ${outloop[*]} # ... the entire script echoes.
 64
 65 exit $?

This is a similar example.

Example 23-2. Redirecting the output of process substitution into a loop.

 1 #!/bin/bash
 2 # psub.bash
 3
 4 # As inspired by Diego Molina (thanks!).
 5
 6 declare -a array0
 7 while read
 8 do
 9 array0[${#array0[@]}]="$REPLY"
 10 done < <(sed -e 's/bash/CRASH-BANG!/' $0 | grep bin | awk '{print $1}')
 11 # Sets the default 'read' variable, $REPLY, by process substitution,
 12 #+ then copies it into an array.
 13
 14 echo "${array0[@]}"
 15
 16 exit $?
 17
 18 # ====================================== #
 19
 20 bash psub.bash
 21
 22 #!/bin/CRASH-BANG! done #!/bin/CRASH-BANG!

A reader sent in the following interesting example of process substitution.

 1 # Script fragment taken from SuSE distribution:
 2
 3 # --#
 4 while read des what mask iface; do
 5 # Some commands ...
 6 done < <(route -n)
 7 # ^ ^ First < is redirection, second is process substitution.
 8
 9 # To test it, let's make it do something.
 10 while read des what mask iface; do
 11 echo $des $what $mask $iface
 12 done < <(route -n)
 13
 14 # Output:
 15 # Kernel IP routing table
 16 # Destination Gateway Genmask Flags Metric Ref Use Iface
 17 # 127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 lo
 18 # --#
 19
 20 # As Stéphane Chazelas points out,
 21 #+ an easier-to-understand equivalent is:
 22 route -n |
 23 while read des what mask iface; do # Variables set from output of pipe.
 24 echo $des $what $mask $iface
 25 done # This yields the same output as above.
 26 # However, as Ulrich Gayer points out . . .
 27 #+ this simplified equivalent uses a subshell for the while loop,
 28 #+ and therefore the variables disappear when the pipe terminates.
 29
 30 # --#
 31
 32 # However, Filip Moritz comments that there is a subtle difference
 33 #+ between the above two examples, as the following shows.
 34

 35 (
 36 route -n | while read x; do ((y++)); done
 37 echo $y # $y is still unset
 38
 39 while read x; do ((y++)); done < <(route -n)
 40 echo $y # $y has the number of lines of output of route -n
 41)
 42
 43 More generally spoken
 44 (
 45 : | x=x
 46 # seems to start a subshell like
 47 : | (x=x)
 48 # while
 49 x=x < <(:)
 50 # does not
 51)
 52
 53 # This is useful, when parsing csv and the like.
 54 # That is, in effect, what the original SuSE code fragment does.

Notes

[1] This has the same effect as a named pipe (temp file), and, in fact, named pipes were at one time used in
process substitution.

Prev Home Next
Restricted Shells Up Functions

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Next

Chapter 24. Functions

Like "real" programming languages, Bash has functions, though in a somewhat limited implementation. A
function is a subroutine, a code block that implements a set of operations, a "black box" that performs a
specified task. Wherever there is repetitive code, when a task repeats with only slight variations in procedure,
then consider using a function.

function function_name {
command...
}

or

function_name () {
command...
}

This second form will cheer the hearts of C programmers (and is more portable).

As in C, the function's opening bracket may optionally appear on the second line.

function_name ()
{
command...
}

A function may be "compacted" into a single line.

 1 fun () { echo "This is a function"; echo; }
 2 # ^ ^

In this case, however, a semicolon must follow the final command in the function.

 1 fun () { echo "This is a function"; echo } # Error!
 2 # ^
 3
 4 fun2 () { echo "Even a single-command function? Yes!"; }
 5 # ^

Functions are called, triggered, simply by invoking their names. A function call is equivalent to a command.

Example 24-1. Simple functions

 1 #!/bin/bash
 2 # ex59.sh: Exercising functions (simple).
 3
 4 JUST_A_SECOND=1
 5
 6 funky ()
 7 { # This is about as simple as functions get.
 8 echo "This is a funky function."
 9 echo "Now exiting funky function."
 10 } # Function declaration must precede call.
 11
 12
 13 fun ()

 14 { # A somewhat more complex function.
 15 i=0
 16 REPEATS=30
 17
 18 echo
 19 echo "And now the fun really begins."
 20 echo
 21
 22 sleep $JUST_A_SECOND # Hey, wait a second!
 23 while [$i -lt $REPEATS]
 24 do
 25 echo "----------FUNCTIONS---------->"
 26 echo "<------------ARE-------------"
 27 echo "<------------FUN------------>"
 28 echo
 29 let "i+=1"
 30 done
 31 }
 32
 33 # Now, call the functions.
 34
 35 funky
 36 fun
 37
 38 exit $?

The function definition must precede the first call to it. There is no method of "declaring" the function, as, for
example, in C.

 1 f1
 2 # Will give an error message, since function "f1" not yet defined.
 3
 4 declare -f f1 # This doesn't help either.
 5 f1 # Still an error message.
 6
 7 # However...
 8
 9
 10 f1 ()
 11 {
 12 echo "Calling function \"f2\" from within function \"f1\"."
 13 f2
 14 }
 15
 16 f2 ()
 17 {
 18 echo "Function \"f2\"."
 19 }
 20
 21 f1 # Function "f2" is not actually called until this point,
 22 #+ although it is referenced before its definition.
 23 # This is permissible.
 24
 25 # Thanks, S.C.

Functions may not be empty!

 1 #!/bin/bash
 2 # empty-function.sh
 3
 4 empty ()
 5 {
 6 }
 7

 8 exit 0 # Will not exit here!
 9
 10 # $ sh empty-function.sh
 11 # empty-function.sh: line 6: syntax error near unexpected token `}'
 12 # empty-function.sh: line 6: `}'
 13
 14 # $ echo $?
 15 # 2
 16
 17
 18 # Note that a function containing only comments is empty.
 19
 20 func ()
 21 {
 22 # Comment 1.
 23 # Comment 2.
 24 # This is still an empty function.
 25 # Thank you, Mark Bova, for pointing this out.
 26 }
 27 # Results in same error message as above.
 28
 29
 30 # However ...
 31
 32 not_quite_empty ()
 33 {
 34 illegal_command
 35 } # A script containing this function will *not* bomb
 36 #+ as long as the function is not called.
 37
 38 not_empty ()
 39 {
 40 :
 41 } # Contains a : (null command), and this is okay.
 42
 43
 44 # Thank you, Dominick Geyer and Thiemo Kellner.

It is even possible to nest a function within another function, although this is not very useful.

 1 f1 ()
 2 {
 3
 4 f2 () # nested
 5 {
 6 echo "Function \"f2\", inside \"f1\"."
 7 }
 8
 9 }
 10
 11 f2 # Gives an error message.
 12 # Even a preceding "declare -f f2" wouldn't help.
 13
 14 echo
 15
 16 f1 # Does nothing, since calling "f1" does not automatically call "f2".
 17 f2 # Now, it's all right to call "f2",
 18 #+ since its definition has been made visible by calling "f1".
 19
 20 # Thanks, S.C.

Function declarations can appear in unlikely places, even where a command would otherwise go.

 1 ls -l | foo() { echo "foo"; } # Permissible, but useless.
 2
 3

 4
 5 if ["$USER" = bozo]
 6 then
 7 bozo_greet () # Function definition embedded in an if/then construct.
 8 {
 9 echo "Hello, Bozo."
 10 }
 11 fi
 12
 13 bozo_greet # Works only for Bozo, and other users get an error.
 14
 15
 16
 17 # Something like this might be useful in some contexts.
 18 NO_EXIT=1 # Will enable function definition below.
 19
 20 [[$NO_EXIT -eq 1]] && exit() { true; } # Function definition in an "and-list".
 21 # If $NO_EXIT is 1, declares "exit ()".
 22 # This disables the "exit" builtin by aliasing it to "true".
 23
 24 exit # Invokes "exit ()" function, not "exit" builtin.
 25
 26
 27
 28 # Or, similarly:
 29 filename=file1
 30
 31 [-f "$filename"] &&
 32 foo () { rm -f "$filename"; echo "File "$filename" deleted."; } ||
 33 foo () { echo "File "$filename" not found."; touch bar; }
 34
 35 foo
 36
 37 # Thanks, S.C. and Christopher Head

Function names can take strange forms.

 1 _(){ for i in {1..10}; do echo -n "$FUNCNAME"; done; echo; }
 2 # ^^^ No space between function name and parentheses.
 3 # This doesn't always work. Why not?
 4
 5 # Now, let's invoke the function.
 6 _ # __________
 7 # ^^^^^^^^^^ 10 underscores (10 x function name)!
 8 # A "naked" underscore is an acceptable function name.
 9
 10
 11 # In fact, a colon is likewise an acceptable function name.
 12
 13 :(){ echo ":"; }; :
 14
 15 # Of what use is this?
 16 # It's a devious way to obfuscate the code in a script.

See also Example A-56
What happens when different versions of the same function appear in a script?

 1 # As Yan Chen points out,
 2 # when a function is defined multiple times,
 3 # the final version is what is invoked.
 4 # This is not, however, particularly useful.
 5
 6 func ()
 7 {
 8 echo "First version of func ()."
 9 }

 10
 11 func ()
 12 {
 13 echo "Second version of func ()."
 14 }
 15
 16 func # Second version of func ().
 17
 18 exit $?
 19
 20 # It is even possible to use functions to override
 21 #+ or preempt system commands.
 22 # Of course, this is *not* advisable.

24.1. Complex Functions and Function
Complexities
Functions may process arguments passed to them and return an exit status to the script for further processing.

 1 function_name $arg1 $arg2

The function refers to the passed arguments by position (as if they were positional parameters), that is, $1,
$2, and so forth.

Example 24-2. Function Taking Parameters

 1 #!/bin/bash
 2 # Functions and parameters
 3
 4 DEFAULT=default # Default param value.
 5
 6 func2 () {
 7 if [-z "$1"] # Is parameter #1 zero length?
 8 then
 9 echo "-Parameter #1 is zero length.-" # Or no parameter passed.
 10 else
 11 echo "-Parameter #1 is \"$1\".-"
 12 fi
 13
 14 variable=${1-$DEFAULT} # What does
 15 echo "variable = $variable" #+ parameter substitution show?
 16 # ---------------------------
 17 # It distinguishes between
 18 #+ no param and a null param.
 19
 20 if ["$2"]
 21 then
 22 echo "-Parameter #2 is \"$2\".-"
 23 fi
 24
 25 return 0
 26 }
 27
 28 echo
 29
 30 echo "Nothing passed."
 31 func2 # Called with no params
 32 echo
 33
 34
 35 echo "Zero-length parameter passed."
 36 func2 "" # Called with zero-length param
 37 echo
 38
 39 echo "Null parameter passed."
 40 func2 "$uninitialized_param" # Called with uninitialized param
 41 echo
 42
 43 echo "One parameter passed."
 44 func2 first # Called with one param
 45 echo
 46
 47 echo "Two parameters passed."
 48 func2 first second # Called with two params

 49 echo
 50
 51 echo "\"\" \"second\" passed."
 52 func2 "" second # Called with zero-length first parameter
 53 echo # and ASCII string as a second one.
 54
 55 exit 0

The shift command works on arguments passed to functions (see Example 36-18).

But, what about command-line arguments passed to the script? Does a function see them? Well, let's clear up
the confusion.

Example 24-3. Functions and command-line args passed to the script

 1 #!/bin/bash
 2 # func-cmdlinearg.sh
 3 # Call this script with a command-line argument,
 4 #+ something like $0 arg1.
 5
 6
 7 func ()
 8
 9 {
 10 echo "$1" # Echoes first arg passed to the function.
 11 } # Does a command-line arg qualify?
 12
 13 echo "First call to function: no arg passed."
 14 echo "See if command-line arg is seen."
 15 func
 16 # No! Command-line arg not seen.
 17
 18 echo "=="
 19 echo
 20 echo "Second call to function: command-line arg passed explicitly."
 21 func $1
 22 # Now it's seen!
 23
 24 exit 0

In contrast to certain other programming languages, shell scripts normally pass only value parameters to
functions. Variable names (which are actually pointers), if passed as parameters to functions, will be treated
as string literals. Functions interpret their arguments literally.

Indirect variable references (see Example 37-2) provide a clumsy sort of mechanism for passing variable
pointers to functions.

Example 24-4. Passing an indirect reference to a function

 1 #!/bin/bash
 2 # ind-func.sh: Passing an indirect reference to a function.
 3
 4 echo_var ()
 5 {
 6 echo "$1"
 7 }

 8
 9 message=Hello
 10 Hello=Goodbye
 11
 12 echo_var "$message" # Hello
 13 # Now, let's pass an indirect reference to the function.
 14 echo_var "${!message}" # Goodbye
 15
 16 echo "-------------"
 17
 18 # What happens if we change the contents of "hello" variable?
 19 Hello="Hello, again!"
 20 echo_var "$message" # Hello
 21 echo_var "${!message}" # Hello, again!
 22
 23 exit 0

The next logical question is whether parameters can be dereferenced after being passed to a function.

Example 24-5. Dereferencing a parameter passed to a function

 1 #!/bin/bash
 2 # dereference.sh
 3 # Dereferencing parameter passed to a function.
 4 # Script by Bruce W. Clare.
 5
 6 dereference ()
 7 {
 8 y=\$"$1" # Name of variable (not value!).
 9 echo $y # $Junk
 10
 11 x=`eval "expr \"$y\" "`
 12 echo $1=$x
 13 eval "$1=\"Some Different Text \"" # Assign new value.
 14 }
 15
 16 Junk="Some Text"
 17 echo $Junk "before" # Some Text before
 18
 19 dereference Junk
 20 echo $Junk "after" # Some Different Text after
 21
 22 exit 0

Example 24-6. Again, dereferencing a parameter passed to a function

 1 #!/bin/bash
 2 # ref-params.sh: Dereferencing a parameter passed to a function.
 3 # (Complex Example)
 4
 5 ITERATIONS=3 # How many times to get input.
 6 icount=1
 7
 8 my_read () {
 9 # Called with my_read varname,
 10 #+ outputs the previous value between brackets as the default value,
 11 #+ then asks for a new value.
 12
 13 local local_var

 14
 15 echo -n "Enter a value "
 16 eval 'echo -n "[$'$1'] "' # Previous value.
 17 # eval echo -n "[\$$1] " # Easier to understand,
 18 #+ but loses trailing space in user prompt.
 19 read local_var
 20 [-n "$local_var"] && eval $1=\$local_var
 21
 22 # "And-list": if "local_var" then set "$1" to its value.
 23 }
 24
 25 echo
 26
 27 while ["$icount" -le "$ITERATIONS"]
 28 do
 29 my_read var
 30 echo "Entry #$icount = $var"
 31 let "icount += 1"
 32 echo
 33 done
 34
 35
 36 # Thanks to Stephane Chazelas for providing this instructive example.
 37
 38 exit 0

Exit and Return

exit status
Functions return a value, called an exit status. This is analogous to the exit status returned by a
command. The exit status may be explicitly specified by a return statement, otherwise it is the exit
status of the last command in the function (0 if successful, and a non-zero error code if not). This exit
status may be used in the script by referencing it as $?. This mechanism effectively permits script
functions to have a "return value" similar to C functions.

return

Terminates a function. A return command [1] optionally takes an integer argument, which is returned
to the calling script as the "exit status" of the function, and this exit status is assigned to the variable
$?.

Example 24-7. Maximum of two numbers

 1 #!/bin/bash
 2 # max.sh: Maximum of two integers.
 3
 4 E_PARAM_ERR=250 # If less than 2 params passed to function.
 5 EQUAL=251 # Return value if both params equal.
 6 # Error values out of range of any
 7 #+ params that might be fed to the function.
 8
 9 max2 () # Returns larger of two numbers.
 10 { # Note: numbers compared must be less than 250.
 11 if [-z "$2"]
 12 then
 13 return $E_PARAM_ERR
 14 fi
 15
 16 if ["$1" -eq "$2"]
 17 then
 18 return $EQUAL

 19 else
 20 if ["$1" -gt "$2"]
 21 then
 22 return $1
 23 else
 24 return $2
 25 fi
 26 fi
 27 }
 28
 29 max2 33 34
 30 return_val=$?
 31
 32 if ["$return_val" -eq $E_PARAM_ERR]
 33 then
 34 echo "Need to pass two parameters to the function."
 35 elif ["$return_val" -eq $EQUAL]
 36 then
 37 echo "The two numbers are equal."
 38 else
 39 echo "The larger of the two numbers is $return_val."
 40 fi
 41
 42
 43 exit 0
 44
 45 # Exercise (easy):
 46 # ---------------
 47 # Convert this to an interactive script,
 48 #+ that is, have the script ask for input (two numbers).

For a function to return a string or array, use a dedicated variable.

 1 count_lines_in_etc_passwd()
 2 {
 3 [[-r /etc/passwd]] && REPLY=$(echo $(wc -l < /etc/passwd))
 4 # If /etc/passwd is readable, set REPLY to line count.
 5 # Returns both a parameter value and status information.
 6 # The 'echo' seems unnecessary, but . . .
 7 #+ it removes excess whitespace from the output.
 8 }
 9
 10 if count_lines_in_etc_passwd
 11 then
 12 echo "There are $REPLY lines in /etc/passwd."
 13 else
 14 echo "Cannot count lines in /etc/passwd."
 15 fi
 16
 17 # Thanks, S.C.

Example 24-8. Converting numbers to Roman numerals

 1 #!/bin/bash
 2
 3 # Arabic number to Roman numeral conversion
 4 # Range: 0 - 200
 5 # It's crude, but it works.
 6
 7 # Extending the range and otherwise improving the script is left as an exercise.
 8
 9 # Usage: roman number-to-convert

 10
 11 LIMIT=200
 12 E_ARG_ERR=65
 13 E_OUT_OF_RANGE=66
 14
 15 if [-z "$1"]
 16 then
 17 echo "Usage: `basename $0` number-to-convert"
 18 exit $E_ARG_ERR
 19 fi
 20
 21 num=$1
 22 if ["$num" -gt $LIMIT]
 23 then
 24 echo "Out of range!"
 25 exit $E_OUT_OF_RANGE
 26 fi
 27
 28 to_roman () # Must declare function before first call to it.
 29 {
 30 number=$1
 31 factor=$2
 32 rchar=$3
 33 let "remainder = number - factor"
 34 while ["$remainder" -ge 0]
 35 do
 36 echo -n $rchar
 37 let "number -= factor"
 38 let "remainder = number - factor"
 39 done
 40
 41 return $number
 42 # Exercises:
 43 # ---------
 44 # 1) Explain how this function works.
 45 # Hint: division by successive subtraction.
 46 # 2) Extend to range of the function.
 47 # Hint: use "echo" and command-substitution capture.
 48 }
 49
 50
 51 to_roman $num 100 C
 52 num=$?
 53 to_roman $num 90 LXXXX
 54 num=$?
 55 to_roman $num 50 L
 56 num=$?
 57 to_roman $num 40 XL
 58 num=$?
 59 to_roman $num 10 X
 60 num=$?
 61 to_roman $num 9 IX
 62 num=$?
 63 to_roman $num 5 V
 64 num=$?
 65 to_roman $num 4 IV
 66 num=$?
 67 to_roman $num 1 I
 68 # Successive calls to conversion function!
 69 # Is this really necessary??? Can it be simplified?
 70
 71 echo
 72
 73 exit

See also Example 11-29.

The largest positive integer a function can return is 255. The return command is closely tied to
the concept of exit status, which accounts for this particular limitation. Fortunately, there are
various workarounds for those situations requiring a large integer return value from a function.

Example 24-9. Testing large return values in a function

 1 #!/bin/bash
 2 # return-test.sh
 3
 4 # The largest positive value a function can return is 255.
 5
 6 return_test () # Returns whatever passed to it.
 7 {
 8 return $1
 9 }
 10
 11 return_test 27 # o.k.
 12 echo $? # Returns 27.
 13
 14 return_test 255 # Still o.k.
 15 echo $? # Returns 255.
 16
 17 return_test 257 # Error!
 18 echo $? # Returns 1 (return code for miscellaneous error).
 19
 20 # ===
 21 return_test -151896 # Do large negative numbers work?
 22 echo $? # Will this return -151896?
 23 # No! It returns 168.
 24 # Version of Bash before 2.05b permitted
 25 #+ large negative integer return values.
 26 # It happened to be a useful feature.
 27 # Newer versions of Bash unfortunately plug this loophole.
 28 # This may break older scripts.
 29 # Caution!
 30 # ===
 31
 32 exit 0

A workaround for obtaining large integer "return values" is to simply assign the "return value" to
a global variable.

 1 Return_Val= # Global variable to hold oversize return value of function.
 2
 3 alt_return_test ()
 4 {
 5 fvar=$1
 6 Return_Val=$fvar
 7 return # Returns 0 (success).
 8 }
 9
 10 alt_return_test 1
 11 echo $? # 0
 12 echo "return value = $Return_Val" # 1
 13
 14 alt_return_test 256
 15 echo "return value = $Return_Val" # 256
 16
 17 alt_return_test 257

 18 echo "return value = $Return_Val" # 257
 19
 20 alt_return_test 25701
 21 echo "return value = $Return_Val" #25701

A more elegant method is to have the function echo its "return value to stdout," and then
capture it by command substitution. See the discussion of this in Section 36.7.

Example 24-10. Comparing two large integers

 1 #!/bin/bash
 2 # max2.sh: Maximum of two LARGE integers.
 3
 4 # This is the previous "max.sh" example,
 5 #+ modified to permit comparing large integers.
 6
 7 EQUAL=0 # Return value if both params equal.
 8 E_PARAM_ERR=-99999 # Not enough params passed to function.
 9 # ^^^^^^ Out of range of any params that might be passed.
 10
 11 max2 () # "Returns" larger of two numbers.
 12 {
 13 if [-z "$2"]
 14 then
 15 echo $E_PARAM_ERR
 16 return
 17 fi
 18
 19 if ["$1" -eq "$2"]
 20 then
 21 echo $EQUAL
 22 return
 23 else
 24 if ["$1" -gt "$2"]
 25 then
 26 retval=$1
 27 else
 28 retval=$2
 29 fi
 30 fi
 31
 32 echo $retval # Echoes (to stdout), rather than returning value.
 33 # Why?
 34 }
 35
 36
 37 return_val=$(max2 33001 33997)
 38 # ^^^^ Function name
 39 # ^^^^^ ^^^^^ Params passed
 40 # This is actually a form of command substitution:
 41 #+ treating a function as if it were a command,
 42 #+ and assigning the stdout of the function to the variable "return_val."
 43
 44
 45 # ========================= OUTPUT ========================
 46 if ["$return_val" -eq "$E_PARAM_ERR"]
 47 then
 48 echo "Error in parameters passed to comparison function!"
 49 elif ["$return_val" -eq "$EQUAL"]
 50 then
 51 echo "The two numbers are equal."
 52 else
 53 echo "The larger of the two numbers is $return_val."

 54 fi
 55 # ===
 56
 57 exit 0
 58
 59 # Exercises:
 60 # ---------
 61 # 1) Find a more elegant way of testing
 62 #+ the parameters passed to the function.
 63 # 2) Simplify the if/then structure at "OUTPUT."
 64 # 3) Rewrite the script to take input from command-line parameters.

Here is another example of capturing a function "return value." Understanding it requires some
knowledge of awk.

 1 month_length () # Takes month number as an argument.
 2 { # Returns number of days in month.
 3 monthD="31 28 31 30 31 30 31 31 30 31 30 31" # Declare as local?
 4 echo "$monthD" | awk '{ print $'"${1}"' }' # Tricky.
 5 # ^^^^^^^^^
 6 # Parameter passed to function ($1 -- month number), then to awk.
 7 # Awk sees this as "print $1 . . . print $12" (depending on month number)
 8 # Template for passing a parameter to embedded awk script:
 9 # $'"${script_parameter}"'
 10
 11 # Here's a slightly simpler awk construct:
 12 # echo $monthD | awk -v month=$1 '{print $(month)}'
 13 # Uses the -v awk option, which assigns a variable value
 14 #+ prior to execution of the awk program block.
 15 # Thank you, Rich.
 16
 17 # Needs error checking for correct parameter range (1-12)
 18 #+ and for February in leap year.
 19 }
 20
 21 # --
 22 # Usage example:
 23 month=4 # April, for example (4th month).
 24 days_in=$(month_length $month)
 25 echo $days_in # 30
 26 # --

See also Example A-7 and Example A-37.

Exercise: Using what we have just learned, extend the previous Roman numerals example to
accept arbitrarily large input.

Redirection

Redirecting the stdin of a function
A function is essentially a code block, which means its stdin can be redirected (as in Example 3-1).

Example 24-11. Real name from username

 1 #!/bin/bash
 2 # realname.sh
 3 #
 4 # From username, gets "real name" from /etc/passwd.
 5
 6
 7 ARGCOUNT=1 # Expect one arg.

 8 E_WRONGARGS=85
 9
 10 file=/etc/passwd
 11 pattern=$1
 12
 13 if [$# -ne "$ARGCOUNT"]
 14 then
 15 echo "Usage: `basename $0` USERNAME"
 16 exit $E_WRONGARGS
 17 fi
 18
 19 file_excerpt () # Scan file for pattern,
 20 { #+ then print relevant portion of line.
 21 while read line # "while" does not necessarily need [condition]
 22 do
 23 echo "$line" | grep $1 | awk -F":" '{ print $5 }'
 24 # Have awk use ":" delimiter.
 25 done
 26 } <$file # Redirect into function's stdin.
 27
 28 file_excerpt $pattern
 29
 30 # Yes, this entire script could be reduced to
 31 # grep PATTERN /etc/passwd | awk -F":" '{ print $5 }'
 32 # or
 33 # awk -F: '/PATTERN/ {print $5}'
 34 # or
 35 # awk -F: '($1 == "username") { print $5 }' # real name from username
 36 # However, it might not be as instructive.
 37
 38 exit 0

There is an alternate, and perhaps less confusing method of redirecting a function's stdin. This
involves redirecting the stdin to an embedded bracketed code block within the function.

 1 # Instead of:
 2 Function ()
 3 {
 4 ...
 5 } < file
 6
 7 # Try this:
 8 Function ()
 9 {
 10 {
 11 ...
 12 } < file
 13 }
 14
 15 # Similarly,
 16
 17 Function () # This works.
 18 {
 19 {
 20 echo $*
 21 } | tr a b
 22 }
 23
 24 Function () # This doesn't work.
 25 {
 26 echo $*
 27 } | tr a b # A nested code block is mandatory here.
 28
 29
 30 # Thanks, S.C.

Emmanuel Rouat's sample bashrc file contains some instructive examples of
functions.

Notes

[1] The return command is a Bash builtin.

Prev Home Next
Process Substitution Up Local Variables

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Chapter 24. Functions Next

24.2. Local Variables
What makes a variable local?

local variables
A variable declared as local is one that is visible only within the block of code in which it appears. It
has local scope. In a function, a local variable has meaning only within that function block. [1]

Example 24-12. Local variable visibility

 1 #!/bin/bash
 2 # ex62.sh: Global and local variables inside a function.
 3
 4 func ()
 5 {
 6 local loc_var=23 # Declared as local variable.
 7 echo # Uses the 'local' builtin.
 8 echo "\"loc_var\" in function = $loc_var"
 9 global_var=999 # Not declared as local.
 10 # Therefore, defaults to global.
 11 echo "\"global_var\" in function = $global_var"
 12 }
 13
 14 func
 15
 16 # Now, to see if local variable "loc_var" exists outside the function.
 17
 18 echo
 19 echo "\"loc_var\" outside function = $loc_var"
 20 # $loc_var outside function =
 21 # No, $loc_var not visible globally.
 22 echo "\"global_var\" outside function = $global_var"
 23 # $global_var outside function = 999
 24 # $global_var is visible globally.
 25 echo
 26
 27 exit 0
 28 # In contrast to C, a Bash variable declared inside a function
 29 #+ is local ONLY if declared as such.

Before a function is called, all variables declared within the function are invisible outside the body
of the function, not just those explicitly declared as local.

 1 #!/bin/bash
 2
 3 func ()
 4 {
 5 global_var=37 # Visible only within the function block
 6 #+ before the function has been called.
 7 } # END OF FUNCTION
 8
 9 echo "global_var = $global_var" # global_var =
 10 # Function "func" has not yet been called,
 11 #+ so $global_var is not visible here.
 12
 13 func
 14 echo "global_var = $global_var" # global_var = 37
 15 # Has been set by function call.

As Evgeniy Ivanov points out, when declaring and setting a local variable in a single
command, apparently the order of operations is to first set the variable, and only
afterwards restrict it to local scope. This is reflected in the return value.

 1 #!/bin/bash
 2
 3 echo "==OUTSIDE Function (global)=="
 4 t=$(exit 1)
 5 echo $? # 1
 6 # As expected.
 7 echo
 8
 9 function0 ()
 10 {
 11
 12 echo "==INSIDE Function=="
 13 echo "Global"
 14 t0=$(exit 1)
 15 echo $? # 1
 16 # As expected.
 17
 18 echo
 19 echo "Local declared & assigned in same command."
 20 local t1=$(exit 1)
 21 echo $? # 0
 22 # Unexpected!
 23 # Apparently, the variable assignment takes place before
 24 #+ the local declaration.
 25 #+ The return value is for the latter.
 26
 27 echo
 28 echo "Local declared, then assigned (separate commands)."
 29 local t2
 30 t2=$(exit 1)
 31 echo $? # 1
 32 # As expected.
 33
 34 }
 35
 36 function0

24.2.1. Local variables and recursion.

Recursion is an interesting and sometimes useful form of self-reference. Herbert Mayer defines it as ". . .
expressing an algorithm by using a simpler version of that same algorithm . . ."

Consider a definition defined in terms of itself, [2] an expression implicit in its own expression, [3] a snake
swallowing its own tail, [4] or . . . a function that calls itself. [5]

Example 24-13. Demonstration of a simple recursive function

 1 #!/bin/bash
 2 # recursion-demo.sh
 3 # Demonstration of recursion.

 4
 5 RECURSIONS=9 # How many times to recurse.
 6 r_count=0 # Must be global. Why?
 7
 8 recurse ()
 9 {
 10 var="$1"
 11
 12 while ["$var" -ge 0]
 13 do
 14 echo "Recursion count = "$r_count" +-+ \$var = "$var""
 15 ((var--)); ((r_count++))
 16 recurse "$var" # Function calls itself (recurses)
 17 done #+ until what condition is met?
 18 }
 19
 20 recurse $RECURSIONS
 21
 22 exit $?

Example 24-14. Another simple demonstration

 1 #!/bin/bash
 2 # recursion-def.sh
 3 # A script that defines "recursion" in a rather graphic way.
 4
 5 RECURSIONS=10
 6 r_count=0
 7 sp=" "
 8
 9 define_recursion ()
 10 {
 11 ((r_count++))
 12 sp="$sp"" "
 13 echo -n "$sp"
 14 echo "\"The act of recurring ... \"" # Per 1913 Webster's dictionary.
 15
 16 while [$r_count -le $RECURSIONS]
 17 do
 18 define_recursion
 19 done
 20 }
 21
 22 echo
 23 echo "Recursion: "
 24 define_recursion
 25 echo
 26
 27 exit $?

Local variables are a useful tool for writing recursive code, but this practice generally involves a great deal of
computational overhead and is definitely not recommended in a shell script. [6]

Example 24-15. Recursion, using a local variable

 1 #!/bin/bash
 2

 3 # factorial
 4 # ---------
 5
 6
 7 # Does bash permit recursion?
 8 # Well, yes, but...
 9 # It's so slow that you gotta have rocks in your head to try it.
 10
 11
 12 MAX_ARG=5
 13 E_WRONG_ARGS=85
 14 E_RANGE_ERR=86
 15
 16
 17 if [-z "$1"]
 18 then
 19 echo "Usage: `basename $0` number"
 20 exit $E_WRONG_ARGS
 21 fi
 22
 23 if ["$1" -gt $MAX_ARG]
 24 then
 25 echo "Out of range ($MAX_ARG is maximum)."
 26 # Let's get real now.
 27 # If you want greater range than this,
 28 #+ rewrite it in a Real Programming Language.
 29 exit $E_RANGE_ERR
 30 fi
 31
 32 fact ()
 33 {
 34 local number=$1
 35 # Variable "number" must be declared as local,
 36 #+ otherwise this doesn't work.
 37 if ["$number" -eq 0]
 38 then
 39 factorial=1 # Factorial of 0 = 1.
 40 else
 41 let "decrnum = number - 1"
 42 fact $decrnum # Recursive function call (the function calls itself).
 43 let "factorial = $number * $?"
 44 fi
 45
 46 return $factorial
 47 }
 48
 49 fact $1
 50 echo "Factorial of $1 is $?."
 51
 52 exit 0

Also see Example A-15 for an example of recursion in a script. Be aware that recursion is resource-intensive
and executes slowly, and is therefore generally not appropriate in a script.

Notes

[1] However, as Thomas Braunberger points out, a local variable declared in a function is also visible to
functions called by the parent function.

 1 #!/bin/bash
 2
 3 function1 ()
 4 {

 5 local func1var=20
 6
 7 echo "Within function1, \$func1var = $func1var."
 8
 9 function2
 10 }
 11
 12 function2 ()
 13 {
 14 echo "Within function2, \$func1var = $func1var."
 15 }
 16
 17 function1
 18
 19 exit 0
 20
 21
 22 # Output of the script:
 23
 24 # Within function1, $func1var = 20.
 25 # Within function2, $func1var = 20.

This is documented in the Bash manual:

"Local can only be used within a function; it makes the variable name have a visible scope restricted to
that function and its children." [emphasis added] The ABS Guide author considers this behavior to be a
bug.

[2] Otherwise known as redundancy.
[3] Otherwise known as tautology.
[4] Otherwise known as a metaphor.
[5] Otherwise known as a recursive function.
[6] Too many levels of recursion may crash a script with a segfault.

 1 #!/bin/bash
 2
 3 # Warning: Running this script could possibly lock up your system!
 4 # If you're lucky, it will segfault before using up all available memory.
 5
 6 recursive_function ()
 7 {
 8 echo "$1" # Makes the function do something, and hastens the segfault.
 9 (($1 < $2)) && recursive_function $(($1 + 1)) $2;
 10 # As long as 1st parameter is less than 2nd,
 11 #+ increment 1st and recurse.
 12 }
 13
 14 recursive_function 1 50000 # Recurse 50,000 levels!
 15 # Most likely segfaults (depending on stack size, set by ulimit -m).
 16
 17 # Recursion this deep might cause even a C program to segfault,
 18 #+ by using up all the memory allotted to the stack.
 19
 20
 21 echo "This will probably not print."
 22 exit 0 # This script will not exit normally.
 23
 24 # Thanks, Stéphane Chazelas.

Prev Home Next
Functions Up Recursion Without Local Variables

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting

Prev Chapter 24. Functions Next

24.3. Recursion Without Local Variables
A function may recursively call itself even without use of local variables.

Example 24-16. The Fibonacci Sequence

 1 #!/bin/bash
 2 # fibo.sh : Fibonacci sequence (recursive)
 3 # Author: M. Cooper
 4 # License: GPL3
 5
 6 # ----------algorithm--------------
 7 # Fibo(0) = 0
 8 # Fibo(1) = 1
 9 # else
 10 # Fibo(j) = Fibo(j-1) + Fibo(j-2)
 11 # ---------------------------------
 12
 13 MAXTERM=15 # Number of terms (+1) to generate.
 14 MINIDX=2 # If idx is less than 2, then Fibo(idx) = idx.
 15
 16 Fibonacci ()
 17 {
 18 idx=$1 # Doesn't need to be local. Why not?
 19 if ["$idx" -lt "$MINIDX"]
 20 then
 21 echo "$idx" # First two terms are 0 1 ... see above.
 22 else
 23 ((--idx)) # j-1
 24 term1=$(Fibonacci $idx) # Fibo(j-1)
 25
 26 ((--idx)) # j-2
 27 term2=$(Fibonacci $idx) # Fibo(j-2)
 28
 29 echo $((term1 + term2))
 30 fi
 31 # An ugly, ugly kludge.
 32 # The more elegant implementation of recursive fibo in C
 33 #+ is a straightforward translation of the algorithm in lines 7 - 10.
 34 }
 35
 36 for i in $(seq 0 $MAXTERM)
 37 do # Calculate $MAXTERM+1 terms.
 38 FIBO=$(Fibonacci $i)
 39 echo -n "$FIBO "
 40 done
 41 # 0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610
 42 # Takes a while, doesn't it? Recursion in a script is slow.
 43
 44 echo
 45
 46 exit 0

Example 24-17. The Towers of Hanoi

 1 #! /bin/bash
 2 #

 3 # The Towers Of Hanoi
 4 # Bash script
 5 # Copyright (C) 2000 Amit Singh. All Rights Reserved.
 6 # http://hanoi.kernelthread.com
 7 #
 8 # Tested under Bash version 2.05b.0(13)-release.
 9 # Also works under Bash version 3.x.
 10 #
 11 # Used in "Advanced Bash Scripting Guide"
 12 #+ with permission of script author.
 13 # Slightly modified and commented by ABS author.
 14
 15 #===#
 16 # The Tower of Hanoi is a mathematical puzzle attributed to
 17 #+ Edouard Lucas, a nineteenth-century French mathematician.
 18 #
 19 # There are three vertical posts set in a base.
 20 # The first post has a set of annular rings stacked on it.
 21 # These rings are disks with a hole drilled out of the center,
 22 #+ so they can slip over the posts and rest flat.
 23 # The rings have different diameters, and they stack in ascending
 24 #+ order, according to size.
 25 # The smallest ring is on top, and the largest on the bottom.
 26 #
 27 # The task is to transfer the stack of rings
 28 #+ to one of the other posts.
 29 # You can move only one ring at a time to another post.
 30 # You are permitted to move rings back to the original post.
 31 # You may place a smaller ring atop a larger one,
 32 #+ but *not* vice versa.
 33 # Again, it is forbidden to place a larger ring atop a smaller one.
 34 #
 35 # For a small number of rings, only a few moves are required.
 36 #+ For each additional ring,
 37 #+ the required number of moves approximately doubles,
 38 #+ and the "strategy" becomes increasingly complicated.
 39 #
 40 # For more information, see http://hanoi.kernelthread.com
 41 #+ or pp. 186-92 of _The Armchair Universe_ by A.K. Dewdney.
 42 #
 43 #
 44 #
 45 # | | | | | |
 46 # _|_|_ | | | |
 47 # |_____| | | | |
 48 # |_______| | | | |
 49 # |_________| | | | |
 50 # |___________| | | | |
 51 # | | | | | |
 52 # .--.
 53 # |**|
 54 # #1 #2 #3
 55 #
 56 #===#
 57
 58
 59 E_NOPARAM=66 # No parameter passed to script.
 60 E_BADPARAM=67 # Illegal number of disks passed to script.
 61 Moves= # Global variable holding number of moves.
 62 # Modification to original script.
 63
 64 dohanoi() { # Recursive function.
 65 case $1 in
 66 0)
 67 ;;
 68 *)

 69 dohanoi "$(($1-1))" $2 $4 $3
 70 echo move $2 "-->" $3
 71 ((Moves++)) # Modification to original script.
 72 dohanoi "$(($1-1))" $4 $3 $2
 73 ;;
 74 esac
 75 }
 76
 77 case $# in
 78 1) case $(($1>0)) in # Must have at least one disk.
 79 1) # Nested case statement.
 80 dohanoi $1 1 3 2
 81 echo "Total moves = $Moves" # 2^n - 1, where n = # of disks.
 82 exit 0;
 83 ;;
 84 *)
 85 echo "$0: illegal value for number of disks";
 86 exit $E_BADPARAM;
 87 ;;
 88 esac
 89 ;;
 90 *)
 91 echo "usage: $0 N"
 92 echo " Where \"N\" is the number of disks."
 93 exit $E_NOPARAM;
 94 ;;
 95 esac
 96
 97 # Exercises:
 98 # ---------
 99 # 1) Would commands beyond this point ever be executed?
 100 # Why not? (Easy)
 101 # 2) Explain the workings of the workings of the "dohanoi" function.
 102 # (Difficult -- see the Dewdney reference, above.)

Prev Home Next
Local Variables Up Aliases

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Next

Chapter 25. Aliases

A Bash alias is essentially nothing more than a keyboard shortcut, an abbreviation, a means of avoiding
typing a long command sequence. If, for example, we include alias lm="ls -l | more" in the ~/.bashrc
file, then each lm [1] typed at the command-line will automatically be replaced by a ls -l | more. This can
save a great deal of typing at the command-line and avoid having to remember complex combinations of
commands and options. Setting alias rm="rm -i" (interactive mode delete) may save a good deal of grief,
since it can prevent inadvertently deleting important files.

In a script, aliases have very limited usefulness. It would be nice if aliases could assume some of the
functionality of the C preprocessor, such as macro expansion, but unfortunately Bash does not expand
arguments within the alias body. [2] Moreover, a script fails to expand an alias itself within "compound
constructs," such as if/then statements, loops, and functions. An added limitation is that an alias will not
expand recursively. Almost invariably, whatever we would like an alias to do could be accomplished much
more effectively with a function.

Example 25-1. Aliases within a script

 1 #!/bin/bash
 2 # alias.sh
 3
 4 shopt -s expand_aliases
 5 # Must set this option, else script will not expand aliases.
 6
 7
 8 # First, some fun.
 9 alias Jesse_James='echo "\"Alias Jesse James\" was a 1959 comedy starring Bob Hope."'
 10 Jesse_James
 11
 12 echo; echo; echo;
 13
 14 alias ll="ls -l"
 15 # May use either single (') or double (") quotes to define an alias.
 16
 17 echo "Trying aliased \"ll\":"
 18 ll /usr/X11R6/bin/mk* #* Alias works.
 19
 20 echo
 21
 22 directory=/usr/X11R6/bin/
 23 prefix=mk* # See if wild card causes problems.
 24 echo "Variables \"directory\" + \"prefix\" = $directory$prefix"
 25 echo
 26
 27 alias lll="ls -l $directory$prefix"
 28
 29 echo "Trying aliased \"lll\":"
 30 lll # Long listing of all files in /usr/X11R6/bin stating with mk.
 31 # An alias can handle concatenated variables -- including wild card -- o.k.
 32
 33
 34
 35
 36 TRUE=1
 37
 38 echo
 39
 40 if [TRUE]

 41 then
 42 alias rr="ls -l"
 43 echo "Trying aliased \"rr\" within if/then statement:"
 44 rr /usr/X11R6/bin/mk* #* Error message results!
 45 # Aliases not expanded within compound statements.
 46 echo "However, previously expanded alias still recognized:"
 47 ll /usr/X11R6/bin/mk*
 48 fi
 49
 50 echo
 51
 52 count=0
 53 while [$count -lt 3]
 54 do
 55 alias rrr="ls -l"
 56 echo "Trying aliased \"rrr\" within \"while\" loop:"
 57 rrr /usr/X11R6/bin/mk* #* Alias will not expand here either.
 58 # alias.sh: line 57: rrr: command not found
 59 let count+=1
 60 done
 61
 62 echo; echo
 63
 64 alias xyz='cat $0' # Script lists itself.
 65 # Note strong quotes.
 66 xyz
 67 # This seems to work,
 68 #+ although the Bash documentation suggests that it shouldn't.
 69 #
 70 # However, as Steve Jacobson points out,
 71 #+ the "$0" parameter expands immediately upon declaration of the alias.
 72
 73 exit 0

The unalias command removes a previously set alias.

Example 25-2. unalias: Setting and unsetting an alias

 1 #!/bin/bash
 2 # unalias.sh
 3
 4 shopt -s expand_aliases # Enables alias expansion.
 5
 6 alias llm='ls -al | more'
 7 llm
 8
 9 echo
 10
 11 unalias llm # Unset alias.
 12 llm
 13 # Error message results, since 'llm' no longer recognized.
 14
 15 exit 0

bash$./unalias.sh
total 6

drwxrwxr-x 2 bozo bozo 3072 Feb 6 14:04 .
drwxr-xr-x 40 bozo bozo 2048 Feb 6 14:04 ..
-rwxr-xr-x 1 bozo bozo 199 Feb 6 14:04 unalias.sh

./unalias.sh: llm: command not found

Notes

[1] ... as the first word of a command string. Obviously, an alias is only meaningful at the beginning of a
command.

[2] However, aliases do seem to expand positional parameters.

Prev Home Next
Recursion Without Local Variables Up List Constructs

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Next

Chapter 26. List Constructs

The and list and or list constructs provide a means of processing a number of commands consecutively. These
can effectively replace complex nested if/then or even case statements.

Chaining together commands

and list

 1 command-1 && command-2 && command-3 && ... command-n

Each command executes in turn, provided that the previous command has given a return value of
true (zero). At the first false (non-zero) return, the command chain terminates (the first command
returning false is the last one to execute).

An interesting use of a two-condition and list from an early version of YongYe's Tetris game script:

 1 equation()
 2
 3 { # core algorithm used for doubling and halving the coordinates
 4 [[${cdx}]] && ((y=cy+(ccy-cdy)${2}2))
 5 eval ${1}+=\"${x} ${y} \"
 6 }

Example 26-1. Using an and list to test for command-line arguments

 1 #!/bin/bash
 2 # and list
 3
 4 if [! -z "$1"] && echo "Argument #1 = $1" && [! -z "$2"] && \
 5 # ^^ ^^ ^^
 6 echo "Argument #2 = $2"
 7 then
 8 echo "At least 2 arguments passed to script."
 9 # All the chained commands return true.
 10 else
 11 echo "Fewer than 2 arguments passed to script."
 12 # At least one of the chained commands returns false.
 13 fi
 14 # Note that "if [! -z $1]" works, but its alleged equivalent,
 15 # "if [-n $1]" does not.
 16 # However, quoting fixes this.
 17 # if "[-n "$1"]" works.
 18 # ^ ^ Careful!
 19 # It is always best to QUOTE the variables being tested.
 20
 21
 22 # This accomplishes the same thing, using "pure" if/then statements.
 23 if [! -z "$1"]
 24 then
 25 echo "Argument #1 = $1"
 26 fi
 27 if [! -z "$2"]
 28 then
 29 echo "Argument #2 = $2"
 30 echo "At least 2 arguments passed to script."
 31 else
 32 echo "Fewer than 2 arguments passed to script."
 33 fi

http://bash.deta.in/Tetris_Game.sh

 34 # It's longer and more ponderous than using an "and list".
 35
 36
 37 exit $?

Example 26-2. Another command-line arg test using an and list

 1 #!/bin/bash
 2
 3 ARGS=1 # Number of arguments expected.
 4 E_BADARGS=85 # Exit value if incorrect number of args passed.
 5
 6 test $# -ne $ARGS && \
 7 # ^^^^^^^^^^^^ condition #1
 8 echo "Usage: `basename $0` $ARGS argument(s)" && exit $E_BADARGS
 9 # ^^
 10 # If condition #1 tests true (wrong number of args passed to script),
 11 #+ then the rest of the line executes, and script terminates.
 12
 13 # Line below executes only if the above test fails.
 14 echo "Correct number of arguments passed to this script."
 15
 16 exit 0
 17
 18 # To check exit value, do a "echo $?" after script termination.

Of course, an and list can also set variables to a default value.

 1 arg1=$@ && [-z "$arg1"] && arg1=DEFAULT
 2
 3 # Set $arg1 to command-line arguments, if any.
 4 # But . . . set to DEFAULT if not specified on command-line.

or list

 1 command-1 || command-2 || command-3 || ... command-n

Each command executes in turn for as long as the previous command returns false. At the first true
return, the command chain terminates (the first command returning true is the last one to execute).
This is obviously the inverse of the "and list".

Example 26-3. Using or lists in combination with an and list

 1 #!/bin/bash
 2
 3 # delete.sh, a not-so-cunning file deletion utility.
 4 # Usage: delete filename
 5
 6 E_BADARGS=85
 7
 8 if [-z "$1"]
 9 then
 10 echo "Usage: `basename $0` filename"
 11 exit $E_BADARGS # No arg? Bail out.
 12 else
 13 file=$1 # Set filename.
 14 fi
 15

 16
 17 [! -f "$file"] && echo "File \"$file\" not found. \
 18 Cowardly refusing to delete a nonexistent file."
 19 # AND LIST, to give error message if file not present.
 20 # Note echo message continuing on to a second line after an escape.
 21
 22 [! -f "$file"] || (rm -f $file; echo "File \"$file\" deleted.")
 23 # OR LIST, to delete file if present.
 24
 25 # Note logic inversion above.
 26 # AND LIST executes on true, OR LIST on false.
 27
 28 exit $?

If the first command in an or list returns true, it will execute.

 1 # ==> The following snippets from the /etc/rc.d/init.d/single
 2 #+==> script by Miquel van Smoorenburg
 3 #+==> illustrate use of "and" and "or" lists.
 4 # ==> "Arrowed" comments added by document author.
 5
 6 [-x /usr/bin/clear] && /usr/bin/clear
 7 # ==> If /usr/bin/clear exists, then invoke it.
 8 # ==> Checking for the existence of a command before calling it
 9 #+==> avoids error messages and other awkward consequences.
 10
 11 # ==> . . .
 12
 13 # If they want to run something in single user mode, might as well run it...
 14 for i in /etc/rc1.d/S[0-9][0-9]* ; do
 15 # Check if the script is there.
 16 [-x "$i"] || continue
 17 # ==> If corresponding file in $PWD *not* found,
 18 #+==> then "continue" by jumping to the top of the loop.
 19
 20 # Reject backup files and files generated by rpm.
 21 case "$1" in
 22 *.rpmsave|*.rpmorig|*.rpmnew|*~|*.orig)
 23 continue;;
 24 esac
 25 ["$i" = "/etc/rc1.d/S00single"] && continue
 26 # ==> Set script name, but don't execute it yet.
 27 $i start
 28 done
 29
 30 # ==> . . .

The exit status of an and list or an or list is the exit status of the last command executed.

Clever combinations of and and or lists are possible, but the logic may easily become convoluted and require
close attention to operator precedence rules, and possibly extensive debugging.

 1 false && true || echo false # false
 2
 3 # Same result as
 4 (false && true) || echo false # false
 5 # But NOT
 6 false && (true || echo false) # (nothing echoed)
 7
 8 # Note left-to-right grouping and evaluation of statements.
 9
 10 # It's usually best to avoid such complexities.
 11
 12 # Thanks, S.C.

See Example A-7 and Example 7-4 for illustrations of using and / or list constructs to test variables.

Prev Home Next
Aliases Up Arrays

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Next

Chapter 27. Arrays

Newer versions of Bash support one-dimensional arrays. Array elements may be initialized with the
variable[xx] notation. Alternatively, a script may introduce the entire array by an explicit declare -a
variable statement. To dereference (retrieve the contents of) an array element, use curly bracket notation,
that is, ${element[xx]}.

Example 27-1. Simple array usage

 1 #!/bin/bash
 2
 3
 4 area[11]=23
 5 area[13]=37
 6 area[51]=UFOs
 7
 8 # Array members need not be consecutive or contiguous.
 9
 10 # Some members of the array can be left uninitialized.
 11 # Gaps in the array are okay.
 12 # In fact, arrays with sparse data ("sparse arrays")
 13 #+ are useful in spreadsheet-processing software.
 14
 15
 16 echo -n "area[11] = "
 17 echo ${area[11]} # {curly brackets} needed.
 18
 19 echo -n "area[13] = "
 20 echo ${area[13]}
 21
 22 echo "Contents of area[51] are ${area[51]}."
 23
 24 # Contents of uninitialized array variable print blank (null variable).
 25 echo -n "area[43] = "
 26 echo ${area[43]}
 27 echo "(area[43] unassigned)"
 28
 29 echo
 30
 31 # Sum of two array variables assigned to third
 32 area[5]=`expr ${area[11]} + ${area[13]}`
 33 echo "area[5] = area[11] + area[13]"
 34 echo -n "area[5] = "
 35 echo ${area[5]}
 36
 37 area[6]=`expr ${area[11]} + ${area[51]}`
 38 echo "area[6] = area[11] + area[51]"
 39 echo -n "area[6] = "
 40 echo ${area[6]}
 41 # This fails because adding an integer to a string is not permitted.
 42
 43 echo; echo; echo
 44
 45 # ---
 46 # Another array, "area2".
 47 # Another way of assigning array variables...
 48 # array_name=(XXX YYY ZZZ ...)
 49
 50 area2=(zero one two three four)

 51
 52 echo -n "area2[0] = "
 53 echo ${area2[0]}
 54 # Aha, zero-based indexing (first element of array is [0], not [1]).
 55
 56 echo -n "area2[1] = "
 57 echo ${area2[1]} # [1] is second element of array.
 58 # ---
 59
 60 echo; echo; echo
 61
 62 # ---
 63 # Yet another array, "area3".
 64 # Yet another way of assigning array variables...
 65 # array_name=([xx]=XXX [yy]=YYY ...)
 66
 67 area3=([17]=seventeen [24]=twenty-four)
 68
 69 echo -n "area3[17] = "
 70 echo ${area3[17]}
 71
 72 echo -n "area3[24] = "
 73 echo ${area3[24]}
 74 # ---
 75
 76 exit 0

As we have seen, a convenient way of initializing an entire array is the array=(element1 element2
... elementN) notation.

 1 base64_charset=({A..Z} {a..z} {0..9} + / =)
 2 # Using extended brace expansion
 3 #+ to initialize the elements of the array.
 4 # Excerpted from vladz's "base64.sh" script
 5 #+ in the "Contributed Scripts" appendix.

Bash permits array operations on variables, even if the variables are not explicitly declared as arrays.

 1 string=abcABC123ABCabc
 2 echo ${string[@]} # abcABC123ABCabc
 3 echo ${string[*]} # abcABC123ABCabc
 4 echo ${string[0]} # abcABC123ABCabc
 5 echo ${string[1]} # No output!
 6 # Why?
 7 echo ${#string[@]} # 1
 8 # One element in the array.
 9 # The string itself.
 10
 11 # Thank you, Michael Zick, for pointing this out.

Once again this demonstrates that Bash variables are untyped.

Example 27-2. Formatting a poem

 1 #!/bin/bash
 2 # poem.sh: Pretty-prints one of the ABS Guide author's favorite poems.
 3
 4 # Lines of the poem (single stanza).
 5 Line[1]="I do not know which to prefer,"

 6 Line[2]="The beauty of inflections"
 7 Line[3]="Or the beauty of innuendoes,"
 8 Line[4]="The blackbird whistling"
 9 Line[5]="Or just after."
 10 # Note that quoting permits embedding whitespace.
 11
 12 # Attribution.
 13 Attrib[1]=" Wallace Stevens"
 14 Attrib[2]="\"Thirteen Ways of Looking at a Blackbird\""
 15 # This poem is in the Public Domain (copyright expired).
 16
 17 echo
 18
 19 tput bold # Bold print.
 20
 21 for index in 1 2 3 4 5 # Five lines.
 22 do
 23 printf " %s\n" "${Line[index]}"
 24 done
 25
 26 for index in 1 2 # Two attribution lines.
 27 do
 28 printf " %s\n" "${Attrib[index]}"
 29 done
 30
 31 tput sgr0 # Reset terminal.
 32 # See 'tput' docs.
 33
 34 echo
 35
 36 exit 0
 37
 38 # Exercise:
 39 # --------
 40 # Modify this script to pretty-print a poem from a text data file.

Array variables have a syntax all their own, and even standard Bash commands and operators have special
options adapted for array use.

Example 27-3. Various array operations

 1 #!/bin/bash
 2 # array-ops.sh: More fun with arrays.
 3
 4
 5 array=(zero one two three four five)
 6 # Element 0 1 2 3 4 5
 7
 8 echo ${array[0]} # zero
 9 echo ${array:0} # zero
 10 # Parameter expansion of first element,
 11 #+ starting at position # 0 (1st character).
 12 echo ${array:1} # ero
 13 # Parameter expansion of first element,
 14 #+ starting at position # 1 (2nd character).
 15
 16 echo "--------------"
 17
 18 echo ${#array[0]} # 4
 19 # Length of first element of array.
 20 echo ${#array} # 4
 21 # Length of first element of array.

 22 # (Alternate notation)
 23
 24 echo ${#array[1]} # 3
 25 # Length of second element of array.
 26 # Arrays in Bash have zero-based indexing.
 27
 28 echo ${#array[*]} # 6
 29 # Number of elements in array.
 30 echo ${#array[@]} # 6
 31 # Number of elements in array.
 32
 33 echo "--------------"
 34
 35 array2=([0]="first element" [1]="second element" [3]="fourth element")
 36 # ^ ^ ^ ^ ^ ^ ^ ^ ^
 37 # Quoting permits embedding whitespace within individual array elements.
 38
 39 echo ${array2[0]} # first element
 40 echo ${array2[1]} # second element
 41 echo ${array2[2]} #
 42 # Skipped in initialization, and therefore null.
 43 echo ${array2[3]} # fourth element
 44 echo ${#array2[0]} # 13 (length of first element)
 45 echo ${#array2[*]} # 3 (number of elements in array)
 46
 47 exit

Many of the standard string operations work on arrays.

Example 27-4. String operations on arrays

 1 #!/bin/bash
 2 # array-strops.sh: String operations on arrays.
 3
 4 # Script by Michael Zick.
 5 # Used in ABS Guide with permission.
 6 # Fixups: 05 May 08, 04 Aug 08.
 7
 8 # In general, any string operation using the ${name ... } notation
 9 #+ can be applied to all string elements in an array,
 10 #+ with the ${name[@] ... } or ${name[*] ...} notation.
 11
 12
 13 arrayZ=(one two three four five five)
 14
 15 echo
 16
 17 # Trailing Substring Extraction
 18 echo ${arrayZ[@]:0} # one two three four five five
 19 # ^ All elements.
 20
 21 echo ${arrayZ[@]:1} # two three four five five
 22 # ^ All elements following element[0].
 23
 24 echo ${arrayZ[@]:1:2} # two three
 25 # ^ Only the two elements after element[0].
 26
 27 echo "---------"
 28
 29
 30 # Substring Removal
 31

 32 # Removes shortest match from front of string(s).
 33
 34 echo ${arrayZ[@]#f*r} # one two three five five
 35 # ^ # Applied to all elements of the array.
 36 # Matches "four" and removes it.
 37
 38 # Longest match from front of string(s)
 39 echo ${arrayZ[@]##t*e} # one two four five five
 40 # ^^ # Applied to all elements of the array.
 41 # Matches "three" and removes it.
 42
 43 # Shortest match from back of string(s)
 44 echo ${arrayZ[@]%h*e} # one two t four five five
 45 # ^ # Applied to all elements of the array.
 46 # Matches "hree" and removes it.
 47
 48 # Longest match from back of string(s)
 49 echo ${arrayZ[@]%%t*e} # one two four five five
 50 # ^^ # Applied to all elements of the array.
 51 # Matches "three" and removes it.
 52
 53 echo "----------------------"
 54
 55
 56 # Substring Replacement
 57
 58 # Replace first occurrence of substring with replacement.
 59 echo ${arrayZ[@]/fiv/XYZ} # one two three four XYZe XYZe
 60 # ^ # Applied to all elements of the array.
 61
 62 # Replace all occurrences of substring.
 63 echo ${arrayZ[@]//iv/YY} # one two three four fYYe fYYe
 64 # Applied to all elements of the array.
 65
 66 # Delete all occurrences of substring.
 67 # Not specifing a replacement defaults to 'delete' ...
 68 echo ${arrayZ[@]//fi/} # one two three four ve ve
 69 # ^^ # Applied to all elements of the array.
 70
 71 # Replace front-end occurrences of substring.
 72 echo ${arrayZ[@]/#fi/XY} # one two three four XYve XYve
 73 # ^ # Applied to all elements of the array.
 74
 75 # Replace back-end occurrences of substring.
 76 echo ${arrayZ[@]/%ve/ZZ} # one two three four fiZZ fiZZ
 77 # ^ # Applied to all elements of the array.
 78
 79 echo ${arrayZ[@]/%o/XX} # one twXX three four five five
 80 # ^ # Why?
 81
 82 echo "-----------------------------"
 83
 84
 85 replacement() {
 86 echo -n "!!!"
 87 }
 88
 89 echo ${arrayZ[@]/%e/$(replacement)}
 90 # ^ ^^^^^^^^^^^^^^
 91 # on!!! two thre!!! four fiv!!! fiv!!!
 92 # The stdout of replacement() is the replacement string.
 93 # Q.E.D: The replacement action is, in effect, an 'assignment.'
 94
 95 echo "------------------------------------"
 96
 97 # Accessing the "for-each":

 98 echo ${arrayZ[@]//*/$(replacement optional_arguments)}
 99 # ^^ ^^^^^^^^^^^^^
 100 # !!! !!! !!! !!! !!! !!!
 101
 102 # Now, if Bash would only pass the matched string
 103 #+ to the function being called . . .
 104
 105 echo
 106
 107 exit 0
 108
 109 # Before reaching for a Big Hammer -- Perl, Python, or all the rest --
 110 # recall:
 111 # $(...) is command substitution.
 112 # A function runs as a sub-process.
 113 # A function writes its output (if echo-ed) to stdout.
 114 # Assignment, in conjunction with "echo" and command substitution,
 115 #+ can read a function's stdout.
 116 # The name[@] notation specifies (the equivalent of) a "for-each"
 117 #+ operation.
 118 # Bash is more powerful than you think!

Command substitution can construct the individual elements of an array.

Example 27-5. Loading the contents of a script into an array

 1 #!/bin/bash
 2 # script-array.sh: Loads this script into an array.
 3 # Inspired by an e-mail from Chris Martin (thanks!).
 4
 5 script_contents=($(cat "$0")) # Stores contents of this script ($0)
 6 #+ in an array.
 7
 8 for element in $(seq 0 $((${#script_contents[@]} - 1)))
 9 do # ${#script_contents[@]}
 10 #+ gives number of elements in the array.
 11 #
 12 # Question:
 13 # Why is seq 0 necessary?
 14 # Try changing it to seq 1.
 15 echo -n "${script_contents[$element]}"
 16 # List each field of this script on a single line.
 17 # echo -n "${script_contents[element]}" also works because of ${ ... }.
 18 echo -n " -- " # Use " -- " as a field separator.
 19 done
 20
 21 echo
 22
 23 exit 0
 24
 25 # Exercise:
 26 # --------
 27 # Modify this script so it lists itself
 28 #+ in its original format,
 29 #+ complete with whitespace, line breaks, etc.

In an array context, some Bash builtins have a slightly altered meaning. For example, unset deletes array
elements, or even an entire array.

Example 27-6. Some special properties of arrays

 1 #!/bin/bash
 2
 3 declare -a colors
 4 # All subsequent commands in this script will treat
 5 #+ the variable "colors" as an array.
 6
 7 echo "Enter your favorite colors (separated from each other by a space)."
 8
 9 read -a colors # Enter at least 3 colors to demonstrate features below.
 10 # Special option to 'read' command,
 11 #+ allowing assignment of elements in an array.
 12
 13 echo
 14
 15 element_count=${#colors[@]}
 16 # Special syntax to extract number of elements in array.
 17 # element_count=${#colors[*]} works also.
 18 #
 19 # The "@" variable allows word splitting within quotes
 20 #+ (extracts variables separated by whitespace).
 21 #
 22 # This corresponds to the behavior of "$@" and "$*"
 23 #+ in positional parameters.
 24
 25 index=0
 26
 27 while ["$index" -lt "$element_count"]
 28 do # List all the elements in the array.
 29 echo ${colors[$index]}
 30 # ${colors[index]} also works because it's within ${ ... } brackets.
 31 let "index = $index + 1"
 32 # Or:
 33 # ((index++))
 34 done
 35 # Each array element listed on a separate line.
 36 # If this is not desired, use echo -n "${colors[$index]} "
 37 #
 38 # Doing it with a "for" loop instead:
 39 # for i in "${colors[@]}"
 40 # do
 41 # echo "$i"
 42 # done
 43 # (Thanks, S.C.)
 44
 45 echo
 46
 47 # Again, list all the elements in the array, but using a more elegant method.
 48 echo ${colors[@]} # echo ${colors[*]} also works.
 49
 50 echo
 51
 52 # The "unset" command deletes elements of an array, or entire array.
 53 unset colors[1] # Remove 2nd element of array.
 54 # Same effect as colors[1]=
 55 echo ${colors[@]} # List array again, missing 2nd element.
 56
 57 unset colors # Delete entire array.
 58 # unset colors[*] and
 59 #+ unset colors[@] also work.
 60 echo; echo -n "Colors gone."
 61 echo ${colors[@]} # List array again, now empty.
 62
 63 exit 0

As seen in the previous example, either ${array_name[@]} or ${array_name[*]} refers to all the elements
of the array. Similarly, to get a count of the number of elements in an array, use either ${#array_name[@]}
or ${#array_name[*]}. ${#array_name} is the length (number of characters) of ${array_name[0]}, the first
element of the array.

Example 27-7. Of empty arrays and empty elements

 1 #!/bin/bash
 2 # empty-array.sh
 3
 4 # Thanks to Stephane Chazelas for the original example,
 5 #+ and to Michael Zick and Omair Eshkenazi, for extending it.
 6 # And to Nathan Coulter for clarifications and corrections.
 7
 8
 9 # An empty array is not the same as an array with empty elements.
 10
 11 array0=(first second third)
 12 array1=('') # "array1" consists of one empty element.
 13 array2=() # No elements . . . "array2" is empty.
 14 array3=() # What about this array?
 15
 16
 17 echo
 18 ListArray()
 19 {
 20 echo
 21 echo "Elements in array0: ${array0[@]}"
 22 echo "Elements in array1: ${array1[@]}"
 23 echo "Elements in array2: ${array2[@]}"
 24 echo "Elements in array3: ${array3[@]}"
 25 echo
 26 echo "Length of first element in array0 = ${#array0}"
 27 echo "Length of first element in array1 = ${#array1}"
 28 echo "Length of first element in array2 = ${#array2}"
 29 echo "Length of first element in array3 = ${#array3}"
 30 echo
 31 echo "Number of elements in array0 = ${#array0[*]}" # 3
 32 echo "Number of elements in array1 = ${#array1[*]}" # 1 (Surprise!)
 33 echo "Number of elements in array2 = ${#array2[*]}" # 0
 34 echo "Number of elements in array3 = ${#array3[*]}" # 0
 35 }
 36
 37 # ===
 38
 39 ListArray
 40
 41 # Try extending those arrays.
 42
 43 # Adding an element to an array.
 44 array0=("${array0[@]}" "new1")
 45 array1=("${array1[@]}" "new1")
 46 array2=("${array2[@]}" "new1")
 47 array3=("${array3[@]}" "new1")
 48
 49 ListArray
 50
 51 # or
 52 array0[${#array0[*]}]="new2"

 53 array1[${#array1[*]}]="new2"
 54 array2[${#array2[*]}]="new2"
 55 array3[${#array3[*]}]="new2"
 56
 57 ListArray
 58
 59 # When extended as above, arrays are 'stacks' ...
 60 # Above is the 'push' ...
 61 # The stack 'height' is:
 62 height=${#array2[@]}
 63 echo
 64 echo "Stack height for array2 = $height"
 65
 66 # The 'pop' is:
 67 unset array2[${#array2[@]}-1] # Arrays are zero-based,
 68 height=${#array2[@]} #+ which means first element has index 0.
 69 echo
 70 echo "POP"
 71 echo "New stack height for array2 = $height"
 72
 73 ListArray
 74
 75 # List only 2nd and 3rd elements of array0.
 76 from=1 # Zero-based numbering.
 77 to=2
 78 array3=(${array0[@]:1:2})
 79 echo
 80 echo "Elements in array3: ${array3[@]}"
 81
 82 # Works like a string (array of characters).
 83 # Try some other "string" forms.
 84
 85 # Replacement:
 86 array4=(${array0[@]/second/2nd})
 87 echo
 88 echo "Elements in array4: ${array4[@]}"
 89
 90 # Replace all matching wildcarded string.
 91 array5=(${array0[@]//new?/old})
 92 echo
 93 echo "Elements in array5: ${array5[@]}"
 94
 95 # Just when you are getting the feel for this . . .
 96 array6=(${array0[@]#*new})
 97 echo # This one might surprise you.
 98 echo "Elements in array6: ${array6[@]}"
 99
 100 array7=(${array0[@]#new1})
 101 echo # After array6 this should not be a surprise.
 102 echo "Elements in array7: ${array7[@]}"
 103
 104 # Which looks a lot like . . .
 105 array8=(${array0[@]/new1/})
 106 echo
 107 echo "Elements in array8: ${array8[@]}"
 108
 109 # So what can one say about this?
 110
 111 # The string operations are performed on
 112 #+ each of the elements in var[@] in succession.
 113 # Therefore : Bash supports string vector operations.
 114 # If the result is a zero length string,
 115 #+ that element disappears in the resulting assignment.
 116 # However, if the expansion is in quotes, the null elements remain.
 117
 118 # Michael Zick: Question, are those strings hard or soft quotes?

 119 # Nathan Coulter: There is no such thing as "soft quotes."
 120 #! What's really happening is that
 121 #!+ the pattern matching happens after
 122 #!+ all the other expansions of [word]
 123 #!+ in cases like ${parameter#word}.
 124
 125
 126 zap='new*'
 127 array9=(${array0[@]/$zap/})
 128 echo
 129 echo "Number of elements in array9: ${#array9[@]}"
 130 array9=("${array0[@]/$zap/}")
 131 echo "Elements in array9: ${array9[@]}"
 132 # This time the null elements remain.
 133 echo "Number of elements in array9: ${#array9[@]}"
 134
 135
 136 # Just when you thought you were still in Kansas . . .
 137 array10=(${array0[@]#$zap})
 138 echo
 139 echo "Elements in array10: ${array10[@]}"
 140 # But, the asterisk in zap won't be interpreted if quoted.
 141 array10=(${array0[@]#"$zap"})
 142 echo
 143 echo "Elements in array10: ${array10[@]}"
 144 # Well, maybe we _are_ still in Kansas . . .
 145 # (Revisions to above code block by Nathan Coulter.)
 146
 147
 148 # Compare array7 with array10.
 149 # Compare array8 with array9.
 150
 151 # Reiterating: No such thing as soft quotes!
 152 # Nathan Coulter explains:
 153 # Pattern matching of 'word' in ${parameter#word} is done after
 154 #+ parameter expansion and *before* quote removal.
 155 # In the normal case, pattern matching is done *after* quote removal.
 156
 157 exit

The relationship of ${array_name[@]} and ${array_name[*]} is analogous to that between $@ and $*. This
powerful array notation has a number of uses.

 1 # Copying an array.
 2 array2=("${array1[@]}")
 3 # or
 4 array2="${array1[@]}"
 5 #
 6 # However, this fails with "sparse" arrays,
 7 #+ arrays with holes (missing elements) in them,
 8 #+ as Jochen DeSmet points out.
 9 # --
 10 array1[0]=0
 11 # array1[1] not assigned
 12 array1[2]=2
 13 array2=("${array1[@]}") # Copy it?
 14
 15 echo ${array2[0]} # 0
 16 echo ${array2[2]} # (null), should be 2
 17 # --
 18
 19
 20
 21 # Adding an element to an array.

 22 array=("${array[@]}" "new element")
 23 # or
 24 array[${#array[*]}]="new element"
 25
 26 # Thanks, S.C.

The array=(element1 element2 ... elementN) initialization operation, with the help of command
substitution, makes it possible to load the contents of a text file into an array.

 1 #!/bin/bash
 2
 3 filename=sample_file
 4
 5 # cat sample_file
 6 #
 7 # 1 a b c
 8 # 2 d e fg
 9
 10
 11 declare -a array1
 12
 13 array1=(`cat "$filename"`) # Loads contents
 14 # List file to stdout #+ of $filename into array1.
 15 #
 16 # array1=(`cat "$filename" | tr '\n' ' '`)
 17 # change linefeeds in file to spaces.
 18 # Not necessary because Bash does word splitting,
 19 #+ changing linefeeds to spaces.
 20
 21 echo ${array1[@]} # List the array.
 22 # 1 a b c 2 d e fg
 23 #
 24 # Each whitespace-separated "word" in the file
 25 #+ has been assigned to an element of the array.
 26
 27 element_count=${#array1[*]}
 28 echo $element_count # 8

Clever scripting makes it possible to add array operations.

Example 27-8. Initializing arrays

 1 #! /bin/bash
 2 # array-assign.bash
 3
 4 # Array operations are Bash-specific,
 5 #+ hence the ".bash" in the script name.
 6
 7 # Copyright (c) Michael S. Zick, 2003, All rights reserved.
 8 # License: Unrestricted reuse in any form, for any purpose.
 9 # Version: ID
 10 #
 11 # Clarification and additional comments by William Park.
 12
 13 # Based on an example provided by Stephane Chazelas
 14 #+ which appeared in an earlier version of the
 15 #+ Advanced Bash Scripting Guide.
 16
 17 # Output format of the 'times' command:
 18 # User CPU <space> System CPU
 19 # User CPU of dead children <space> System CPU of dead children
 20

 21 # Bash has two versions of assigning all elements of an array
 22 #+ to a new array variable.
 23 # Both drop 'null reference' elements
 24 #+ in Bash versions 2.04 and later.
 25 # An additional array assignment that maintains the relationship of
 26 #+ [subscript]=value for arrays may be added to newer versions.
 27
 28 # Constructs a large array using an internal command,
 29 #+ but anything creating an array of several thousand elements
 30 #+ will do just fine.
 31
 32 declare -a bigOne=(/dev/*) # All the files in /dev . . .
 33 echo
 34 echo 'Conditions: Unquoted, default IFS, All-Elements-Of'
 35 echo "Number of elements in array is ${#bigOne[@]}"
 36
 37 # set -vx
 38
 39
 40
 41 echo
 42 echo '- - testing: =(${array[@]}) - -'
 43 times
 44 declare -a bigTwo=(${bigOne[@]})
 45 # Note parens: ^ ^
 46 times
 47
 48
 49 echo
 50 echo '- - testing: =${array[@]} - -'
 51 times
 52 declare -a bigThree=${bigOne[@]}
 53 # No parentheses this time.
 54 times
 55
 56 # Comparing the numbers shows that the second form, pointed out
 57 #+ by Stephane Chazelas, is faster.
 58 #
 59 # As William Park explains:
 60 #+ The bigTwo array assigned element by element (because of parentheses),
 61 #+ whereas bigThree assigned as a single string.
 62 # So, in essence, you have:
 63 # bigTwo=([0]="..." [1]="..." [2]="..." ...)
 64 # bigThree=([0]="...")
 65 #
 66 # Verify this by: echo ${bigTwo[0]}
 67 # echo ${bigThree[0]}
 68
 69
 70 # I will continue to use the first form in my example descriptions
 71 #+ because I think it is a better illustration of what is happening.
 72
 73 # The reusable portions of my examples will actual contain
 74 #+ the second form where appropriate because of the speedup.
 75
 76 # MSZ: Sorry about that earlier oversight folks.
 77
 78
 79 # Note:
 80 # ----
 81 # The "declare -a" statements in lines 32 and 44
 82 #+ are not strictly necessary, since it is implicit
 83 #+ in the Array=(...) assignment form.
 84 # However, eliminating these declarations slows down
 85 #+ the execution of the following sections of the script.
 86 # Try it, and see.

 87
 88 exit 0

Adding a superfluous declare -a statement to an array declaration may speed up execution of subsequent
operations on the array.

Example 27-9. Copying and concatenating arrays

 1 #! /bin/bash
 2 # CopyArray.sh
 3 #
 4 # This script written by Michael Zick.
 5 # Used here with permission.
 6
 7 # How-To "Pass by Name & Return by Name"
 8 #+ or "Building your own assignment statement".
 9
 10
 11 CpArray_Mac() {
 12
 13 # Assignment Command Statement Builder
 14
 15 echo -n 'eval '
 16 echo -n "$2" # Destination name
 17 echo -n '=(${'
 18 echo -n "$1" # Source name
 19 echo -n '[@]})'
 20
 21 # That could all be a single command.
 22 # Matter of style only.
 23 }
 24
 25 declare -f CopyArray # Function "Pointer"
 26 CopyArray=CpArray_Mac # Statement Builder
 27
 28 Hype()
 29 {
 30
 31 # Hype the array named $1.
 32 # (Splice it together with array containing "Really Rocks".)
 33 # Return in array named $2.
 34
 35 local -a TMP
 36 local -a hype=(Really Rocks)
 37
 38 $($CopyArray $1 TMP)
 39 TMP=(${TMP[@]} ${hype[@]})
 40 $($CopyArray TMP $2)
 41 }
 42
 43 declare -a before=(Advanced Bash Scripting)
 44 declare -a after
 45
 46 echo "Array Before = ${before[@]}"
 47
 48 Hype before after
 49
 50 echo "Array After = ${after[@]}"
 51
 52 # Too much hype?
 53
 54 echo "What ${after[@]:3:2}?"
 55

 56 declare -a modest=(${after[@]:2:1} ${after[@]:3:2})
 57 # ---- substring extraction ----
 58
 59 echo "Array Modest = ${modest[@]}"
 60
 61 # What happened to 'before' ?
 62
 63 echo "Array Before = ${before[@]}"
 64
 65 exit 0

Example 27-10. More on concatenating arrays

 1 #! /bin/bash
 2 # array-append.bash
 3
 4 # Copyright (c) Michael S. Zick, 2003, All rights reserved.
 5 # License: Unrestricted reuse in any form, for any purpose.
 6 # Version: ID
 7 #
 8 # Slightly modified in formatting by M.C.
 9
 10
 11 # Array operations are Bash-specific.
 12 # Legacy UNIX /bin/sh lacks equivalents.
 13
 14
 15 # Pipe the output of this script to 'more'
 16 #+ so it doesn't scroll off the terminal.
 17 # Or, redirect output to a file.
 18
 19
 20 declare -a array1=(zero1 one1 two1)
 21 # Subscript packed.
 22 declare -a array2=([0]=zero2 [2]=two2 [3]=three2)
 23 # Subscript sparse -- [1] is not defined.
 24
 25 echo
 26 echo '- Confirm that the array is really subscript sparse. -'
 27 echo "Number of elements: 4" # Hard-coded for illustration.
 28 for ((i = 0 ; i < 4 ; i++))
 29 do
 30 echo "Element [$i]: ${array2[$i]}"
 31 done
 32 # See also the more general code example in basics-reviewed.bash.
 33
 34
 35 declare -a dest
 36
 37 # Combine (append) two arrays into a third array.
 38 echo
 39 echo 'Conditions: Unquoted, default IFS, All-Elements-Of operator'
 40 echo '- Undefined elements not present, subscripts not maintained. -'
 41 # # The undefined elements do not exist; they are not being dropped.
 42
 43 dest=(${array1[@]} ${array2[@]})
 44 # dest=${array1[@]}${array2[@]} # Strange results, possibly a bug.
 45
 46 # Now, list the result.
 47 echo
 48 echo '- - Testing Array Append - -'
 49 cnt=${#dest[@]}

 50
 51 echo "Number of elements: $cnt"
 52 for ((i = 0 ; i < cnt ; i++))
 53 do
 54 echo "Element [$i]: ${dest[$i]}"
 55 done
 56
 57 # Assign an array to a single array element (twice).
 58 dest[0]=${array1[@]}
 59 dest[1]=${array2[@]}
 60
 61 # List the result.
 62 echo
 63 echo '- - Testing modified array - -'
 64 cnt=${#dest[@]}
 65
 66 echo "Number of elements: $cnt"
 67 for ((i = 0 ; i < cnt ; i++))
 68 do
 69 echo "Element [$i]: ${dest[$i]}"
 70 done
 71
 72 # Examine the modified second element.
 73 echo
 74 echo '- - Reassign and list second element - -'
 75
 76 declare -a subArray=${dest[1]}
 77 cnt=${#subArray[@]}
 78
 79 echo "Number of elements: $cnt"
 80 for ((i = 0 ; i < cnt ; i++))
 81 do
 82 echo "Element [$i]: ${subArray[$i]}"
 83 done
 84
 85 # The assignment of an entire array to a single element
 86 #+ of another array using the '=${ ... }' array assignment
 87 #+ has converted the array being assigned into a string,
 88 #+ with the elements separated by a space (the first character of IFS).
 89
 90 # If the original elements didn't contain whitespace . . .
 91 # If the original array isn't subscript sparse . . .
 92 # Then we could get the original array structure back again.
 93
 94 # Restore from the modified second element.
 95 echo
 96 echo '- - Listing restored element - -'
 97
 98 declare -a subArray=(${dest[1]})
 99 cnt=${#subArray[@]}
 100
 101 echo "Number of elements: $cnt"
 102 for ((i = 0 ; i < cnt ; i++))
 103 do
 104 echo "Element [$i]: ${subArray[$i]}"
 105 done
 106 echo '- - Do not depend on this behavior. - -'
 107 echo '- - This behavior is subject to change - -'
 108 echo '- - in versions of Bash newer than version 2.05b - -'
 109
 110 # MSZ: Sorry about any earlier confusion folks.
 111
 112 exit 0

--

Arrays permit deploying old familiar algorithms as shell scripts. Whether this is necessarily a good idea is left
for the reader to decide.

Example 27-11. The Bubble Sort

 1 #!/bin/bash
 2 # bubble.sh: Bubble sort, of sorts.
 3
 4 # Recall the algorithm for a bubble sort. In this particular version...
 5
 6 # With each successive pass through the array to be sorted,
 7 #+ compare two adjacent elements, and swap them if out of order.
 8 # At the end of the first pass, the "heaviest" element has sunk to bottom.
 9 # At the end of the second pass, the next "heaviest" one has sunk next to bottom.
 10 # And so forth.
 11 # This means that each successive pass needs to traverse less of the array.
 12 # You will therefore notice a speeding up in the printing of the later passes.
 13
 14
 15 exchange()
 16 {
 17 # Swaps two members of the array.
 18 local temp=${Countries[$1]} # Temporary storage
 19 #+ for element getting swapped out.
 20 Countries[$1]=${Countries[$2]}
 21 Countries[$2]=$temp
 22
 23 return
 24 }
 25
 26 declare -a Countries # Declare array,
 27 #+ optional here since it's initialized below.
 28
 29 # Is it permissable to split an array variable over multiple lines
 30 #+ using an escape (\)?
 31 # Yes.
 32
 33 Countries=(Netherlands Ukraine Zaire Turkey Russia Yemen Syria \
 34 Brazil Argentina Nicaragua Japan Mexico Venezuela Greece England \
 35 Israel Peru Canada Oman Denmark Wales France Kenya \
 36 Xanadu Qatar Liechtenstein Hungary)
 37
 38 # "Xanadu" is the mythical place where, according to Coleridge,
 39 #+ Kubla Khan did a pleasure dome decree.
 40
 41
 42 clear # Clear the screen to start with.
 43
 44 echo "0: ${Countries[*]}" # List entire array at pass 0.
 45
 46 number_of_elements=${#Countries[@]}
 47 let "comparisons = $number_of_elements - 1"
 48
 49 count=1 # Pass number.
 50
 51 while ["$comparisons" -gt 0] # Beginning of outer loop
 52 do
 53
 54 index=0 # Reset index to start of array after each pass.
 55
 56 while ["$index" -lt "$comparisons"] # Beginning of inner loop
 57 do

 58 if [${Countries[$index]} \> ${Countries[`expr $index + 1`]}]
 59 # If out of order...
 60 # Recalling that \> is ASCII comparison operator
 61 #+ within single brackets.
 62
 63 # if [[${Countries[$index]} > ${Countries[`expr $index + 1`]}]]
 64 #+ also works.
 65 then
 66 exchange $index `expr $index + 1` # Swap.
 67 fi
 68 let "index += 1" # Or, index+=1 on Bash, ver. 3.1 or newer.
 69 done # End of inner loop
 70
 71 # --
 72 # Paulo Marcel Coelho Aragao suggests for-loops as a simpler altenative.
 73 #
 74 # for ((last = $number_of_elements - 1 ; last > 0 ; last--))
 75 ## Fix by C.Y. Hunt ^ (Thanks!)
 76 # do
 77 # for ((i = 0 ; i < last ; i++))
 78 # do
 79 # [["${Countries[$i]}" > "${Countries[$((i+1))]}"]] \
 80 # && exchange $i $((i+1))
 81 # done
 82 # done
 83 # --
 84
 85
 86 let "comparisons -= 1" # Since "heaviest" element bubbles to bottom,
 87 #+ we need do one less comparison each pass.
 88
 89 echo
 90 echo "$count: ${Countries[@]}" # Print resultant array at end of each pass.
 91 echo
 92 let "count += 1" # Increment pass count.
 93
 94 done # End of outer loop
 95 # All done.
 96
 97 exit 0

--

Is it possible to nest arrays within arrays?

 1 #!/bin/bash
 2 # "Nested" array.
 3
 4 # Michael Zick provided this example,
 5 #+ with corrections and clarifications by William Park.
 6
 7 AnArray=($(ls --inode --ignore-backups --almost-all \
 8 --directory --full-time --color=none --time=status \
 9 --sort=time -l ${PWD})) # Commands and options.
 10
 11 # Spaces are significant . . . and don't quote anything in the above.
 12
 13 SubArray=(${AnArray[@]:11:1} ${AnArray[@]:6:5})
 14 # This array has six elements:
 15 #+ SubArray=([0]=${AnArray[11]} [1]=${AnArray[6]} [2]=${AnArray[7]}
 16 # [3]=${AnArray[8]} [4]=${AnArray[9]} [5]=${AnArray[10]})
 17 #
 18 # Arrays in Bash are (circularly) linked lists

 19 #+ of type string (char *).
 20 # So, this isn't actually a nested array,
 21 #+ but it's functionally similar.
 22
 23 echo "Current directory and date of last status change:"
 24 echo "${SubArray[@]}"
 25
 26 exit 0

--

Embedded arrays in combination with indirect references create some fascinating possibilities

Example 27-12. Embedded arrays and indirect references

 1 #!/bin/bash
 2 # embedded-arrays.sh
 3 # Embedded arrays and indirect references.
 4
 5 # This script by Dennis Leeuw.
 6 # Used with permission.
 7 # Modified by document author.
 8
 9
 10 ARRAY1=(
 11 VAR1_1=value11
 12 VAR1_2=value12
 13 VAR1_3=value13
 14)
 15
 16 ARRAY2=(
 17 VARIABLE="test"
 18 STRING="VAR1=value1 VAR2=value2 VAR3=value3"
 19 ARRAY21=${ARRAY1[*]}
 20) # Embed ARRAY1 within this second array.
 21
 22 function print () {
 23 OLD_IFS="$IFS"
 24 IFS=$'\n' # To print each array element
 25 #+ on a separate line.
 26 TEST1="ARRAY2[*]"
 27 local ${!TEST1} # See what happens if you delete this line.
 28 # Indirect reference.
 29 # This makes the components of $TEST1
 30 #+ accessible to this function.
 31
 32
 33 # Let's see what we've got so far.
 34 echo
 35 echo "\$TEST1 = $TEST1" # Just the name of the variable.
 36 echo; echo
 37 echo "{\$TEST1} = ${!TEST1}" # Contents of the variable.
 38 # That's what an indirect
 39 #+ reference does.
 40 echo
 41 echo "---"; echo
 42 echo
 43
 44
 45 # Print variable
 46 echo "Variable VARIABLE: $VARIABLE"
 47
 48 # Print a string element

 49 IFS="$OLD_IFS"
 50 TEST2="STRING[*]"
 51 local ${!TEST2} # Indirect reference (as above).
 52 echo "String element VAR2: $VAR2 from STRING"
 53
 54 # Print an array element
 55 TEST2="ARRAY21[*]"
 56 local ${!TEST2} # Indirect reference (as above).
 57 echo "Array element VAR1_1: $VAR1_1 from ARRAY21"
 58 }
 59
 60 print
 61 echo
 62
 63 exit 0
 64
 65 # As the author of the script notes,
 66 #+ "you can easily expand it to create named-hashes in bash."
 67 # (Difficult) exercise for the reader: implement this.

--

Arrays enable implementing a shell script version of the Sieve of Eratosthenes. Of course, a resource-intensive
application of this nature should really be written in a compiled language, such as C. It runs excruciatingly
slowly as a script.

Example 27-13. The Sieve of Eratosthenes

 1 #!/bin/bash
 2 # sieve.sh (ex68.sh)
 3
 4 # Sieve of Eratosthenes
 5 # Ancient algorithm for finding prime numbers.
 6
 7 # This runs a couple of orders of magnitude slower
 8 #+ than the equivalent program written in C.
 9
 10 LOWER_LIMIT=1 # Starting with 1.
 11 UPPER_LIMIT=1000 # Up to 1000.
 12 # (You may set this higher . . . if you have time on your hands.)
 13
 14 PRIME=1
 15 NON_PRIME=0
 16
 17 let SPLIT=UPPER_LIMIT/2
 18 # Optimization:
 19 # Need to test numbers only halfway to upper limit. Why?
 20
 21
 22 declare -a Primes
 23 # Primes[] is an array.
 24
 25
 26 initialize ()
 27 {
 28 # Initialize the array.
 29
 30 i=$LOWER_LIMIT
 31 until ["$i" -gt "$UPPER_LIMIT"]
 32 do
 33 Primes[i]=$PRIME

 34 let "i += 1"
 35 done
 36 # Assume all array members guilty (prime)
 37 #+ until proven innocent.
 38 }
 39
 40 print_primes ()
 41 {
 42 # Print out the members of the Primes[] array tagged as prime.
 43
 44 i=$LOWER_LIMIT
 45
 46 until ["$i" -gt "$UPPER_LIMIT"]
 47 do
 48
 49 if ["${Primes[i]}" -eq "$PRIME"]
 50 then
 51 printf "%8d" $i
 52 # 8 spaces per number gives nice, even columns.
 53 fi
 54
 55 let "i += 1"
 56
 57 done
 58
 59 }
 60
 61 sift () # Sift out the non-primes.
 62 {
 63
 64 let i=$LOWER_LIMIT+1
 65 # Let's start with 2.
 66
 67 until ["$i" -gt "$UPPER_LIMIT"]
 68 do
 69
 70 if ["${Primes[i]}" -eq "$PRIME"]
 71 # Don't bother sieving numbers already sieved (tagged as non-prime).
 72 then
 73
 74 t=$i
 75
 76 while ["$t" -le "$UPPER_LIMIT"]
 77 do
 78 let "t += $i "
 79 Primes[t]=$NON_PRIME
 80 # Tag as non-prime all multiples.
 81 done
 82
 83 fi
 84
 85 let "i += 1"
 86 done
 87
 88
 89 }
 90
 91
 92 # ==
 93 # main ()
 94 # Invoke the functions sequentially.
 95 initialize
 96 sift
 97 print_primes
 98 # This is what they call structured programming.
 99 # ==

 100
 101 echo
 102
 103 exit 0
 104
 105
 106
 107 # -- #
 108 # Code below line will not execute, because of 'exit.'
 109
 110 # This improved version of the Sieve, by Stephane Chazelas,
 111 #+ executes somewhat faster.
 112
 113 # Must invoke with command-line argument (limit of primes).
 114
 115 UPPER_LIMIT=$1 # From command-line.
 116 let SPLIT=UPPER_LIMIT/2 # Halfway to max number.
 117
 118 Primes=('' $(seq $UPPER_LIMIT))
 119
 120 i=1
 121 until (((i += 1) > SPLIT)) # Need check only halfway.
 122 do
 123 if [[-n ${Primes[i]}]]
 124 then
 125 t=$i
 126 until (((t += i) > UPPER_LIMIT))
 127 do
 128 Primes[t]=
 129 done
 130 fi
 131 done
 132 echo ${Primes[*]}
 133
 134 exit $?

Example 27-14. The Sieve of Eratosthenes, Optimized

 1 #!/bin/bash
 2 # Optimized Sieve of Eratosthenes
 3 # Script by Jared Martin, with very minor changes by ABS Guide author.
 4 # Used in ABS Guide with permission (thanks!).
 5
 6 # Based on script in Advanced Bash Scripting Guide.
 7 # http://tldp.org/LDP/abs/html/arrays.html#PRIMES0 (ex68.sh).
 8
 9 # http://www.cs.hmc.edu/~oneill/papers/Sieve-JFP.pdf (reference)
 10 # Check results against http://primes.utm.edu/lists/small/1000.txt
 11
 12 # Necessary but not sufficient would be, e.g.,
 13 # (($(sieve 7919 | wc -w) == 1000)) && echo "7919 is the 1000th prime"
 14
 15 UPPER_LIMIT=${1:?"Need an upper limit of primes to search."}
 16
 17 Primes=('' $(seq ${UPPER_LIMIT}))
 18
 19 typeset -i i t
 20 Primes[i=1]='' # 1 is not a prime.
 21 until (((i += 1) > (${UPPER_LIMIT}/i))) # Need check only ith-way.
 22 do # Why?
 23 if ((${Primes[t=i*(i-1), i]}))
 24 # Obscure, but instructive, use of arithmetic expansion in subscript.

 25 then
 26 until (((t += i) > ${UPPER_LIMIT}))
 27 do Primes[t]=; done
 28 fi
 29 done
 30
 31 # echo ${Primes[*]}
 32 echo # Change to original script for pretty-printing (80-col. display).
 33 printf "%8d" ${Primes[*]}
 34 echo; echo
 35
 36 exit $?

Compare these array-based prime number generators with alternatives that do not use arrays, Example A-15,
and Example 16-46.

--

Arrays lend themselves, to some extent, to emulating data structures for which Bash has no native support.

Example 27-15. Emulating a push-down stack

 1 #!/bin/bash
 2 # stack.sh: push-down stack simulation
 3
 4 # Similar to the CPU stack, a push-down stack stores data items
 5 #+ sequentially, but releases them in reverse order, last-in first-out.
 6
 7
 8 BP=100 # Base Pointer of stack array.
 9 # Begin at element 100.
 10
 11 SP=$BP # Stack Pointer.
 12 # Initialize it to "base" (bottom) of stack.
 13
 14 Data= # Contents of stack location.
 15 # Must use global variable,
 16 #+ because of limitation on function return range.
 17
 18
 19 # 100 Base pointer <-- Base Pointer
 20 # 99 First data item
 21 # 98 Second data item
 22 # ... More data
 23 # Last data item <-- Stack pointer
 24
 25
 26 declare -a stack
 27
 28
 29 push() # Push item on stack.
 30 {
 31 if [-z "$1"] # Nothing to push?
 32 then
 33 return
 34 fi
 35
 36 let "SP -= 1" # Bump stack pointer.
 37 stack[$SP]=$1
 38
 39 return

 40 }
 41
 42 pop() # Pop item off stack.
 43 {
 44 Data= # Empty out data item.
 45
 46 if ["$SP" -eq "$BP"] # Stack empty?
 47 then
 48 return
 49 fi # This also keeps SP from getting past 100,
 50 #+ i.e., prevents a runaway stack.
 51
 52 Data=${stack[$SP]}
 53 let "SP += 1" # Bump stack pointer.
 54 return
 55 }
 56
 57 status_report() # Find out what's happening.
 58 {
 59 echo "-------------------------------------"
 60 echo "REPORT"
 61 echo "Stack Pointer = $SP"
 62 echo "Just popped \""$Data"\" off the stack."
 63 echo "-------------------------------------"
 64 echo
 65 }
 66
 67
 68 # ===
 69 # Now, for some fun.
 70
 71 echo
 72
 73 # See if you can pop anything off empty stack.
 74 pop
 75 status_report
 76
 77 echo
 78
 79 push garbage
 80 pop
 81 status_report # Garbage in, garbage out.
 82
 83 value1=23; push $value1
 84 value2=skidoo; push $value2
 85 value3=LAST; push $value3
 86
 87 pop # LAST
 88 status_report
 89 pop # skidoo
 90 status_report
 91 pop # 23
 92 status_report # Last-in, first-out!
 93
 94 # Notice how the stack pointer decrements with each push,
 95 #+ and increments with each pop.
 96
 97 echo
 98
 99 exit 0
 100
 101 # ===
 102
 103
 104 # Exercises:
 105 # ---------

 106
 107 # 1) Modify the "push()" function to permit pushing
 108 # + multiple element on the stack with a single function call.
 109
 110 # 2) Modify the "pop()" function to permit popping
 111 # + multiple element from the stack with a single function call.
 112
 113 # 3) Add error checking to the critical functions.
 114 # That is, return an error code, depending on
 115 # + successful or unsuccessful completion of the operation,
 116 # + and take appropriate action.
 117
 118 # 4) Using this script as a starting point,
 119 # + write a stack-based 4-function calculator.

--

Fancy manipulation of array "subscripts" may require intermediate variables. For projects involving this,
again consider using a more powerful programming language, such as Perl or C.

Example 27-16. Complex array application: Exploring a weird mathematical series

 1 #!/bin/bash
 2
 3 # Douglas Hofstadter's notorious "Q-series":
 4
 5 # Q(1) = Q(2) = 1
 6 # Q(n) = Q(n - Q(n-1)) + Q(n - Q(n-2)), for n>2
 7
 8 # This is a "chaotic" integer series with strange
 9 #+ and unpredictable behavior.
 10 # The first 20 terms of the series are:
 11 # 1 1 2 3 3 4 5 5 6 6 6 8 8 8 10 9 10 11 11 12
 12
 13 # See Hofstadter's book, _Goedel, Escher, Bach: An Eternal Golden Braid_,
 14 #+ p. 137, ff.
 15
 16
 17 LIMIT=100 # Number of terms to calculate.
 18 LINEWIDTH=20 # Number of terms printed per line.
 19
 20 Q[1]=1 # First two terms of series are 1.
 21 Q[2]=1
 22
 23 echo
 24 echo "Q-series [$LIMIT terms]:"
 25 echo -n "${Q[1]} " # Output first two terms.
 26 echo -n "${Q[2]} "
 27
 28 for ((n=3; n <= $LIMIT; n++)) # C-like loop expression.
 29 do # Q[n] = Q[n - Q[n-1]] + Q[n - Q[n-2]] for n>2
 30 # Need to break the expression into intermediate terms,
 31 #+ since Bash doesn't handle complex array arithmetic very well.
 32
 33 let "n1 = $n - 1" # n-1
 34 let "n2 = $n - 2" # n-2
 35
 36 t0=`expr $n - ${Q[n1]}` # n - Q[n-1]
 37 t1=`expr $n - ${Q[n2]}` # n - Q[n-2]
 38
 39 T0=${Q[t0]} # Q[n - Q[n-1]]
 40 T1=${Q[t1]} # Q[n - Q[n-2]]

 41
 42 Q[n]=`expr $T0 + $T1` # Q[n - Q[n-1]] + Q[n - Q[n-2]]
 43 echo -n "${Q[n]} "
 44
 45 if [`expr $n % $LINEWIDTH` -eq 0] # Format output.
 46 then # ^ modulo
 47 echo # Break lines into neat chunks.
 48 fi
 49
 50 done
 51
 52 echo
 53
 54 exit 0
 55
 56 # This is an iterative implementation of the Q-series.
 57 # The more intuitive recursive implementation is left as an exercise.
 58 # Warning: calculating this series recursively takes a VERY long time
 59 #+ via a script. C/C++ would be orders of magnitude faster.

--

Bash supports only one-dimensional arrays, though a little trickery permits simulating multi-dimensional
ones.

Example 27-17. Simulating a two-dimensional array, then tilting it

 1 #!/bin/bash
 2 # twodim.sh: Simulating a two-dimensional array.
 3
 4 # A one-dimensional array consists of a single row.
 5 # A two-dimensional array stores rows sequentially.
 6
 7 Rows=5
 8 Columns=5
 9 # 5 X 5 Array.
 10
 11 declare -a alpha # char alpha [Rows] [Columns];
 12 # Unnecessary declaration. Why?
 13
 14 load_alpha ()
 15 {
 16 local rc=0
 17 local index
 18
 19 for i in A B C D E F G H I J K L M N O P Q R S T U V W X Y
 20 do # Use different symbols if you like.
 21 local row=`expr $rc / $Columns`
 22 local column=`expr $rc % $Rows`
 23 let "index = $row * $Rows + $column"
 24 alpha[$index]=$i
 25 # alpha[$row][$column]
 26 let "rc += 1"
 27 done
 28
 29 # Simpler would be
 30 #+ declare -a alpha=(A B C D E F G H I J K L M N O P Q R S T U V W X Y)
 31 #+ but this somehow lacks the "flavor" of a two-dimensional array.
 32 }
 33
 34 print_alpha ()

 35 {
 36 local row=0
 37 local index
 38
 39 echo
 40
 41 while ["$row" -lt "$Rows"] # Print out in "row major" order:
 42 do #+ columns vary,
 43 #+ while row (outer loop) remains the same.
 44 local column=0
 45
 46 echo -n " " # Lines up "square" array with rotated one.
 47
 48 while ["$column" -lt "$Columns"]
 49 do
 50 let "index = $row * $Rows + $column"
 51 echo -n "${alpha[index]} " # alpha[$row][$column]
 52 let "column += 1"
 53 done
 54
 55 let "row += 1"
 56 echo
 57
 58 done
 59
 60 # The simpler equivalent is
 61 # echo ${alpha[*]} | xargs -n $Columns
 62
 63 echo
 64 }
 65
 66 filter () # Filter out negative array indices.
 67 {
 68
 69 echo -n " " # Provides the tilt.
 70 # Explain how.
 71
 72 if [["$1" -ge 0 && "$1" -lt "$Rows" && "$2" -ge 0 && "$2" -lt "$Columns"]]
 73 then
 74 let "index = $1 * $Rows + $2"
 75 # Now, print it rotated.
 76 echo -n " ${alpha[index]}"
 77 # alpha[$row][$column]
 78 fi
 79
 80 }
 81
 82
 83
 84
 85 rotate () # Rotate the array 45 degrees --
 86 { #+ "balance" it on its lower lefthand corner.
 87 local row
 88 local column
 89
 90 for ((row = Rows; row > -Rows; row--))
 91 do # Step through the array backwards. Why?
 92
 93 for ((column = 0; column < Columns; column++))
 94 do
 95
 96 if ["$row" -ge 0]
 97 then
 98 let "t1 = $column - $row"
 99 let "t2 = $column"
 100 else

 101 let "t1 = $column"
 102 let "t2 = $column + $row"
 103 fi
 104
 105 filter $t1 $t2 # Filter out negative array indices.
 106 # What happens if you don't do this?
 107 done
 108
 109 echo; echo
 110
 111 done
 112
 113 # Array rotation inspired by examples (pp. 143-146) in
 114 #+ "Advanced C Programming on the IBM PC," by Herbert Mayer
 115 #+ (see bibliography).
 116 # This just goes to show that much of what can be done in C
 117 #+ can also be done in shell scripting.
 118
 119 }
 120
 121
 122 #--------------- Now, let the show begin. ------------#
 123 load_alpha # Load the array.
 124 print_alpha # Print it out.
 125 rotate # Rotate it 45 degrees counterclockwise.
 126 #---#
 127
 128 exit 0
 129
 130 # This is a rather contrived, not to mention inelegant simulation.
 131
 132 # Exercises:
 133 # ---------
 134 # 1) Rewrite the array loading and printing functions
 135 # in a more intuitive and less kludgy fashion.
 136 #
 137 # 2) Figure out how the array rotation functions work.
 138 # Hint: think about the implications of backwards-indexing an array.
 139 #
 140 # 3) Rewrite this script to handle a non-square array,
 141 # such as a 6 X 4 one.
 142 # Try to minimize "distortion" when the array is rotated.

A two-dimensional array is essentially equivalent to a one-dimensional one, but with additional addressing
modes for referencing and manipulating the individual elements by row and column position.

For an even more elaborate example of simulating a two-dimensional array, see Example A-10.

--

For more interesting scripts using arrays, see:

Example 12-3•
Example 16-46•
Example A-22•
Example A-44•
Example A-41•
Example A-42•

Prev Home Next
List Constructs Up Indirect References

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Next

Chapter 28. Indirect References

We have seen that referencing a variable, $var, fetches its value. But, what about the value of a value? What
about $$var?

The actual notation is \$$var, usually preceded by an eval (and sometimes an echo). This is called an
indirect reference.

Example 28-1. Indirect Variable References

 1 #!/bin/bash
 2 # ind-ref.sh: Indirect variable referencing.
 3 # Accessing the contents of the contents of a variable.
 4
 5 # First, let's fool around a little.
 6
 7 var=23
 8
 9 echo "\$var = $var" # $var = 23
 10 # So far, everything as expected. But ...
 11
 12 echo "\$\$var = $$var" # $$var = 4570var
 13 # Not useful ...
 14 # \$\$ expanded to PID of the script
 15 # -- refer to the entry on the $$ variable --
 16 #+ and "var" is echoed as plain text.
 17 # (Thank you, Jakob Bohm, for pointing this out.)
 18
 19 echo "\\\$\$var = \$$var" # \$$var = $23
 20 # As expected. The first $ is escaped and pasted on to
 21 #+ the value of var ($var = 23).
 22 # Meaningful, but still not useful.
 23
 24 # Now, let's start over and do it the right way.
 25
 26 # == #
 27
 28
 29 a=letter_of_alphabet # Variable "a" holds the name of another variable.
 30 letter_of_alphabet=z
 31
 32 echo
 33
 34 # Direct reference.
 35 echo "a = $a" # a = letter_of_alphabet
 36
 37 # Indirect reference.
 38 eval a=\$$a
 39 # ^^^ Forcing an eval(uation), and ...
 40 # ^ Escaping the first $...
 41 # --
 42 # The 'eval' forces an update of $a, sets it to the updated value of \$$a.
 43 # So, we see why 'eval' so often shows up in indirect reference notation.
 44 # --
 45 echo "Now a = $a" # Now a = z
 46
 47 echo
 48
 49
 50 # Now, let's try changing the second-order reference.

 51
 52 t=table_cell_3
 53 table_cell_3=24
 54 echo "\"table_cell_3\" = $table_cell_3" # "table_cell_3" = 24
 55 echo -n "dereferenced \"t\" = "; eval echo \$$t # dereferenced "t" = 24
 56 # In this simple case, the following also works (why?).
 57 # eval t=\$$t; echo "\"t\" = $t"
 58
 59 echo
 60
 61 t=table_cell_3
 62 NEW_VAL=387
 63 table_cell_3=$NEW_VAL
 64 echo "Changing value of \"table_cell_3\" to $NEW_VAL."
 65 echo "\"table_cell_3\" now $table_cell_3"
 66 echo -n "dereferenced \"t\" now "; eval echo \$$t
 67 # "eval" takes the two arguments "echo" and "\$$t" (set equal to $table_cell_3)
 68
 69
 70 echo
 71
 72 # (Thanks, Stephane Chazelas, for clearing up the above behavior.)
 73
 74
 75 # A more straightforward method is the ${!t} notation, discussed in the
 76 #+ "Bash, version 2" section.
 77 # See also ex78.sh.
 78
 79 exit 0

Indirect referencing in Bash is a multi-step process. First, take the name of a variable: varname. Then,
reference it: $varname. Then, reference the reference: $$varname. Then, escape the first $:
\$$varname. Finally, force a reevaluation of the expression and assign it: eval newvar=\$$varname.

Of what practical use is indirect referencing of variables? It gives Bash a little of the functionality of pointers
in C, for instance, in table lookup. And, it also has some other very interesting applications. . . .

Nils Radtke shows how to build "dynamic" variable names and evaluate their contents. This can be useful
when sourcing configuration files.

 1 #!/bin/bash
 2
 3
 4 # ---
 5 # This could be "sourced" from a separate file.
 6 isdnMyProviderRemoteNet=172.16.0.100
 7 isdnYourProviderRemoteNet=10.0.0.10
 8 isdnOnlineService="MyProvider"
 9 # ---
 10
 11
 12 remoteNet=$(eval "echo \$$(echo isdn${isdnOnlineService}RemoteNet)")
 13 remoteNet=$(eval "echo \$$(echo isdnMyProviderRemoteNet)")
 14 remoteNet=$(eval "echo \$isdnMyProviderRemoteNet")
 15 remoteNet=$(eval "echo $isdnMyProviderRemoteNet")
 16
 17 echo "$remoteNet" # 172.16.0.100
 18
 19 # ==
 20
 21 # And, it gets even better.

 22
 23 # Consider the following snippet given a variable named getSparc,
 24 #+ but no such variable getIa64:
 25
 26 chkMirrorArchs () {
 27 arch="$1";
 28 if ["$(eval "echo \${$(echo get$(echo -ne $arch |
 29 sed 's/^\(.\).*/\1/g' | tr 'a-z' 'A-Z'; echo $arch |
 30 sed 's/^.\(.*\)/\1/g')):-false}")" = true]
 31 then
 32 return 0;
 33 else
 34 return 1;
 35 fi;
 36 }
 37
 38 getSparc="true"
 39 unset getIa64
 40 chkMirrorArchs sparc
 41 echo $? # 0
 42 # True
 43
 44 chkMirrorArchs Ia64
 45 echo $? # 1
 46 # False
 47
 48 # Notes:
 49 # -----
 50 # Even the to-be-substituted variable name part is built explicitly.
 51 # The parameters to the chkMirrorArchs calls are all lower case.
 52 # The variable name is composed of two parts: "get" and "Sparc" . . .

Example 28-2. Passing an indirect reference to awk

 1 #!/bin/bash
 2
 3 # Another version of the "column totaler" script
 4 #+ that adds up a specified column (of numbers) in the target file.
 5 # This one uses indirect references.
 6
 7 ARGS=2
 8 E_WRONGARGS=85
 9
 10 if [$# -ne "$ARGS"] # Check for proper number of command-line args.
 11 then
 12 echo "Usage: `basename $0` filename column-number"
 13 exit $E_WRONGARGS
 14 fi
 15
 16 filename=$1 # Name of file to operate on.
 17 column_number=$2 # Which column to total up.
 18
 19 #===== Same as original script, up to this point =====#
 20
 21
 22 # A multi-line awk script is invoked by
 23 # awk "
 24 # ...
 25 # ...
 26 # ...
 27 # "
 28
 29
 30 # Begin awk script.

 31 # ---
 32 awk "
 33
 34 { total += \$${column_number} # Indirect reference
 35 }
 36 END {
 37 print total
 38 }
 39
 40 " "$filename"
 41 # Note that awk doesn't need an eval preceding \$$.
 42 # ---
 43 # End awk script.
 44
 45 # Indirect variable reference avoids the hassles
 46 #+ of referencing a shell variable within the embedded awk script.
 47 # Thanks, Stephane Chazelas.
 48
 49
 50 exit $?

This method of indirect referencing is a bit tricky. If the second order variable changes its value, then the
first order variable must be properly dereferenced (as in the above example). Fortunately, the
${!variable} notation introduced with version 2 of Bash (see Example 37-2 and Example A-22)
makes indirect referencing more intuitive.

Bash does not support pointer arithmetic, and this severely limits the usefulness of indirect referencing. In
fact, indirect referencing in a scripting language is, at best, something of an afterthought.

Prev Home Next
Arrays Up /dev and /proc

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Next

Chapter 29. /dev and /proc

A Linux or UNIX filesystem typically has the /dev and /proc special-purpose directories.

29.1. /dev
The /dev directory contains entries for the physical devices that may or may not be present in the hardware.
[1] Appropriately enough, these are called device files. As an example, the hard drive partitions containing the
mounted filesystem(s) have entries in /dev, as df shows.

bash$ df
Filesystem 1k-blocks Used Available Use%

 Mounted on
 /dev/hda6 495876 222748 247527 48% /
 /dev/hda1 50755 3887 44248 9% /boot
 /dev/hda8 367013 13262 334803 4% /home
 /dev/hda5 1714416 1123624 503704 70% /usr

Among other things, the /dev directory contains loopback devices, such as /dev/loop0. A loopback
device is a gimmick that allows an ordinary file to be accessed as if it were a block device. [2] This permits
mounting an entire filesystem within a single large file. See Example 17-8 and Example 17-7.

A few of the pseudo-devices in /dev have other specialized uses, such as /dev/null, /dev/zero,
/dev/urandom, /dev/sda1 (hard drive partition), /dev/udp (User Datagram Packet port), and
/dev/tcp.

For instance:

To manually mount a USB flash drive, append the following line to /etc/fstab. [3]

 1 /dev/sda1 /mnt/flashdrive auto noauto,user,noatime 0 0

(See also Example A-23.)

Checking whether a disk is in the CD-burner (soft-linked to /dev/hdc):

 1 head -1 /dev/hdc
 2
 3
 4 # head: cannot open '/dev/hdc' for reading: No medium found
 5 # (No disc in the drive.)
 6
 7 # head: error reading '/dev/hdc': Input/output error
 8 # (There is a disk in the drive, but it can't be read;
 9 #+ possibly it's an unrecorded CDR blank.)
 10
 11 # Stream of characters and assorted gibberish
 12 # (There is a pre-recorded disk in the drive,
 13 #+ and this is raw output -- a stream of ASCII and binary data.)
 14 # Here we see the wisdom of using 'head' to limit the output
 15 #+ to manageable proportions, rather than 'cat' or something similar.
 16
 17
 18 # Now, it's just a matter of checking/parsing the output and taking
 19 #+ appropriate action.

When executing a command on a /dev/tcp/$host/$port pseudo-device file, Bash opens a TCP
connection to the associated socket.

A socket is a communications node associated with a specific I/O port. (This is analogous to a hardware
socket, or receptacle, for a connecting cable.) It permits data transfer between hardware devices on the same

machine, between machines on the same network, between machines across different networks, and, of
course, between machines at different locations on the Internet.

The following examples assume an active Internet connection.

Getting the time from nist.gov:

bash$ cat </dev/tcp/time.nist.gov/13
53082 04-03-18 04:26:54 68 0 0 502.3 UTC(NIST) *

[Mark contributed this example.]

Generalizing the above into a script:

 1 #!/bin/bash
 2 # This script must run with root permissions.
 3
 4 URL="time.nist.gov/13"
 5
 6 Time=$(cat </dev/tcp/"$URL")
 7 UTC=$(echo "$Time" | awk '{print$3}') # Third field is UTC (GMT) time.
 8 # Exercise: modify this for different time zones.
 9
 10 echo "UTC Time = "$UTC""

Downloading a URL:

bash$ exec 5<>/dev/tcp/www.net.cn/80
bash$ echo -e "GET / HTTP/1.0\n" >&5
bash$ cat <&5

[Thanks, Mark and Mihai Maties.]

Example 29-1. Using /dev/tcp for troubleshooting

 1 #!/bin/bash
 2 # dev-tcp.sh: /dev/tcp redirection to check Internet connection.
 3
 4 # Script by Troy Engel.
 5 # Used with permission.
 6
 7 TCP_HOST=news-15.net # A known spam-friendly ISP.
 8 TCP_PORT=80 # Port 80 is http.
 9
 10 # Try to connect. (Somewhat similar to a 'ping' . . .)
 11 echo "HEAD / HTTP/1.0" >/dev/tcp/${TCP_HOST}/${TCP_PORT}
 12 MYEXIT=$?
 13
 14 : <<EXPLANATION
 15 If bash was compiled with --enable-net-redirections, it has the capability of
 16 using a special character device for both TCP and UDP redirections. These
 17 redirections are used identically as STDIN/STDOUT/STDERR. The device entries
 18 are 30,36 for /dev/tcp:
 19
 20 mknod /dev/tcp c 30 36
 21
 22 >From the bash reference:
 23 /dev/tcp/host/port
 24 If host is a valid hostname or Internet address, and port is an integer
 25 port number or service name, Bash attempts to open a TCP connection to the
 26 corresponding socket.
 27 EXPLANATION

 28
 29
 30 if ["X$MYEXIT" = "X0"]; then
 31 echo "Connection successful. Exit code: $MYEXIT"
 32 else
 33 echo "Connection unsuccessful. Exit code: $MYEXIT"
 34 fi
 35
 36 exit $MYEXIT

Example 29-2. Playing music

 1 #!/bin/bash
 2 # music.sh
 3
 4 # Music without external files
 5
 6 # Author: Antonio Macchi
 7 # Used in ABS Guide with permission.
 8
 9
 10 # /dev/dsp default = 8000 frames per second, 8 bits per frame (1 byte),
 11 #+ 1 channel (mono)
 12
 13 duration=2000 # If 8000 bytes = 1 second, then 2000 = 1/4 second.
 14 volume=$'\xc0' # Max volume = \xff (or \x00).
 15 mute=$'\x80' # No volume = \x80 (the middle).
 16
 17 function mknote () # $1=Note Hz in bytes (e.g. A = 440Hz ::
 18 { #+ 8000 fps / 440 = 16 :: A = 16 bytes per second)
 19 for t in `seq 0 $duration`
 20 do
 21 test $(($t % $1)) = 0 && echo -n $volume || echo -n $mute
 22 done
 23 }
 24
 25 e=`mknote 49`
 26 g=`mknote 41`
 27 a=`mknote 36`
 28 b=`mknote 32`
 29 c=`mknote 30`
 30 cis=`mknote 29`
 31 d=`mknote 27`
 32 e2=`mknote 24`
 33 n=`mknote 32767`
 34 # European notation.
 35
 36 echo -n "ge2dcdcagngenge2dccbccisncis$d \
 37 ng$e2$dcdcagngengadcbab$c" > /dev/dsp
 38 # dsp = Digital Signal Processor
 39
 40 exit # A "bonny" example of an elegant shell script!

Notes

[1] The entries in /dev provide mount points for physical and virtual devices. These entries use very little
drive space.

Some devices, such as /dev/null, /dev/zero, and /dev/urandom are virtual. They are not
actual physical devices and exist only in software.

[2] A block device reads and/or writes data in chunks, or blocks, in contrast to a character device, which
acesses data in character units. Examples of block devices are hard drives, CDROM drives, and flash
drives. Examples of character devices are keyboards, modems, sound cards.

[3] Of course, the mount point /mnt/flashdrive must exist. If not, then, as root, mkdir
/mnt/flashdrive.

To actually mount the drive, use the following command: mount /mnt/flashdrive

Newer Linux distros automount flash drives in the /media directory without user intervention.

Prev Home Next
Indirect References Up /proc

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Chapter 29. /dev and /proc Next

29.2. /proc

The /proc directory is actually a pseudo-filesystem. The files in /proc mirror currently running system and
kernel processes and contain information and statistics about them.

bash$ cat /proc/devices
Character devices:

 1 mem
 2 pty
 3 ttyp
 4 ttyS
 5 cua
 7 vcs
 10 misc
 14 sound
 29 fb
 36 netlink
 128 ptm
 136 pts
 162 raw
 254 pcmcia

 Block devices:
 1 ramdisk
 2 fd
 3 ide0
 9 md

bash$ cat /proc/interrupts
 CPU0

 0: 84505 XT-PIC timer
 1: 3375 XT-PIC keyboard
 2: 0 XT-PIC cascade
 5: 1 XT-PIC soundblaster
 8: 1 XT-PIC rtc
 12: 4231 XT-PIC PS/2 Mouse
 14: 109373 XT-PIC ide0
 NMI: 0
 ERR: 0

bash$ cat /proc/partitions
major minor #blocks name rio rmerge rsect ruse wio wmerge wsect wuse running use aveq

 3 0 3007872 hda 4472 22260 114520 94240 3551 18703 50384 549710 0 111550 644030
 3 1 52416 hda1 27 395 844 960 4 2 14 180 0 800 1140
 3 2 1 hda2 0 0 0 0 0 0 0 0 0 0 0
 3 4 165280 hda4 10 0 20 210 0 0 0 0 0 210 210
 ...

bash$ cat /proc/loadavg
0.13 0.42 0.27 2/44 1119

bash$ cat /proc/apm
1.16 1.2 0x03 0x01 0xff 0x80 -1% -1 ?

bash$ cat /proc/acpi/battery/BAT0/info
present: yes

 design capacity: 43200 mWh
 last full capacity: 36640 mWh
 battery technology: rechargeable
 design voltage: 10800 mV
 design capacity warning: 1832 mWh
 design capacity low: 200 mWh
 capacity granularity 1: 1 mWh
 capacity granularity 2: 1 mWh
 model number: IBM-02K6897
 serial number: 1133
 battery type: LION
 OEM info: Panasonic

bash$ fgrep Mem /proc/meminfo
MemTotal: 515216 kB

 MemFree: 266248 kB

Shell scripts may extract data from certain of the files in /proc. [1]

 1 FS=iso # ISO filesystem support in kernel?
 2
 3 grep $FS /proc/filesystems # iso9660

 1 kernel_version=$(awk '{ print $3 }' /proc/version)

 1 CPU=$(awk '/model name/ {print $5}' < /proc/cpuinfo)
 2
 3 if ["$CPU" = "Pentium(R)"]
 4 then
 5 run_some_commands
 6 ...
 7 else
 8 run_other_commands
 9 ...
 10 fi
 11
 12
 13
 14 cpu_speed=$(fgrep "cpu MHz" /proc/cpuinfo | awk '{print $4}')
 15 # Current operating speed (in MHz) of the cpu on your machine.
 16 # On a laptop this may vary, depending on use of battery
 17 #+ or AC power.

 1 #!/bin/bash
 2 # get-commandline.sh
 3 # Get the command-line parameters of a process.
 4
 5 OPTION=cmdline
 6
 7 # Identify PID.
 8 pid=$(echo $(pidof "$1") | awk '{ print $1 }')
 9 # Get only first ^^^^^^^^^^^^^^^^^^ of multiple instances.
 10
 11 echo
 12 echo "Process ID of (first instance of) "$1" = $pid"
 13 echo -n "Command-line arguments: "
 14 cat /proc/"$pid"/"$OPTION" | xargs -0 echo
 15 # Formats output: ^^^^^^^^^^^^^^^
 16 # (Thanks, Han Holl, for the fixup!)

 17
 18 echo; echo
 19
 20
 21 # For example:
 22 # sh get-commandline.sh xterm

+

 1 devfile="/proc/bus/usb/devices"
 2 text="Spd"
 3 USB1="Spd=12"
 4 USB2="Spd=480"
 5
 6
 7 bus_speed=$(fgrep -m 1 "$text" $devfile | awk '{print $9}')
 8 # ^^^^ Stop after first match.
 9
 10 if ["$bus_speed" = "$USB1"]
 11 then
 12 echo "USB 1.1 port found."
 13 # Do something appropriate for USB 1.1.
 14 fi

It is even possible to control certain peripherals with commands sent to the /proc directory.

root# echo on > /proc/acpi/ibm/light

This turns on the Thinklight in certain models of IBM/Lenovo Thinkpads. (May not work on all Linux
distros.)

Of course, caution is advised when writing to /proc.

The /proc directory contains subdirectories with unusual numerical names. Every one of these names maps
to the process ID of a currently running process. Within each of these subdirectories, there are a number of
files that hold useful information about the corresponding process. The stat and status files keep running
statistics on the process, the cmdline file holds the command-line arguments the process was invoked with,
and the exe file is a symbolic link to the complete path name of the invoking process. There are a few more
such files, but these seem to be the most interesting from a scripting standpoint.

Example 29-3. Finding the process associated with a PID

 1 #!/bin/bash
 2 # pid-identifier.sh:
 3 # Gives complete path name to process associated with pid.
 4
 5 ARGNO=1 # Number of arguments the script expects.
 6 E_WRONGARGS=65
 7 E_BADPID=66
 8 E_NOSUCHPROCESS=67
 9 E_NOPERMISSION=68
 10 PROCFILE=exe
 11
 12 if [$# -ne $ARGNO]
 13 then
 14 echo "Usage: `basename $0` PID-number" >&2 # Error message >stderr.
 15 exit $E_WRONGARGS
 16 fi
 17
 18 pidno=$(ps ax | grep $1 | awk '{ print $1 }' | grep $1)
 19 # Checks for pid in "ps" listing, field #1.
 20 # Then makes sure it is the actual process, not the process invoked by this script.

 21 # The last "grep $1" filters out this possibility.
 22 #
 23 # pidno=$(ps ax | awk '{ print $1 }' | grep $1)
 24 # also works, as Teemu Huovila, points out.
 25
 26 if [-z "$pidno"] # If, after all the filtering, the result is a zero-length string,
 27 then #+ no running process corresponds to the pid given.
 28 echo "No such process running."
 29 exit $E_NOSUCHPROCESS
 30 fi
 31
 32 # Alternatively:
 33 # if ! ps $1 > /dev/null 2>&1
 34 # then # no running process corresponds to the pid given.
 35 # echo "No such process running."
 36 # exit $E_NOSUCHPROCESS
 37 # fi
 38
 39 # To simplify the entire process, use "pidof".
 40
 41
 42 if [! -r "/proc/$1/$PROCFILE"] # Check for read permission.
 43 then
 44 echo "Process $1 running, but..."
 45 echo "Can't get read permission on /proc/$1/$PROCFILE."
 46 exit $E_NOPERMISSION # Ordinary user can't access some files in /proc.
 47 fi
 48
 49 # The last two tests may be replaced by:
 50 # if ! kill -0 $1 > /dev/null 2>&1 # '0' is not a signal, but
 51 # this will test whether it is possible
 52 # to send a signal to the process.
 53 # then echo "PID doesn't exist or you're not its owner" >&2
 54 # exit $E_BADPID
 55 # fi
 56
 57
 58
 59 exe_file=$(ls -l /proc/$1 | grep "exe" | awk '{ print $11 }')
 60 # Or exe_file=$(ls -l /proc/$1/exe | awk '{print $11}')
 61 #
 62 # /proc/pid-number/exe is a symbolic link
 63 #+ to the complete path name of the invoking process.
 64
 65 if [-e "$exe_file"] # If /proc/pid-number/exe exists,
 66 then #+ then the corresponding process exists.
 67 echo "Process #$1 invoked by $exe_file."
 68 else
 69 echo "No such process running."
 70 fi
 71
 72
 73 # This elaborate script can *almost* be replaced by
 74 # ps ax | grep $1 | awk '{ print $5 }'
 75 # However, this will not work...
 76 #+ because the fifth field of 'ps' is argv[0] of the process,
 77 #+ not the executable file path.
 78 #
 79 # However, either of the following would work.
 80 # find /proc/$1/exe -printf '%l\n'
 81 # lsof -aFn -p $1 -d txt | sed -ne 's/^n//p'
 82
 83 # Additional commentary by Stephane Chazelas.
 84
 85 exit 0

Example 29-4. On-line connect status

 1 #!/bin/bash
 2 # connect-stat.sh
 3 # Note that this script may need modification
 4 #+ to work with a wireless connection.
 5
 6 PROCNAME=pppd # ppp daemon
 7 PROCFILENAME=status # Where to look.
 8 NOTCONNECTED=85
 9 INTERVAL=2 # Update every 2 seconds.
 10
 11 pidno=$(ps ax | grep -v "ps ax" | grep -v grep | grep $PROCNAME |
 12 awk '{ print $1 }')
 13
 14 # Finding the process number of 'pppd', the 'ppp daemon'.
 15 # Have to filter out the process lines generated by the search itself.
 16 #
 17 # However, as Oleg Philon points out,
 18 #+ this could have been considerably simplified by using "pidof".
 19 # pidno=$(pidof $PROCNAME)
 20 #
 21 # Moral of the story:
 22 #+ When a command sequence gets too complex, look for a shortcut.
 23
 24
 25 if [-z "$pidno"] # If no pid, then process is not running.
 26 then
 27 echo "Not connected."
 28 # exit $NOTCONNECTED
 29 else
 30 echo "Connected."; echo
 31 fi
 32
 33 while [true] # Endless loop, script can be improved here.
 34 do
 35
 36 if [! -e "/proc/$pidno/$PROCFILENAME"]
 37 # While process running, then "status" file exists.
 38 then
 39 echo "Disconnected."
 40 # exit $NOTCONNECTED
 41 fi
 42
 43 netstat -s | grep "packets received" # Get some connect statistics.
 44 netstat -s | grep "packets delivered"
 45
 46
 47 sleep $INTERVAL
 48 echo; echo
 49
 50 done
 51
 52 exit 0
 53
 54 # As it stands, this script must be terminated with a Control-C.
 55
 56 # Exercises:
 57 # ---------
 58 # Improve the script so it exits on a "q" keystroke.
 59 # Make the script more user-friendly in other ways.
 60 # Fix the script to work with wireless/DSL connections.

In general, it is dangerous to write to the files in /proc, as this can corrupt the filesystem or crash the
machine.

Notes

[1] Certain system commands, such as procinfo, free, vmstat, lsdev, and uptime do this as well.

Prev Home Next
/dev and /proc Up Network Programming

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Next

Chapter 30. Network Programming
The Net's a cross between an elephant and a
white elephant sale: it never forgets, and it's
always crap.

--Nemo
A Linux system has quite a number of tools for accessing, manipulating, and troubleshooting network
connections. We can incorporate some of these tools into scripts -- scripts that expand our knowledge of
networking, useful scripts that can facilitate the administration of a network.

Here is a simple CGI script that demonstrates connecting to a remote server.

Example 30-1. Print the server environment

 1 #!/bin/bash
 2 # test-cgi.sh
 3 # by Michael Zick
 4 # Used with permission
 5
 6 # May have to change the location for your site.
 7 # (At the ISP's servers, Bash may not be in the usual place.)
 8 # Other places: /usr/bin or /usr/local/bin
 9 # Might even try it without any path in sha-bang.
 10
 11 # Disable filename globbing.
 12 set -f
 13
 14 # Header tells browser what to expect.
 15 echo Content-type: text/plain
 16 echo
 17
 18 echo CGI/1.0 test script report:
 19 echo
 20
 21 echo environment settings:
 22 set
 23 echo
 24
 25 echo whereis bash?
 26 whereis bash
 27 echo
 28
 29
 30 echo who are we?
 31 echo ${BASH_VERSINFO[*]}
 32 echo
 33
 34 echo argc is $#. argv is "$*".
 35 echo
 36
 37 # CGI/1.0 expected environment variables.
 38
 39 echo SERVER_SOFTWARE = $SERVER_SOFTWARE
 40 echo SERVER_NAME = $SERVER_NAME
 41 echo GATEWAY_INTERFACE = $GATEWAY_INTERFACE
 42 echo SERVER_PROTOCOL = $SERVER_PROTOCOL
 43 echo SERVER_PORT = $SERVER_PORT
 44 echo REQUEST_METHOD = $REQUEST_METHOD
 45 echo HTTP_ACCEPT = "$HTTP_ACCEPT"

 46 echo PATH_INFO = "$PATH_INFO"
 47 echo PATH_TRANSLATED = "$PATH_TRANSLATED"
 48 echo SCRIPT_NAME = "$SCRIPT_NAME"
 49 echo QUERY_STRING = "$QUERY_STRING"
 50 echo REMOTE_HOST = $REMOTE_HOST
 51 echo REMOTE_ADDR = $REMOTE_ADDR
 52 echo REMOTE_USER = $REMOTE_USER
 53 echo AUTH_TYPE = $AUTH_TYPE
 54 echo CONTENT_TYPE = $CONTENT_TYPE
 55 echo CONTENT_LENGTH = $CONTENT_LENGTH
 56
 57 exit 0
 58
 59 # Here document to give short instructions.
 60 :<<-'_test_CGI_'
 61
 62 1) Drop this in your http://domain.name/cgi-bin directory.
 63 2) Then, open http://domain.name/cgi-bin/test-cgi.sh.
 64
 65 _test_CGI_

For security purposes, it may be helpful to identify the IP addresses a computer is accessing.

Example 30-2. IP addresses

 1 #!/bin/bash
 2 # ip-addresses.sh
 3 # List the IP addresses your computer is connected to.
 4
 5 # Inspired by Greg Bledsoe's ddos.sh script,
 6 # Linux Journal, 09 March 2011.
 7 # URL:
 8 # http://www.linuxjournal.com/content/back-dead-simple-bash-complex-ddos
 9 # Greg licensed his script under the GPL2,
 10 #+ and as a derivative, this script is likewise GPL2.
 11
 12 connection_type=TCP # Also try UDP.
 13 field=2 # Which field of the output we're interested in.
 14 no_match=LISTEN # Filter out records containing this. Why?
 15 lsof_args=-ni # -i lists Internet-associated files.
 16 # -n preserves numerical IP addresses.
 17 # What happens without the -n option? Try it.
 18 router="[0-9][0-9][0-9][0-9][0-9]->"
 19 # Delete the router info.
 20
 21 lsof "$lsof_args" | grep $connection_type | grep -v "$no_match" |
 22 awk '{print $9}' | cut -d : -f $field | sort | uniq |
 23 sed s/"^$router"//
 24
 25 # Bledsoe's script assigns the output of a filtered IP list,
 26 # (similar to lines 19-22, above) to a variable.
 27 # He checks for multiple connections to a single IP address,
 28 # then uses:
 29 #
 30 # iptables -I INPUT -s $ip -p tcp -j REJECT --reject-with tcp-reset
 31 #
 32 # ... within a 60-second delay loop to bounce packets from DDOS attacks.
 33
 34
 35 # Exercise:
 36 # --------
 37 # Use the 'iptables' command to extend this script

 38 #+ to reject connection attempts from well-known spammer IP domains.

More examples of network programming:

Getting the time from nist.gov1.
Downloading a URL2.
A GRE tunnel3.
Checking if an Internet server is up4.
Example 16-415.
Example A-286.
Example A-297.
Example 29-18.

See also the networking commands in the System and Administrative Commands chapter and the
communications commands in the External Filters, Programs and Commands chapter.

Prev Home Next
/proc Up Of Zeros and Nulls

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Next

Chapter 31. Of Zeros and Nulls
Faultily faultless, icily regular, splendidly null

Dead perfection; no more.

--Alfred Lord Tennyson

/dev/zero ... /dev/null

Uses of /dev/null
Think of /dev/null as a black hole. It is essentially the equivalent of a write-only file. Everything
written to it disappears. Attempts to read or output from it result in nothing. All the same,
/dev/null can be quite useful from both the command-line and in scripts.

Suppressing stdout.

 1 cat $filename >/dev/null
 2 # Contents of the file will not list to stdout.

Suppressing stderr (from Example 16-3).

 1 rm $badname 2>/dev/null
 2 # So error messages [stderr] deep-sixed.

Suppressing output from both stdout and stderr.

 1 cat $filename 2>/dev/null >/dev/null
 2 # If "$filename" does not exist, there will be no error message output.
 3 # If "$filename" does exist, the contents of the file will not list to stdout.
 4 # Therefore, no output at all will result from the above line of code.
 5 #
 6 # This can be useful in situations where the return code from a command
 7 #+ needs to be tested, but no output is desired.
 8 #
 9 # cat $filename &>/dev/null
 10 # also works, as Baris Cicek points out.

Deleting contents of a file, but preserving the file itself, with all attendant permissions (from Example
2-1 and Example 2-3):

 1 cat /dev/null > /var/log/messages
 2 # : > /var/log/messages has same effect, but does not spawn a new process.
 3
 4 cat /dev/null > /var/log/wtmp

Automatically emptying the contents of a logfile (especially good for dealing with those nasty
"cookies" sent by commercial Web sites):

Example 31-1. Hiding the cookie jar

 1 # Obsolete Netscape browser.
 2 # Same principle applies to newer browsers.
 3
 4 if [-f ~/.netscape/cookies] # Remove, if exists.
 5 then
 6 rm -f ~/.netscape/cookies
 7 fi
 8
 9 ln -s /dev/null ~/.netscape/cookies

 10 # All cookies now get sent to a black hole, rather than saved to disk.

Uses of /dev/zero
Like /dev/null, /dev/zero is a pseudo-device file, but it actually produces a stream of nulls
(binary zeros, not the ASCII kind). Output written to /dev/zero disappears, and it is fairly difficult
to actually read the nulls emitted there, though it can be done with od or a hex editor. The chief use of
/dev/zero is creating an initialized dummy file of predetermined length intended as a temporary
swap file.

Example 31-2. Setting up a swapfile using /dev/zero

 1 #!/bin/bash
 2 # Creating a swap file.
 3
 4 # A swap file provides a temporary storage cache
 5 #+ which helps speed up certain filesystem operations.
 6
 7 ROOT_UID=0 # Root has $UID 0.
 8 E_WRONG_USER=85 # Not root?
 9
 10 FILE=/swap
 11 BLOCKSIZE=1024
 12 MINBLOCKS=40
 13 SUCCESS=0
 14
 15
 16 # This script must be run as root.
 17 if ["$UID" -ne "$ROOT_UID"]
 18 then
 19 echo; echo "You must be root to run this script."; echo
 20 exit $E_WRONG_USER
 21 fi
 22
 23
 24 blocks=${1:-$MINBLOCKS} # Set to default of 40 blocks,
 25 #+ if nothing specified on command-line.
 26 # This is the equivalent of the command block below.
 27 # --
 28 # if [-n "$1"]
 29 # then
 30 # blocks=$1
 31 # else
 32 # blocks=$MINBLOCKS
 33 # fi
 34 # --
 35
 36
 37 if ["$blocks" -lt $MINBLOCKS]
 38 then
 39 blocks=$MINBLOCKS # Must be at least 40 blocks long.
 40 fi
 41
 42
 43 ##
 44 echo "Creating swap file of size $blocks blocks (KB)."
 45 dd if=/dev/zero of=$FILE bs=$BLOCKSIZE count=$blocks # Zero out file.
 46 mkswap $FILE $blocks # Designate it a swap file.
 47 swapon $FILE # Activate swap file.
 48 retcode=$? # Everything worked?
 49 # Note that if one or more of these commands fails,
 50 #+ then it could cause nasty problems.
 51 ##

 52
 53 # Exercise:
 54 # Rewrite the above block of code so that if it does not execute
 55 #+ successfully, then:
 56 # 1) an error message is echoed to stderr,
 57 # 2) all temporary files are cleaned up, and
 58 # 3) the script exits in an orderly fashion with an
 59 #+ appropriate error code.
 60
 61 echo "Swap file created and activated."
 62
 63 exit $retcode

Another application of /dev/zero is to "zero out" a file of a designated size for a special purpose,
such as mounting a filesystem on a loopback device (see Example 17-8) or "securely" deleting a file
(see Example 16-61).

Example 31-3. Creating a ramdisk

 1 #!/bin/bash
 2 # ramdisk.sh
 3
 4 # A "ramdisk" is a segment of system RAM memory
 5 #+ which acts as if it were a filesystem.
 6 # Its advantage is very fast access (read/write time).
 7 # Disadvantages: volatility, loss of data on reboot or powerdown,
 8 #+ less RAM available to system.
 9 #
 10 # Of what use is a ramdisk?
 11 # Keeping a large dataset, such as a table or dictionary on ramdisk,
 12 #+ speeds up data lookup, since memory access is much faster than disk access.
 13
 14
 15 E_NON_ROOT_USER=70 # Must run as root.
 16 ROOTUSER_NAME=root
 17
 18 MOUNTPT=/mnt/ramdisk # Create with mkdir /mnt/ramdisk.
 19 SIZE=2000 # 2K blocks (change as appropriate)
 20 BLOCKSIZE=1024 # 1K (1024 byte) block size
 21 DEVICE=/dev/ram0 # First ram device
 22
 23 username=`id -nu`
 24 if ["$username" != "$ROOTUSER_NAME"]
 25 then
 26 echo "Must be root to run \"`basename $0`\"."
 27 exit $E_NON_ROOT_USER
 28 fi
 29
 30 if [! -d "$MOUNTPT"] # Test whether mount point already there,
 31 then #+ so no error if this script is run
 32 mkdir $MOUNTPT #+ multiple times.
 33 fi
 34
 35 ##
 36 dd if=/dev/zero of=$DEVICE count=$SIZE bs=$BLOCKSIZE # Zero out RAM device.
 37 # Why is this necessary?
 38 mke2fs $DEVICE # Create an ext2 filesystem on it.
 39 mount $DEVICE $MOUNTPT # Mount it.
 40 chmod 777 $MOUNTPT # Enables ordinary user to access ramdisk.
 41 # However, must be root to unmount it.
 42 ##
 43 # Need to test whether above commands succeed. Could cause problems otherwise.
 44 # Exercise: modify this script to make it safer.

 45
 46 echo "\"$MOUNTPT\" now available for use."
 47 # The ramdisk is now accessible for storing files, even by an ordinary user.
 48
 49 # Caution, the ramdisk is volatile, and its contents will disappear
 50 #+ on reboot or power loss.
 51 # Copy anything you want saved to a regular directory.
 52
 53 # After reboot, run this script to again set up ramdisk.
 54 # Remounting /mnt/ramdisk without the other steps will not work.
 55
 56 # Suitably modified, this script can by invoked in /etc/rc.d/rc.local,
 57 #+ to set up ramdisk automatically at bootup.
 58 # That may be appropriate on, for example, a database server.
 59
 60 exit 0

In addition to all the above, /dev/zero is needed by ELF (Executable and Linking Format)
UNIX/Linux binaries.

Prev Home Next
Network Programming Up Debugging

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Next

Chapter 32. Debugging
Debugging is twice as hard as writing the code in
the first place. Therefore, if you write the code as
cleverly as possible, you are, by definition, not
smart enough to debug it.

--Brian Kernighan
The Bash shell contains no built-in debugger, and only bare-bones debugging-specific commands and
constructs. Syntax errors or outright typos in the script generate cryptic error messages that are often of no
help in debugging a non-functional script.

Example 32-1. A buggy script

 1 #!/bin/bash
 2 # ex74.sh
 3
 4 # This is a buggy script.
 5 # Where, oh where is the error?
 6
 7 a=37
 8
 9 if [$a -gt 27]
 10 then
 11 echo $a
 12 fi
 13
 14 exit $? # 0! Why?

Output from script:

./ex74.sh: [37: command not found

What's wrong with the above script? Hint: after the if.

Example 32-2. Missing keyword

 1 #!/bin/bash
 2 # missing-keyword.sh
 3 # What error message will this script generate? And why?
 4
 5 for a in 1 2 3
 6 do
 7 echo "$a"
 8 # done # Required keyword 'done' commented out in line 8.
 9
 10 exit 0 # Will not exit here!
 11
 12 # === #
 13
 14 # From command line, after script terminates:
 15 echo $? # 2

Output from script:

missing-keyword.sh: line 10: syntax error: unexpected end of file

Note that the error message does not necessarily reference the line in which the error occurs, but the line
where the Bash interpreter finally becomes aware of the error.

Error messages may disregard comment lines in a script when reporting the line number of a syntax error.

What if the script executes, but does not work as expected? This is the all too familiar logic error.

Example 32-3. test24: another buggy script

 1 #!/bin/bash
 2
 3 # This script is supposed to delete all filenames in current directory
 4 #+ containing embedded spaces.
 5 # It doesn't work.
 6 # Why not?
 7
 8
 9 badname=`ls | grep ' '`
 10
 11 # Try this:
 12 # echo "$badname"
 13
 14 rm "$badname"
 15
 16 exit 0

Try to find out what's wrong with Example 32-3 by uncommenting the echo "$badname" line. Echo
statements are useful for seeing whether what you expect is actually what you get.

In this particular case, rm "$badname" will not give the desired results because $badname should not be
quoted. Placing it in quotes ensures that rm has only one argument (it will match only one filename). A partial
fix is to remove to quotes from $badname and to reset $IFS to contain only a newline, IFS=$'\n'.
However, there are simpler ways of going about it.

 1 # Correct methods of deleting filenames containing spaces.
 2 rm *\ *
 3 rm *" "*
 4 rm *' '*
 5 # Thank you. S.C.

Summarizing the symptoms of a buggy script,

It bombs with a "syntax error" message, or1.
It runs, but does not work as expected (logic error).2.
It runs, works as expected, but has nasty side effects (logic bomb).3.

Tools for debugging non-working scripts include

Inserting echo statements at critical points in the script to trace the variables, and otherwise give a
snapshot of what is going on.

Even better is an echo that echoes only when debug is on.

 1 ### debecho (debug-echo), by Stefano Falsetto ###
 2 ### Will echo passed parameters only if DEBUG is set to a value. ###
 3 debecho () {
 4 if [! -z "$DEBUG"]; then

1.

 5 echo "$1" >&2
 6 # ^^^ to stderr
 7 fi
 8 }
 9
 10 DEBUG=on
 11 Whatever=whatnot
 12 debecho $Whatever # whatnot
 13
 14 DEBUG=
 15 Whatever=notwhat
 16 debecho $Whatever # (Will not echo.)

Using the tee filter to check processes or data flows at critical points.2.
Setting option flags -n -v -x

sh -n scriptname checks for syntax errors without actually running the script. This is the
equivalent of inserting set -n or set -o noexec into the script. Note that certain types of
syntax errors can slip past this check.

sh -v scriptname echoes each command before executing it. This is the equivalent of inserting
set -v or set -o verbose in the script.

The -n and -v flags work well together. sh -nv scriptname gives a verbose syntax check.

sh -x scriptname echoes the result each command, but in an abbreviated manner. This is the
equivalent of inserting set -x or set -o xtrace in the script.

Inserting set -u or set -o nounset in the script runs it, but gives an unbound variable error
message and aborts the script.

 1 set -u # Or set -o nounset
 2
 3 # Setting a variable to null will not trigger the error/abort.
 4 # unset_var=
 5
 6 echo $unset_var # Unset (and undeclared) variable.
 7
 8 echo "Should not echo!"
 9
 10 # sh t2.sh
 11 # t2.sh: line 6: unset_var: unbound variable

3.

Using an "assert" function to test a variable or condition at critical points in a script. (This is an idea
borrowed from C.)

Example 32-4. Testing a condition with an assert

 1 #!/bin/bash
 2 # assert.sh
 3
 4 ###
 5 assert () # If condition false,
 6 { #+ exit from script
 7 #+ with appropriate error message.
 8 E_PARAM_ERR=98
 9 E_ASSERT_FAILED=99
 10
 11
 12 if [-z "$2"] # Not enough parameters passed

4.

 13 then #+ to assert() function.
 14 return $E_PARAM_ERR # No damage done.
 15 fi
 16
 17 lineno=$2
 18
 19 if [! $1]
 20 then
 21 echo "Assertion failed: \"$1\""
 22 echo "File \"$0\", line $lineno" # Give name of file and line number.
 23 exit $E_ASSERT_FAILED
 24 # else
 25 # return
 26 # and continue executing the script.
 27 fi
 28 } # Insert a similar assert() function into a script you need to debug.
 29 ###
 30
 31
 32 a=5
 33 b=4
 34 condition="$a -lt $b" # Error message and exit from script.
 35 # Try setting "condition" to something else
 36 #+ and see what happens.
 37
 38 assert "$condition" $LINENO
 39 # The remainder of the script executes only if the "assert" does not fail.
 40
 41
 42 # Some commands.
 43 # Some more commands . . .
 44 echo "This statement echoes only if the \"assert\" does not fail."
 45 # . . .
 46 # More commands . . .
 47
 48 exit $?

Using the $LINENO variable and the caller builtin.5.
Trapping at exit.

The exit command in a script triggers a signal 0, terminating the process, that is, the script itself. [1] It
is often useful to trap the exit, forcing a "printout" of variables, for example. The trap must be the first
command in the script.

6.

Trapping signals

trap
Specifies an action on receipt of a signal; also useful for debugging.

A signal is a message sent to a process, either by the kernel or another process, telling it to take
some specified action (usually to terminate). For example, hitting a Control-C sends a user interrupt,
an INT signal, to a running program.

A simple instance:

 1 trap '' 2
 2 # Ignore interrupt 2 (Control-C), with no action specified.
 3
 4 trap 'echo "Control-C disabled."' 2

 5 # Message when Control-C pressed.

Example 32-5. Trapping at exit

 1 #!/bin/bash
 2 # Hunting variables with a trap.
 3
 4 trap 'echo Variable Listing --- a = $a b = $b' EXIT
 5 # EXIT is the name of the signal generated upon exit from a script.
 6 #
 7 # The command specified by the "trap" doesn't execute until
 8 #+ the appropriate signal is sent.
 9
 10 echo "This prints before the \"trap\" --"
 11 echo "even though the script sees the \"trap\" first."
 12 echo
 13
 14 a=39
 15
 16 b=36
 17
 18 exit 0
 19 # Note that commenting out the 'exit' command makes no difference,
 20 #+ since the script exits in any case after running out of commands.

Example 32-6. Cleaning up after Control-C

 1 #!/bin/bash
 2 # logon.sh: A quick 'n dirty script to check whether you are on-line yet.
 3
 4 umask 177 # Make sure temp files are not world readable.
 5
 6
 7 TRUE=1
 8 LOGFILE=/var/log/messages
 9 # Note that $LOGFILE must be readable
 10 #+ (as root, chmod 644 /var/log/messages).
 11 TEMPFILE=temp.$$
 12 # Create a "unique" temp file name, using process id of the script.
 13 # Using 'mktemp' is an alternative.
 14 # For example:
 15 # TEMPFILE=`mktemp temp.XXXXXX`
 16 KEYWORD=address
 17 # At logon, the line "remote IP address xxx.xxx.xxx.xxx"
 18 # appended to /var/log/messages.
 19 ONLINE=22
 20 USER_INTERRUPT=13
 21 CHECK_LINES=100
 22 # How many lines in log file to check.
 23
 24 trap 'rm -f $TEMPFILE; exit $USER_INTERRUPT' TERM INT
 25 # Cleans up the temp file if script interrupted by control-c.
 26
 27 echo
 28
 29 while [$TRUE] #Endless loop.
 30 do
 31 tail -n $CHECK_LINES $LOGFILE> $TEMPFILE
 32 # Saves last 100 lines of system log file as temp file.
 33 # Necessary, since newer kernels generate many log messages at log on.

 34 search=`grep $KEYWORD $TEMPFILE`
 35 # Checks for presence of the "IP address" phrase,
 36 #+ indicating a successful logon.
 37
 38 if [! -z "$search"] # Quotes necessary because of possible spaces.
 39 then
 40 echo "On-line"
 41 rm -f $TEMPFILE # Clean up temp file.
 42 exit $ONLINE
 43 else
 44 echo -n "." # The -n option to echo suppresses newline,
 45 #+ so you get continuous rows of dots.
 46 fi
 47
 48 sleep 1
 49 done
 50
 51
 52 # Note: if you change the KEYWORD variable to "Exit",
 53 #+ this script can be used while on-line
 54 #+ to check for an unexpected logoff.
 55
 56 # Exercise: Change the script, per the above note,
 57 # and prettify it.
 58
 59 exit 0
 60
 61
 62 # Nick Drage suggests an alternate method:
 63
 64 while true
 65 do ifconfig ppp0 | grep UP 1> /dev/null && echo "connected" && exit 0
 66 echo -n "." # Prints dots (.....) until connected.
 67 sleep 2
 68 done
 69
 70 # Problem: Hitting Control-C to terminate this process may be insufficient.
 71 #+ (Dots may keep on echoing.)
 72 # Exercise: Fix this.
 73
 74
 75
 76 # Stephane Chazelas has yet another alternative:
 77
 78 CHECK_INTERVAL=1
 79
 80 while ! tail -n 1 "$LOGFILE" | grep -q "$KEYWORD"
 81 do echo -n .
 82 sleep $CHECK_INTERVAL
 83 done
 84 echo "On-line"
 85
 86 # Exercise: Discuss the relative strengths and weaknesses
 87 # of each of these various approaches.

Example 32-7. A Simple Implementation of a Progress Bar

 1 #! /bin/bash
 2 # progress-bar2.sh
 3 # Author: Graham Ewart (with reformatting by ABS Guide author).
 4 # Used in ABS Guide with permission (thanks!).
 5

 6 # Invoke this script with bash. It doesn't work with sh.
 7
 8 interval=1
 9 long_interval=10
 10
 11 {
 12 trap "exit" SIGUSR1
 13 sleep $interval; sleep $interval
 14 while true
 15 do
 16 echo -n '.' # Use dots.
 17 sleep $interval
 18 done; } & # Start a progress bar as a background process.
 19
 20 pid=$!
 21 trap "echo !; kill -USR1 $pid; wait $pid" EXIT # To handle ^C.
 22
 23 echo -n 'Long-running process '
 24 sleep $long_interval
 25 echo ' Finished!'
 26
 27 kill -USR1 $pid
 28 wait $pid # Stop the progress bar.
 29 trap EXIT
 30
 31 exit $?

The DEBUG argument to trap causes a specified action to execute after every command in a script. This
permits tracing variables, for example.

Example 32-8. Tracing a variable

 1 #!/bin/bash
 2
 3 trap 'echo "VARIABLE-TRACE> \$variable = \"$variable\""' DEBUG
 4 # Echoes the value of $variable after every command.
 5
 6 variable=29; line=$LINENO
 7
 8 echo " Just initialized \$variable to $variable in line number $line."
 9
 10 let "variable *= 3"; line=$LINENO
 11 echo " Just multiplied \$variable by 3 in line number $line."
 12
 13 exit 0
 14
 15 # The "trap 'command1 . . . command2 . . .' DEBUG" construct is
 16 #+ more appropriate in the context of a complex script,
 17 #+ where inserting multiple "echo $variable" statements might be
 18 #+ awkward and time-consuming.
 19
 20 # Thanks, Stephane Chazelas for the pointer.
 21
 22
 23 Output of script:
 24
 25 VARIABLE-TRACE> $variable = ""
 26 VARIABLE-TRACE> $variable = "29"
 27 Just initialized $variable to 29.
 28 VARIABLE-TRACE> $variable = "29"
 29 VARIABLE-TRACE> $variable = "87"
 30 Just multiplied $variable by 3.
 31 VARIABLE-TRACE> $variable = "87"

Of course, the trap command has other uses aside from debugging, such as disabling certain keystrokes
within a script (see Example A-43).

Example 32-9. Running multiple processes (on an SMP box)

 1 #!/bin/bash
 2 # parent.sh
 3 # Running multiple processes on an SMP box.
 4 # Author: Tedman Eng
 5
 6 # This is the first of two scripts,
 7 #+ both of which must be present in the current working directory.
 8
 9
 10
 11
 12 LIMIT=$1 # Total number of process to start
 13 NUMPROC=4 # Number of concurrent threads (forks?)
 14 PROCID=1 # Starting Process ID
 15 echo "My PID is $$"
 16
 17 function start_thread() {
 18 if [$PROCID -le $LIMIT] ; then
 19 ./child.sh $PROCID&
 20 let "PROCID++"
 21 else
 22 echo "Limit reached."
 23 wait
 24 exit
 25 fi
 26 }
 27
 28 while ["$NUMPROC" -gt 0]; do
 29 start_thread;
 30 let "NUMPROC--"
 31 done
 32
 33
 34 while true
 35 do
 36
 37 trap "start_thread" SIGRTMIN
 38
 39 done
 40
 41 exit 0
 42
 43
 44
 45 # ======== Second script follows ========
 46
 47
 48 #!/bin/bash
 49 # child.sh
 50 # Running multiple processes on an SMP box.
 51 # This script is called by parent.sh.
 52 # Author: Tedman Eng
 53
 54 temp=$RANDOM
 55 index=$1
 56 shift
 57 let "temp %= 5"

 58 let "temp += 4"
 59 echo "Starting $index Time:$temp" "$@"
 60 sleep ${temp}
 61 echo "Ending $index"
 62 kill -s SIGRTMIN $PPID
 63
 64 exit 0
 65
 66
 67 # ======================= SCRIPT AUTHOR'S NOTES ======================= #
 68 # It's not completely bug free.
 69 # I ran it with limit = 500 and after the first few hundred iterations,
 70 #+ one of the concurrent threads disappeared!
 71 # Not sure if this is collisions from trap signals or something else.
 72 # Once the trap is received, there's a brief moment while executing the
 73 #+ trap handler but before the next trap is set. During this time, it may
 74 #+ be possible to miss a trap signal, thus miss spawning a child process.
 75
 76 # No doubt someone may spot the bug and will be writing
 77 #+ . . . in the future.
 78
 79
 80
 81 # === #
 82
 83
 84
 85 # --#
 86
 87
 88
 89 ###
 90 # The following is the original script written by Vernia Damiano.
 91 # Unfortunately, it doesn't work properly.
 92 ###
 93
 94 #!/bin/bash
 95
 96 # Must call script with at least one integer parameter
 97 #+ (number of concurrent processes).
 98 # All other parameters are passed through to the processes started.
 99
 100
 101 INDICE=8 # Total number of process to start
 102 TEMPO=5 # Maximum sleep time per process
 103 E_BADARGS=65 # No arg(s) passed to script.
 104
 105 if [$# -eq 0] # Check for at least one argument passed to script.
 106 then
 107 echo "Usage: `basename $0` number_of_processes [passed params]"
 108 exit $E_BADARGS
 109 fi
 110
 111 NUMPROC=$1 # Number of concurrent process
 112 shift
 113 PARAMETRI=("$@") # Parameters of each process
 114
 115 function avvia() {
 116 local temp
 117 local index
 118 temp=$RANDOM
 119 index=$1
 120 shift
 121 let "temp %= $TEMPO"
 122 let "temp += 1"
 123 echo "Starting $index Time:$temp" "$@"

 124 sleep ${temp}
 125 echo "Ending $index"
 126 kill -s SIGRTMIN $$
 127 }
 128
 129 function parti() {
 130 if [$INDICE -gt 0] ; then
 131 avvia $INDICE "${PARAMETRI[@]}" &
 132 let "INDICE--"
 133 else
 134 trap : SIGRTMIN
 135 fi
 136 }
 137
 138 trap parti SIGRTMIN
 139
 140 while ["$NUMPROC" -gt 0]; do
 141 parti;
 142 let "NUMPROC--"
 143 done
 144
 145 wait
 146 trap - SIGRTMIN
 147
 148 exit $?
 149
 150 : <<SCRIPT_AUTHOR_COMMENTS
 151 I had the need to run a program, with specified options, on a number of
 152 different files, using a SMP machine. So I thought [I'd] keep running
 153 a specified number of processes and start a new one each time . . . one
 154 of these terminates.
 155
 156 The "wait" instruction does not help, since it waits for a given process
 157 or *all* process started in background. So I wrote [this] bash script
 158 that can do the job, using the "trap" instruction.
 159 --Vernia Damiano
 160 SCRIPT_AUTHOR_COMMENTS

trap '' SIGNAL (two adjacent apostrophes) disables SIGNAL for the remainder of the script. trap
SIGNAL restores the functioning of SIGNAL once more. This is useful to protect a critical portion of a
script from an undesirable interrupt.

 1 trap '' 2 # Signal 2 is Control-C, now disabled.
 2 command
 3 command
 4 command
 5 trap 2 # Reenables Control-C
 6

Version 3 of Bash adds the following internal variables for use by the debugger.

$BASH_ARGC

Number of command-line arguments passed to script, similar to $#.

1.

$BASH_ARGV

Final command-line parameter passed to script, equivalent ${!#}.

2.

$BASH_COMMAND

Command currently executing.

3.

$BASH_EXECUTION_STRING

The option string following the -c option to Bash.

4.

$BASH_LINENO

In a function, indicates the line number of the function call.

5.

$BASH_REMATCH

Array variable associated with =~ conditional regex matching.

6.

$BASH_SOURCE

This is the name of the script, usually the same as $0.

7.

$BASH_SUBSHELL8.

Notes

[1] By convention, signal 0 is assigned to exit.

Prev Home Next
Of Zeros and Nulls Up Options

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Next

Chapter 33. Options

Options are settings that change shell and/or script behavior.

The set command enables options within a script. At the point in the script where you want the options to take
effect, use set -o option-name or, in short form, set -option-abbrev. These two forms are equivalent.

 1 #!/bin/bash
 2
 3 set -o verbose
 4 # Echoes all commands before executing.
 5

 1 #!/bin/bash
 2
 3 set -v
 4 # Exact same effect as above.
 5

To disable an option within a script, use set +o option-name or set +option-abbrev.

 1 #!/bin/bash
 2
 3 set -o verbose
 4 # Command echoing on.
 5 command
 6 ...
 7 command
 8
 9 set +o verbose
 10 # Command echoing off.
 11 command
 12 # Not echoed.
 13
 14
 15 set -v
 16 # Command echoing on.
 17 command
 18 ...
 19 command
 20
 21 set +v
 22 # Command echoing off.
 23 command
 24
 25 exit 0
 26

An alternate method of enabling options in a script is to specify them immediately following the #! script
header.

 1 #!/bin/bash -x
 2 #
 3 # Body of script follows.
 4

It is also possible to enable script options from the command line. Some options that will not work with set
are available this way. Among these are -i, force script to run interactive.

bash -v script-name

bash -o verbose script-name

The following is a listing of some useful options. They may be specified in either abbreviated form (preceded
by a single dash) or by complete name (preceded by a double dash or by -o).

Table 33-1. Bash options

Abbreviation Name Effect
-B brace expansion Enable brace expansion (default setting = on)
+B brace expansion Disable brace expansion
-C noclobber Prevent overwriting of files by redirection (may be overridden

by >|)
-D (none) List double-quoted strings prefixed by $, but do not execute

commands in script
-a allexport Export all defined variables
-b notify Notify when jobs running in background terminate (not of

much use in a script)
-c ... (none) Read commands from ...
checkjobs Informs user of any open jobs upon shell exit. Introduced in

version 4 of Bash, and still "experimental." Usage: shopt -s
checkjobs (Caution: may hang!)

-e errexit Abort script at first error, when a command exits with
non-zero status (except in until or while loops, if-tests, list
constructs)

-f noglob Filename expansion (globbing) disabled
globstar globbing star-match Enables the ** globbing operator (version 4+ of Bash). Usage:

shopt -s globstar
-i interactive Script runs in interactive mode
-n noexec Read commands in script, but do not execute them (syntax

check)
-o Option-Name (none) Invoke the Option-Name option
-o posix POSIX Change the behavior of Bash, or invoked script, to conform to

POSIX standard.
-o pipefail pipe failure Causes a pipeline to return the exit status of the last command

in the pipe that returned a non-zero return value.
-p privileged Script runs as "suid" (caution!)
-r restricted Script runs in restricted mode (see Chapter 22).
-s stdin Read commands from stdin
-t (none) Exit after first command
-u nounset Attempt to use undefined variable outputs error message, and

forces an exit
-v verbose Print each command to stdout before executing it
-x xtrace Similar to -v, but expands commands
- (none) End of options flag. All other arguments are positional

parameters.
-- (none)

Unset positional parameters. If arguments given (-- arg1
arg2), positional parameters set to arguments.

Prev Home Next
Debugging Up Gotchas

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Next

Chapter 34. Gotchas
Turandot: Gli enigmi sono tre, la morte una!

Caleph: No, no! Gli enigmi sono tre, una la vita!

--Puccini

Here are some (non-recommended!) scripting practices that will bring excitement into an otherwise dull life.

Assigning reserved words or characters to variable names.

 1 case=value0 # Causes problems.
 2 23skidoo=value1 # Also problems.
 3 # Variable names starting with a digit are reserved by the shell.
 4 # Try _23skidoo=value1. Starting variables with an underscore is okay.
 5
 6 # However . . . using just an underscore will not work.
 7 _=25
 8 echo $_ # $_ is a special variable set to last arg of last command.
 9 # But . . . _ is a valid function name!
 10
 11 xyz((!*=value2 # Causes severe problems.
 12 # As of version 3 of Bash, periods are not allowed within variable names.

•

Using a hyphen or other reserved characters in a variable name (or function name).

 1 var-1=23
 2 # Use 'var_1' instead.
 3
 4 function-whatever () # Error
 5 # Use 'function_whatever ()' instead.
 6
 7
 8 # As of version 3 of Bash, periods are not allowed within function names.
 9 function.whatever () # Error
 10 # Use 'functionWhatever ()' instead.

•

Using the same name for a variable and a function. This can make a script difficult to understand.

 1 do_something ()
 2 {
 3 echo "This function does something with \"$1\"."
 4 }
 5
 6 do_something=do_something
 7
 8 do_something do_something
 9
 10 # All this is legal, but highly confusing.

•

Using whitespace inappropriately. In contrast to other programming languages, Bash can be quite
finicky about whitespace.

 1 var1 = 23 # 'var1=23' is correct.
 2 # On line above, Bash attempts to execute command "var1"
 3 # with the arguments "=" and "23".
 4
 5 let c = $a - $b # Instead: let c=$a-$b or let "c = $a - $b"
 6
 7 if [$a -le 5] # if [$a -le 5] is correct.
 8 # ^^ if ["$a" -le 5] is even better.

•

 9 # [[$a -le 5]] also works.

Not terminating with a semicolon the final command in a code block within curly brackets.

 1 { ls -l; df; echo "Done." }
 2 # bash: syntax error: unexpected end of file
 3
 4 { ls -l; df; echo "Done."; }
 5 # ^ ### Final command needs semicolon.

•

Assuming uninitialized variables (variables before a value is assigned to them) are "zeroed out". An
uninitialized variable has a value of null, not zero.

 1 #!/bin/bash
 2
 3 echo "uninitialized_var = $uninitialized_var"
 4 # uninitialized_var =
 5
 6 # However . . .
 7 # if $BASH_VERSION ≥ 4.2; then
 8
 9 if [[! -v uninitialized_var]]
 10 then
 11 uninitialized_var=0 # Initialize it to zero!
 12 fi
 13
 14

•

Mixing up = and -eq in a test. Remember, = is for comparing literal variables and -eq for integers.

 1 if ["$a" = 273] # Is $a an integer or string?
 2 if ["$a" -eq 273] # If $a is an integer.
 3
 4 # Sometimes you can interchange -eq and = without adverse consequences.
 5 # However . . .
 6
 7
 8 a=273.0 # Not an integer.
 9
 10 if ["$a" = 273]
 11 then
 12 echo "Comparison works."
 13 else
 14 echo "Comparison does not work."
 15 fi # Comparison does not work.
 16
 17 # Same with a=" 273" and a="0273".
 18
 19
 20 # Likewise, problems trying to use "-eq" with non-integer values.
 21
 22 if ["$a" -eq 273.0]
 23 then
 24 echo "a = $a"
 25 fi # Aborts with an error message.
 26 # test.sh: [: 273.0: integer expression expected

•

Misusing string comparison operators.
•

Example 34-1. Numerical and string comparison are not equivalent

 1 #!/bin/bash
 2 # bad-op.sh: Trying to use a string comparison on integers.
 3
 4 echo
 5 number=1
 6
 7 # The following while-loop has two errors:
 8 #+ one blatant, and the other subtle.
 9
 10 while ["$number" < 5] # Wrong! Should be: while ["$number" -lt 5]
 11 do
 12 echo -n "$number "
 13 let "number += 1"
 14 done
 15 # Attempt to run this bombs with the error message:
 16 #+ bad-op.sh: line 10: 5: No such file or directory
 17 # Within single brackets, "<" must be escaped,
 18 #+ and even then, it's still wrong for comparing integers.
 19
 20 echo "---------------------"
 21
 22 while ["$number" \< 5] # 1 2 3 4
 23 do #
 24 echo -n "$number " # It *seems* to work, but . . .
 25 let "number += 1" #+ it actually does an ASCII comparison,
 26 done #+ rather than a numerical one.
 27
 28 echo; echo "---------------------"
 29
 30 # This can cause problems. For example:
 31
 32 lesser=5
 33 greater=105
 34
 35 if ["$greater" \< "$lesser"]
 36 then
 37 echo "$greater is less than $lesser"
 38 fi # 105 is less than 5
 39 # In fact, "105" actually is less than "5"
 40 #+ in a string comparison (ASCII sort order).
 41
 42 echo
 43
 44 exit 0

Attempting to use let to set string variables.

 1 let "a = hello, you"
 2 echo "$a" # 0

•

Sometimes variables within "test" brackets ([]) need to be quoted (double quotes). Failure to do so
may cause unexpected behavior. See Example 7-6, Example 20-5, and Example 9-6.

•

Quoting a variable containing whitespace prevents splitting. Sometimes this produces unintended
consequences.

•

Commands issued from a script may fail to execute because the script owner lacks execute permission
for them. If a user cannot invoke a command from the command-line, then putting it into a script will
likewise fail. Try changing the attributes of the command in question, perhaps even setting the suid bit

•

(as root, of course).

Attempting to use - as a redirection operator (which it is not) will usually result in an unpleasant
surprise.

 1 command1 2> - | command2
 2 # Trying to redirect error output of command1 into a pipe . . .
 3 # . . . will not work.
 4
 5 command1 2>& - | command2 # Also futile.
 6
 7 Thanks, S.C.

•

Using Bash version 2+ functionality may cause a bailout with error messages. Older Linux machines
may have version 1.XX of Bash as the default installation.

 1 #!/bin/bash
 2
 3 minimum_version=2
 4 # Since Chet Ramey is constantly adding features to Bash,
 5 # you may set $minimum_version to 2.XX, 3.XX, or whatever is appropriate.
 6 E_BAD_VERSION=80
 7
 8 if ["$BASH_VERSION" \< "$minimum_version"]
 9 then
 10 echo "This script works only with Bash, version $minimum or greater."
 11 echo "Upgrade strongly recommended."
 12 exit $E_BAD_VERSION
 13 fi
 14
 15 ...

•

Using Bash-specific functionality in a Bourne shell script (#!/bin/sh) on a non-Linux machine
may cause unexpected behavior. A Linux system usually aliases sh to bash, but this does not
necessarily hold true for a generic UNIX machine.

•

Using undocumented features in Bash turns out to be a dangerous practice. In previous releases of this
book there were several scripts that depended on the "feature" that, although the maximum value of
an exit or return value was 255, that limit did not apply to negative integers. Unfortunately, in version
2.05b and later, that loophole disappeared. See Example 24-9.

•

In certain contexts, a misleading exit status may be returned. This may occur when setting a local
variable within a function or when assigning an arithmetic value to a variable.

•

The exit status of an arithmetic expression is not equivalent to an error code.

 1 var=1 && ((--var)) && echo $var
 2 # ^^^^^^^^^ Here the and-list terminates with exit status 1.
 3 # $var doesn't echo!
 4 echo $? # 1

•

A script with DOS-type newlines (\r\n) will fail to execute, since #!/bin/bash\r\n is not
recognized, not the same as the expected #!/bin/bash\n. The fix is to convert the script to
UNIX-style newlines.

 1 #!/bin/bash
 2
 3 echo "Here"
 4
 5 unix2dos $0 # Script changes itself to DOS format.
 6 chmod 755 $0 # Change back to execute permission.

•

 7 # The 'unix2dos' command removes execute permission.
 8
 9 ./$0 # Script tries to run itself again.
 10 # But it won't work as a DOS file.
 11
 12 echo "There"
 13
 14 exit 0

A shell script headed by #!/bin/sh will not run in full Bash-compatibility mode. Some
Bash-specific functions might be disabled. Scripts that need complete access to all the Bash-specific
extensions should start with #!/bin/bash.

•

Putting whitespace in front of the terminating limit string of a here document will cause unexpected
behavior in a script.

•

Putting more than one echo statement in a function whose output is captured.

 1 add2 ()
 2 {
 3 echo "Whatever ... " # Delete this line!
 4 let "retval = $1 + $2"
 5 echo $retval
 6 }
 7
 8 num1=12
 9 num2=43
 10 echo "Sum of $num1 and $num2 = $(add2 $num1 $num2)"
 11
 12 # Sum of 12 and 43 = Whatever ...
 13 # 55
 14
 15 # The "echoes" concatenate.

This will not work.

•

A script may not export variables back to its parent process, the shell, or to the environment. Just as
we learned in biology, a child process can inherit from a parent, but not vice versa.

 1 WHATEVER=/home/bozo
 2 export WHATEVER
 3 exit 0

bash$ echo $WHATEVER

bash$

Sure enough, back at the command prompt, $WHATEVER remains unset.

•

Setting and manipulating variables in a subshell, then attempting to use those same variables outside
the scope of the subshell will result an unpleasant surprise.

Example 34-2. Subshell Pitfalls

 1 #!/bin/bash
 2 # Pitfalls of variables in a subshell.
 3
 4 outer_variable=outer
 5 echo
 6 echo "outer_variable = $outer_variable"
 7 echo
 8
 9 (
 10 # Begin subshell

•

 11
 12 echo "outer_variable inside subshell = $outer_variable"
 13 inner_variable=inner # Set
 14 echo "inner_variable inside subshell = $inner_variable"
 15 outer_variable=inner # Will value change globally?
 16 echo "outer_variable inside subshell = $outer_variable"
 17
 18 # Will 'exporting' make a difference?
 19 # export inner_variable
 20 # export outer_variable
 21 # Try it and see.
 22
 23 # End subshell
 24)
 25
 26 echo
 27 echo "inner_variable outside subshell = $inner_variable" # Unset.
 28 echo "outer_variable outside subshell = $outer_variable" # Unchanged.
 29 echo
 30
 31 exit 0
 32
 33 # What happens if you uncomment lines 19 and 20?
 34 # Does it make a difference?

Piping echo output to a read may produce unexpected results. In this scenario, the read acts as if it
were running in a subshell. Instead, use the set command (as in Example 15-18).

Example 34-3. Piping the output of echo to a read

 1 #!/bin/bash
 2 # badread.sh:
 3 # Attempting to use 'echo and 'read'
 4 #+ to assign variables non-interactively.
 5
 6 # shopt -s lastpipe
 7
 8 a=aaa
 9 b=bbb
 10 c=ccc
 11
 12 echo "one two three" | read a b c
 13 # Try to reassign a, b, and c.
 14
 15 echo
 16 echo "a = $a" # a = aaa
 17 echo "b = $b" # b = bbb
 18 echo "c = $c" # c = ccc
 19 # Reassignment failed.
 20
 21 ### However . . .
 22 ## Uncommenting line 6:
 23 # shopt -s lastpipe
 24 ##+ fixes the problem!
 25 ### This is a new feature in Bash, version 4.2.
 26
 27 # ------------------------------
 28
 29 # Try the following alternative.
 30
 31 var=`echo "one two three"`
 32 set -- $var

•

 33 a=$1; b=$2; c=$3
 34
 35 echo "-------"
 36 echo "a = $a" # a = one
 37 echo "b = $b" # b = two
 38 echo "c = $c" # c = three
 39 # Reassignment succeeded.
 40
 41 # ------------------------------
 42
 43 # Note also that an echo to a 'read' works within a subshell.
 44 # However, the value of the variable changes *only* within the subshell.
 45
 46 a=aaa # Starting all over again.
 47 b=bbb
 48 c=ccc
 49
 50 echo; echo
 51 echo "one two three" | (read a b c;
 52 echo "Inside subshell: "; echo "a = $a"; echo "b = $b"; echo "c = $c")
 53 # a = one
 54 # b = two
 55 # c = three
 56 echo "-----------------"
 57 echo "Outside subshell: "
 58 echo "a = $a" # a = aaa
 59 echo "b = $b" # b = bbb
 60 echo "c = $c" # c = ccc
 61 echo
 62
 63 exit 0

In fact, as Anthony Richardson points out, piping to any loop can cause a similar problem.

 1 # Loop piping troubles.
 2 # This example by Anthony Richardson,
 3 #+ with addendum by Wilbert Berendsen.
 4
 5
 6 foundone=false
 7 find $HOME -type f -atime +30 -size 100k |
 8 while true
 9 do
 10 read f
 11 echo "$f is over 100KB and has not been accessed in over 30 days"
 12 echo "Consider moving the file to archives."
 13 foundone=true
 14 # ------------------------------------
 15 echo "Subshell level = $BASH_SUBSHELL"
 16 # Subshell level = 1
 17 # Yes, we're inside a subshell.
 18 # ------------------------------------
 19 done
 20
 21 # foundone will always be false here since it is
 22 #+ set to true inside a subshell
 23 if [$foundone = false]
 24 then
 25 echo "No files need archiving."
 26 fi
 27
 28 # =====================Now, here is the correct way:=================
 29
 30 foundone=false

 31 for f in $(find $HOME -type f -atime +30 -size 100k) # No pipe here.
 32 do
 33 echo "$f is over 100KB and has not been accessed in over 30 days"
 34 echo "Consider moving the file to archives."
 35 foundone=true
 36 done
 37
 38 if [$foundone = false]
 39 then
 40 echo "No files need archiving."
 41 fi
 42
 43 # ==================And here is another alternative==================
 44
 45 # Places the part of the script that reads the variables
 46 #+ within a code block, so they share the same subshell.
 47 # Thank you, W.B.
 48
 49 find $HOME -type f -atime +30 -size 100k | {
 50 foundone=false
 51 while read f
 52 do
 53 echo "$f is over 100KB and has not been accessed in over 30 days"
 54 echo "Consider moving the file to archives."
 55 foundone=true
 56 done
 57
 58 if ! $foundone
 59 then
 60 echo "No files need archiving."
 61 fi
 62 }

A lookalike problem occurs when trying to write the stdout of a tail -f piped to grep.

 1 tail -f /var/log/messages | grep "$ERROR_MSG" >> error.log
 2 # The "error.log" file will not have anything written to it.
 3 # As Samuli Kaipiainen points out, this results from grep
 4 #+ buffering its output.
 5 # The fix is to add the "--line-buffered" parameter to grep.

Using "suid" commands within scripts is risky, as it may compromise system security. [1]
•

Using shell scripts for CGI programming may be problematic. Shell script variables are not
"typesafe," and this can cause undesirable behavior as far as CGI is concerned. Moreover, it is
difficult to "cracker-proof" shell scripts.

•

Bash does not handle the double slash (//) string correctly.•

Bash scripts written for Linux or BSD systems may need fixups to run on a commercial UNIX
machine. Such scripts often employ the GNU set of commands and filters, which have greater
functionality than their generic UNIX counterparts. This is particularly true of such text processing
utilites as tr.

•

Sadly, updates to Bash itself have broken older scripts that used to work perfectly fine. Let us recall
how risky it is to use undocumented Bash features.

•

Danger is near thee --

Beware, beware, beware, beware.

Many brave hearts are asleep in the deep.

So beware --

Beware.

--A.J. Lamb and H.W. Petrie
Notes

[1] Setting the suid permission on the script itself has no effect in Linux and most other UNIX flavors.

Prev Home Next
Options Up Scripting With Style

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Next

Chapter 35. Scripting With Style
Get into the habit of writing shell scripts in a structured and systematic manner. Even on-the-fly and "written
on the back of an envelope" scripts will benefit if you take a few minutes to plan and organize your thoughts
before sitting down and coding.

Herewith are a few stylistic guidelines. This is not (necessarily) intended as an Official Shell Scripting
Stylesheet.

35.1. Unofficial Shell Scripting Stylesheet
Comment your code. This makes it easier for others to understand (and appreciate), and easier for you
to maintain.

 1 PASS="$PASS${MATRIX:$(($RANDOM%${#MATRIX})):1}"
 2 # It made perfect sense when you wrote it last year,
 3 #+ but now it's a complete mystery.
 4 # (From Antek Sawicki's "pw.sh" script.)

Add descriptive headers to your scripts and functions.

 1 #!/bin/bash
 2
 3 #**#
 4 # xyz.sh #
 5 # written by Bozo Bozeman #
 6 # July 05, 2001 #
 7 # #
 8 # Clean up project files. #
 9 #**#
 10
 11 E_BADDIR=85 # No such directory.
 12 projectdir=/home/bozo/projects # Directory to clean up.
 13
 14 # --- #
 15 # cleanup_pfiles () #
 16 # Removes all files in designated directory. #
 17 # Parameter: $target_directory #
 18 # Returns: 0 on success, $E_BADDIR if something went wrong. #
 19 # --- #
 20 cleanup_pfiles ()
 21 {
 22 if [! -d "$1"] # Test if target directory exists.
 23 then
 24 echo "$1 is not a directory."
 25 return $E_BADDIR
 26 fi
 27
 28 rm -f "$1"/*
 29 return 0 # Success.
 30 }
 31
 32 cleanup_pfiles $projectdir
 33
 34 exit $?

•

Avoid using "magic numbers," [1] that is, "hard-wired" literal constants. Use meaningful variable
names instead. This makes the script easier to understand and permits making changes and updates
without breaking the application.

 1 if [-f /var/log/messages]
 2 then
 3 ...
 4 fi
 5 # A year later, you decide to change the script to check /var/log/syslog.
 6 # It is now necessary to manually change the script, instance by instance,
 7 #+ and hope nothing breaks.
 8
 9 # A better way:
 10 LOGFILE=/var/log/messages # Only line that needs to be changed.
 11 if [-f "$LOGFILE"]
 12 then
 13 ...

•

 14 fi

Choose descriptive names for variables and functions.

 1 fl=`ls -al $dirname` # Cryptic.
 2 file_listing=`ls -al $dirname` # Better.
 3
 4
 5 MAXVAL=10 # All caps used for a script constant.
 6 while ["$index" -le "$MAXVAL"]
 7 ...
 8
 9
 10 E_NOTFOUND=95 # Uppercase for an errorcode,
 11 #+ and name prefixed with E_.
 12 if [! -e "$filename"]
 13 then
 14 echo "File $filename not found."
 15 exit $E_NOTFOUND
 16 fi
 17
 18
 19 MAIL_DIRECTORY=/var/spool/mail/bozo # Uppercase for an environmental
 20 export MAIL_DIRECTORY #+ variable.
 21
 22
 23 GetAnswer () # Mixed case works well for a
 24 { #+ function name, especially
 25 prompt=$1 #+ when it improves legibility.
 26 echo -n $prompt
 27 read answer
 28 return $answer
 29 }
 30
 31 GetAnswer "What is your favorite number? "
 32 favorite_number=$?
 33 echo $favorite_number
 34
 35
 36 _uservariable=23 # Permissible, but not recommended.
 37 # It's better for user-defined variables not to start with an underscore.
 38 # Leave that for system variables.

•

Use exit codes in a systematic and meaningful way.

 1 E_WRONG_ARGS=95
 2 ...
 3 ...
 4 exit $E_WRONG_ARGS

See also Appendix E.

Ender suggests using the exit codes in /usr/include/sysexits.h in shell scripts, though these
are primarily intended for C and C++ programming.

•

Use standardized parameter flags for script invocation. Ender proposes the following set of flags.

 1 -a All: Return all information (including hidden file info).
 2 -b Brief: Short version, usually for other scripts.
 3 -c Copy, concatenate, etc.
 4 -d Daily: Use information from the whole day, and not merely
 5 information for a specific instance/user.
 6 -e Extended/Elaborate: (often does not include hidden file info).
 7 -h Help: Verbose usage w/descs, aux info, discussion, help.
 8 See also -V.
 9 -l Log output of script.
 10 -m Manual: Launch man-page for base command.

•

 11 -n Numbers: Numerical data only.
 12 -r Recursive: All files in a directory (and/or all sub-dirs).
 13 -s Setup & File Maintenance: Config files for this script.
 14 -u Usage: List of invocation flags for the script.
 15 -v Verbose: Human readable output, more or less formatted.
 16 -V Version / License / Copy(right|left) / Contribs (email too).

See also Section G.1.
Break complex scripts into simpler modules. Use functions where appropriate. See Example 37-4.•
Don't use a complex construct where a simpler one will do.

 1 COMMAND
 2 if [$? -eq 0]
 3 ...
 4 # Redundant and non-intuitive.
 5
 6 if COMMAND
 7 ...
 8 # More concise (if perhaps not quite as legible).

•

... reading the UNIX source code to the Bourne
shell (/bin/sh). I was shocked at how much simple
algorithms could be made cryptic, and therefore
useless, by a poor choice of code style. I asked
myself, "Could someone be proud of this code?"

--Landon Noll
Notes

[1] In this context, "magic numbers" have an entirely different meaning than the magic numbers used to
designate file types.

Prev Home Next
Gotchas Up Miscellany

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Next

Chapter 36. Miscellany
Nobody really knows what the Bourne shell's
grammar is. Even examination of the source code
is little help.

--Tom Duff

36.1. Interactive and non-interactive shells and
scripts
An interactive shell reads commands from user input on a tty. Among other things, such a shell reads startup
files on activation, displays a prompt, and enables job control by default. The user can interact with the shell.

A shell running a script is always a non-interactive shell. All the same, the script can still access its tty. It is
even possible to emulate an interactive shell in a script.

 1 #!/bin/bash
 2 MY_PROMPT='$ '
 3 while :
 4 do
 5 echo -n "$MY_PROMPT"
 6 read line
 7 eval "$line"
 8 done
 9
 10 exit 0
 11
 12 # This example script, and much of the above explanation supplied by
 13 # Stéphane Chazelas (thanks again).

Let us consider an interactive script to be one that requires input from the user, usually with read statements
(see Example 15-3). "Real life" is actually a bit messier than that. For now, assume an interactive script is
bound to a tty, a script that a user has invoked from the console or an xterm.

Init and startup scripts are necessarily non-interactive, since they must run without human intervention. Many
administrative and system maintenance scripts are likewise non-interactive. Unvarying repetitive tasks cry out
for automation by non-interactive scripts.

Non-interactive scripts can run in the background, but interactive ones hang, waiting for input that never
comes. Handle that difficulty by having an expect script or embedded here document feed input to an
interactive script running as a background job. In the simplest case, redirect a file to supply input to a read
statement (read variable <file). These particular workarounds make possible general purpose scripts that run
in either interactive or non-interactive modes.

If a script needs to test whether it is running in an interactive shell, it is simply a matter of finding whether the
prompt variable, $PS1 is set. (If the user is being prompted for input, then the script needs to display a
prompt.)

 1 if [-z $PS1] # no prompt?
 2 ### if [-v PS1] # On Bash 4.2+ ...
 3 then
 4 # non-interactive
 5 ...
 6 else
 7 # interactive
 8 ...
 9 fi

Alternatively, the script can test for the presence of option "i" in the $- flag.

 1 case $- in
 2 *i*) # interactive shell
 3 ;;
 4 *) # non-interactive shell
 5 ;;
 6 # (Courtesy of "UNIX F.A.Q.," 1993)

However, John Lange describes an alternative method, using the -t test operator.

 1 # Test for a terminal!
 2
 3 fd=0 # stdin
 4
 5 # As we recall, the -t test option checks whether the stdin, [-t 0],
 6 #+ or stdout, [-t 1], in a given script is running in a terminal.
 7 if [-t "$fd"]
 8 then
 9 echo interactive
 10 else
 11 echo non-interactive
 12 fi
 13
 14
 15 # But, as John points out:
 16 # if [-t 0] works ... when you're logged in locally
 17 # but fails when you invoke the command remotely via ssh.
 18 # So for a true test you also have to test for a socket.
 19
 20 if [[-t "$fd" || -p /dev/stdin]]
 21 then
 22 echo interactive
 23 else
 24 echo non-interactive
 25 fi

Scripts may be forced to run in interactive mode with the -i option or with a #!/bin/bash -i header.
Be aware that this can cause erratic script behavior or show error messages even when no error is
present.

Prev Home Next
Scripting With Style Up Shell Wrappers

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Chapter 36. Miscellany Next

36.2. Shell Wrappers

A wrapper is a shell script that embeds a system command or utility, that accepts and passes a set of
parameters to that command. [1] Wrapping a script around a complex command-line simplifies invoking it.
This is expecially useful with sed and awk.

A sed or awk script would normally be invoked from the command-line by a sed -e 'commands' or
awk 'commands'. Embedding such a script in a Bash script permits calling it more simply, and makes it
reusable. This also enables combining the functionality of sed and awk, for example piping the output of a set
of sed commands to awk. As a saved executable file, you can then repeatedly invoke it in its original form or
modified, without the inconvenience of retyping it on the command-line.

Example 36-1. shell wrapper

 1 #!/bin/bash
 2
 3 # This simple script removes blank lines from a file.
 4 # No argument checking.
 5 #
 6 # You might wish to add something like:
 7 #
 8 # E_NOARGS=85
 9 # if [-z "$1"]
 10 # then
 11 # echo "Usage: `basename $0` target-file"
 12 # exit $E_NOARGS
 13 # fi
 14
 15
 16
 17 sed -e /^$/d "$1"
 18 # Same as
 19 # sed -e '/^$/d' filename
 20 # invoked from the command-line.
 21
 22 # The '-e' means an "editing" command follows (optional here).
 23 # '^' indicates the beginning of line, '$' the end.
 24 # This matches lines with nothing between the beginning and the end --
 25 #+ blank lines.
 26 # The 'd' is the delete command.
 27
 28 # Quoting the command-line arg permits
 29 #+ whitespace and special characters in the filename.
 30
 31 # Note that this script doesn't actually change the target file.
 32 # If you need to do that, redirect its output.
 33
 34 exit

Example 36-2. A slightly more complex shell wrapper

 1 #!/bin/bash
 2
 3 # subst.sh: a script that substitutes one pattern for
 4 #+ another in a file,
 5 #+ i.e., "sh subst.sh Smith Jones letter.txt".

 6 # Jones replaces Smith.
 7
 8 ARGS=3 # Script requires 3 arguments.
 9 E_BADARGS=85 # Wrong number of arguments passed to script.
 10
 11 if [$# -ne "$ARGS"]
 12 then
 13 echo "Usage: `basename $0` old-pattern new-pattern filename"
 14 exit $E_BADARGS
 15 fi
 16
 17 old_pattern=$1
 18 new_pattern=$2
 19
 20 if [-f "$3"]
 21 then
 22 file_name=$3
 23 else
 24 echo "File \"$3\" does not exist."
 25 exit $E_BADARGS
 26 fi
 27
 28
 29 # ---
 30 # Here is where the heavy work gets done.
 31 sed -e "s/$old_pattern/$new_pattern/g" $file_name
 32 # ---
 33
 34 # 's' is, of course, the substitute command in sed,
 35 #+ and /pattern/ invokes address matching.
 36 # The 'g,' or global flag causes substitution for EVERY
 37 #+ occurence of $old_pattern on each line, not just the first.
 38 # Read the 'sed' docs for an in-depth explanation.
 39
 40 exit $? # Redirect the output of this script to write to a file.

Example 36-3. A generic shell wrapper that writes to a logfile

 1 #!/bin/bash
 2 # logging-wrapper.sh
 3 # Generic shell wrapper that performs an operation
 4 #+ and logs it.
 5
 6 DEFAULT_LOGFILE=logfile.txt
 7
 8 # Set the following two variables.
 9 OPERATION=
 10 # Can be a complex chain of commands,
 11 #+ for example an awk script or a pipe . . .
 12
 13 LOGFILE=
 14 if [-z "$LOGFILE"]
 15 then # If not set, default to ...
 16 LOGFILE="$DEFAULT_LOGFILE"
 17 fi
 18
 19 # Command-line arguments, if any, for the operation.
 20 OPTIONS="$@"
 21
 22
 23 # Log it.
 24 echo "`date` + `whoami` + $OPERATION "$@"" >> $LOGFILE

 25 # Now, do it.
 26 exec $OPERATION "$@"
 27
 28 # It's necessary to do the logging before the operation.
 29 # Why?

Example 36-4. A shell wrapper around an awk script

 1 #!/bin/bash
 2 # pr-ascii.sh: Prints a table of ASCII characters.
 3
 4 START=33 # Range of printable ASCII characters (decimal).
 5 END=127 # Will not work for unprintable characters (> 127).
 6
 7 echo " Decimal Hex Character" # Header.
 8 echo " ------- --- ---------"
 9
 10 for ((i=START; i<=END; i++))
 11 do
 12 echo $i | awk '{printf(" %3d %2x %c\n", $1, $1, $1)}'
 13 # The Bash printf builtin will not work in this context:
 14 # printf "%c" "$i"
 15 done
 16
 17 exit 0
 18
 19
 20 # Decimal Hex Character
 21 # ------- --- ---------
 22 # 33 21 !
 23 # 34 22 "
 24 # 35 23 #
 25 # 36 24 $
 26 #
 27 # . . .
 28 #
 29 # 122 7a z
 30 # 123 7b {
 31 # 124 7c |
 32 # 125 7d }
 33
 34
 35 # Redirect the output of this script to a file
 36 #+ or pipe it to "more": sh pr-asc.sh | more

Example 36-5. A shell wrapper around another awk script

 1 #!/bin/bash
 2
 3 # Adds up a specified column (of numbers) in the target file.
 4 # Floating-point (decimal) numbers okay, because awk can handle them.
 5
 6 ARGS=2
 7 E_WRONGARGS=85
 8
 9 if [$# -ne "$ARGS"] # Check for proper number of command-line args.
 10 then
 11 echo "Usage: `basename $0` filename column-number"
 12 exit $E_WRONGARGS

 13 fi
 14
 15 filename=$1
 16 column_number=$2
 17
 18 # Passing shell variables to the awk part of the script is a bit tricky.
 19 # One method is to strong-quote the Bash-script variable
 20 #+ within the awk script.
 21 # $'$BASH_SCRIPT_VAR'
 22 # ^ ^
 23 # This is done in the embedded awk script below.
 24 # See the awk documentation for more details.
 25
 26 # A multi-line awk script is here invoked by
 27 # awk '
 28 # ...
 29 # ...
 30 # ...
 31 # '
 32
 33
 34 # Begin awk script.
 35 # -----------------------------
 36 awk '
 37
 38 { total += $'"${column_number}"'
 39 }
 40 END {
 41 print total
 42 }
 43
 44 ' "$filename"
 45 # -----------------------------
 46 # End awk script.
 47
 48
 49 # It may not be safe to pass shell variables to an embedded awk script,
 50 #+ so Stephane Chazelas proposes the following alternative:
 51 # ---------------------------------------
 52 # awk -v column_number="$column_number" '
 53 # { total += $column_number
 54 # }
 55 # END {
 56 # print total
 57 # }' "$filename"
 58 # ---------------------------------------
 59
 60
 61 exit 0

For those scripts needing a single do-it-all tool, a Swiss army knife, there is Perl. Perl combines the
capabilities of sed and awk, and throws in a large subset of C, to boot. It is modular and contains support for
everything ranging from object-oriented programming up to and including the kitchen sink. Short Perl scripts
lend themselves to embedding within shell scripts, and there may be some substance to the claim that Perl can
totally replace shell scripting (though the author of the ABS Guide remains skeptical).

Example 36-6. Perl embedded in a Bash script

 1 #!/bin/bash
 2
 3 # Shell commands may precede the Perl script.

 4 echo "This precedes the embedded Perl script within \"$0\"."
 5 echo "==="
 6
 7 perl -e 'print "This line prints from an embedded Perl script.\n";'
 8 # Like sed, Perl also uses the "-e" option.
 9
 10 echo "==="
 11 echo "However, the script may also contain shell and system commands."
 12
 13 exit 0

It is even possible to combine a Bash script and Perl script within the same file. Depending on how the script
is invoked, either the Bash part or the Perl part will execute.

Example 36-7. Bash and Perl scripts combined

 1 #!/bin/bash
 2 # bashandperl.sh
 3
 4 echo "Greetings from the Bash part of the script, $0."
 5 # More Bash commands may follow here.
 6
 7 exit
 8 # End of Bash part of the script.
 9
 10 # ===
 11
 12 #!/usr/bin/perl
 13 # This part of the script must be invoked with
 14 # perl -x bashandperl.sh
 15
 16 print "Greetings from the Perl part of the script, $0.\n";
 17 # Perl doesn't seem to like "echo" ...
 18 # More Perl commands may follow here.
 19
 20 # End of Perl part of the script.

bash$ bash bashandperl.sh
Greetings from the Bash part of the script.

bash$ perl -x bashandperl.sh
Greetings from the Perl part of the script.

It is, of course, possible to embed even more exotic scripting languages within shell wrappers. Python, for
example ...

Example 36-8. Python embedded in a Bash script

 1 #!/bin/bash
 2 # ex56py.sh
 3
 4 # Shell commands may precede the Python script.
 5 echo "This precedes the embedded Python script within \"$0.\""
 6 echo "==="
 7

 8 python -c 'print "This line prints from an embedded Python script.\n";'
 9 # Unlike sed and perl, Python uses the "-c" option.
 10 python -c 'k = raw_input("Hit a key to exit to outer script. ")'
 11
 12 echo "==="
 13 echo "However, the script may also contain shell and system commands."
 14
 15 exit 0

Wrapping a script around mplayer and the Google's translation server, you can create something that talks
back to you.

Example 36-9. A script that speaks

 1 #!/bin/bash
 2 # Courtesy of:
 3 # http://elinux.org/RPi_Text_to_Speech_(Speech_Synthesis)
 4
 5 # You must be on-line for this script to work,
 6 #+ so you can access the Google translation server.
 7 # Of course, mplayer must be present on your computer.
 8
 9 speak()
 10 {
 11 local IFS=+
 12 # Invoke mplayer, then connect to Google translation server.
 13 /usr/bin/mplayer -ao alsa -really-quiet -noconsolecontrols \
 14 "http://translate.google.com/translate_tts?tl=en&q="$*""
 15 # Google translates, but can also speak.
 16 }
 17
 18 LINES=4
 19
 20 spk=$(tail -$LINES $0) # Tail end of same script!
 21 speak "$spk"
 22 exit
 23 # Browns. Nice talking to you.

One interesting example of a complex shell wrapper is Martin Matusiak's undvd script, which provides an
easy-to-use command-line interface to the complex mencoder utility. Another example is Itzchak Rehberg's
Ext3Undel, a set of scripts to recover deleted file on an ext3 filesystem.

Notes

[1] Quite a number of Linux utilities are, in fact, shell wrappers. Some examples are /usr/bin/pdf2ps,
/usr/bin/batch, and /usr/bin/xmkmf.

Prev Home Next
Miscellany Up Tests and Comparisons:

Alternatives
Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting

Prev Chapter 36. Miscellany Next

http://sourceforge.net/projects/undvd/
http://www.mplayerhq.hu/DOCS/HTML/en/mencoder.html
http://projects.izzysoft.de/trac/ext3undel

36.3. Tests and Comparisons: Alternatives
For tests, the [[]] construct may be more appropriate than []. Likewise, arithmetic comparisons might
benefit from the (()) construct.

 1 a=8
 2
 3 # All of the comparisons below are equivalent.
 4 test "$a" -lt 16 && echo "yes, $a < 16" # "and list"
 5 /bin/test "$a" -lt 16 && echo "yes, $a < 16"
 6 ["$a" -lt 16] && echo "yes, $a < 16"
 7 [[$a -lt 16]] && echo "yes, $a < 16" # Quoting variables within
 8 ((a < 16)) && echo "yes, $a < 16" # [[]] and (()) not necessary.
 9
 10 city="New York"
 11 # Again, all of the comparisons below are equivalent.
 12 test "$city" \< Paris && echo "Yes, Paris is greater than $city"
 13 # Greater ASCII order.
 14 /bin/test "$city" \< Paris && echo "Yes, Paris is greater than $city"
 15 ["$city" \< Paris] && echo "Yes, Paris is greater than $city"
 16 [[$city < Paris]] && echo "Yes, Paris is greater than $city"
 17 # Need not quote $city.
 18
 19 # Thank you, S.C.

Prev Home Next
Shell Wrappers Up Recursion: a script calling itself

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Chapter 36. Miscellany Next

36.4. Recursion: a script calling itself

Can a script recursively call itself? Indeed.

Example 36-10. A (useless) script that recursively calls itself

 1 #!/bin/bash
 2 # recurse.sh
 3
 4 # Can a script recursively call itself?
 5 # Yes, but is this of any practical use?
 6 # (See the following.)
 7
 8 RANGE=10
 9 MAXVAL=9
 10
 11 i=$RANDOM
 12 let "i %= $RANGE" # Generate a random number between 0 and $RANGE - 1.
 13
 14 if ["$i" -lt "$MAXVAL"]
 15 then
 16 echo "i = $i"
 17 ./$0 # Script recursively spawns a new instance of itself.
 18 fi # Each child script does the same, until
 19 #+ a generated $i equals $MAXVAL.
 20
 21 # Using a "while" loop instead of an "if/then" test causes problems.
 22 # Explain why.
 23
 24 exit 0
 25
 26 # Note:
 27 # ----
 28 # This script must have execute permission for it to work properly.
 29 # This is the case even if it is invoked by an "sh" command.
 30 # Explain why.

Example 36-11. A (useful) script that recursively calls itself

 1 #!/bin/bash
 2 # pb.sh: phone book
 3
 4 # Written by Rick Boivie, and used with permission.
 5 # Modifications by ABS Guide author.
 6
 7 MINARGS=1 # Script needs at least one argument.
 8 DATAFILE=./phonebook
 9 # A data file in current working directory
 10 #+ named "phonebook" must exist.
 11 PROGNAME=$0
 12 E_NOARGS=70 # No arguments error.
 13
 14 if [$# -lt $MINARGS]; then
 15 echo "Usage: "$PROGNAME" data-to-look-up"
 16 exit $E_NOARGS
 17 fi
 18

 19
 20 if [$# -eq $MINARGS]; then
 21 grep $1 "$DATAFILE"
 22 # 'grep' prints an error message if $DATAFILE not present.
 23 else
 24 (shift; "$PROGNAME" $*) | grep $1
 25 # Script recursively calls itself.
 26 fi
 27
 28 exit 0 # Script exits here.
 29 # Therefore, it's o.k. to put
 30 #+ non-hashmarked comments and data after this point.
 31
 32 # --
 33 Sample "phonebook" datafile:
 34
 35 John Doe 1555 Main St., Baltimore, MD 21228 (410) 222-3333
 36 Mary Moe 9899 Jones Blvd., Warren, NH 03787 (603) 898-3232
 37 Richard Roe 856 E. 7th St., New York, NY 10009 (212) 333-4567
 38 Sam Roe 956 E. 8th St., New York, NY 10009 (212) 444-5678
 39 Zoe Zenobia 4481 N. Baker St., San Francisco, SF 94338 (415) 501-1631
 40 # --
 41
 42 $bash pb.sh Roe
 43 Richard Roe 856 E. 7th St., New York, NY 10009 (212) 333-4567
 44 Sam Roe 956 E. 8th St., New York, NY 10009 (212) 444-5678
 45
 46 $bash pb.sh Roe Sam
 47 Sam Roe 956 E. 8th St., New York, NY 10009 (212) 444-5678
 48
 49 # When more than one argument is passed to this script,
 50 #+ it prints *only* the line(s) containing all the arguments.

Example 36-12. Another (useful) script that recursively calls itself

 1 #!/bin/bash
 2 # usrmnt.sh, written by Anthony Richardson
 3 # Used in ABS Guide with permission.
 4
 5 # usage: usrmnt.sh
 6 # description: mount device, invoking user must be listed in the
 7 # MNTUSERS group in the /etc/sudoers file.
 8
 9 # --
 10 # This is a usermount script that reruns itself using sudo.
 11 # A user with the proper permissions only has to type
 12
 13 # usermount /dev/fd0 /mnt/floppy
 14
 15 # instead of
 16
 17 # sudo usermount /dev/fd0 /mnt/floppy
 18
 19 # I use this same technique for all of my
 20 #+ sudo scripts, because I find it convenient.
 21 # --
 22
 23 # If SUDO_COMMAND variable is not set we are not being run through
 24 #+ sudo, so rerun ourselves. Pass the user's real and group id . . .
 25
 26 if [-z "$SUDO_COMMAND"]
 27 then

 28 mntusr=$(id -u) grpusr=$(id -g) sudo $0 $*
 29 exit 0
 30 fi
 31
 32 # We will only get here if we are being run by sudo.
 33 /bin/mount $* -o uid=$mntusr,gid=$grpusr
 34
 35 exit 0
 36
 37 # Additional notes (from the author of this script):
 38 # ---
 39
 40 # 1) Linux allows the "users" option in the /etc/fstab
 41 # file so that any user can mount removable media.
 42 # But, on a server, I like to allow only a few
 43 # individuals access to removable media.
 44 # I find using sudo gives me more control.
 45
 46 # 2) I also find sudo to be more convenient than
 47 # accomplishing this task through groups.
 48
 49 # 3) This method gives anyone with proper permissions
 50 # root access to the mount command, so be careful
 51 # about who you allow access.
 52 # You can get finer control over which access can be mounted
 53 # by using this same technique in separate mntfloppy, mntcdrom,
 54 # and mntsamba scripts.

Too many levels of recursion can exhaust the script's stack space, causing a segfault.

Prev Home Next
Tests and Comparisons:
Alternatives

Up "Colorizing" Scripts

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Chapter 36. Miscellany Next

36.5. "Colorizing" Scripts

The ANSI [1] escape sequences set screen attributes, such as bold text, and color of foreground and
background. DOS batch files commonly used ANSI escape codes for color output, and so can Bash scripts.

Example 36-13. A "colorized" address database

 1 #!/bin/bash
 2 # ex30a.sh: "Colorized" version of ex30.sh.
 3 # Crude address database
 4
 5
 6 clear # Clear the screen.
 7
 8 echo -n " "
 9 echo -e '\E[37;44m'"\033[1mContact List\033[0m"
 10 # White on blue background
 11 echo; echo
 12 echo -e "\033[1mChoose one of the following persons:\033[0m"
 13 # Bold
 14 tput sgr0 # Reset attributes.
 15 echo "(Enter only the first letter of name.)"
 16 echo
 17 echo -en '\E[47;34m'"\033[1mE\033[0m" # Blue
 18 tput sgr0 # Reset colors to "normal."
 19 echo "vans, Roland" # "[E]vans, Roland"
 20 echo -en '\E[47;35m'"\033[1mJ\033[0m" # Magenta
 21 tput sgr0
 22 echo "ambalaya, Mildred"
 23 echo -en '\E[47;32m'"\033[1mS\033[0m" # Green
 24 tput sgr0
 25 echo "mith, Julie"
 26 echo -en '\E[47;31m'"\033[1mZ\033[0m" # Red
 27 tput sgr0
 28 echo "ane, Morris"
 29 echo
 30
 31 read person
 32
 33 case "$person" in
 34 # Note variable is quoted.
 35
 36 "E" | "e")
 37 # Accept upper or lowercase input.
 38 echo
 39 echo "Roland Evans"
 40 echo "4321 Flash Dr."
 41 echo "Hardscrabble, CO 80753"
 42 echo "(303) 734-9874"
 43 echo "(303) 734-9892 fax"
 44 echo "revans@zzy.net"
 45 echo "Business partner & old friend"
 46 ;;
 47
 48 "J" | "j")
 49 echo
 50 echo "Mildred Jambalaya"
 51 echo "249 E. 7th St., Apt. 19"
 52 echo "New York, NY 10009"
 53 echo "(212) 533-2814"
 54 echo "(212) 533-9972 fax"

 55 echo "milliej@loisaida.com"
 56 echo "Girlfriend"
 57 echo "Birthday: Feb. 11"
 58 ;;
 59
 60 # Add info for Smith & Zane later.
 61
 62 *)
 63 # Default option.
 64 # Empty input (hitting RETURN) fits here, too.
 65 echo
 66 echo "Not yet in database."
 67 ;;
 68
 69 esac
 70
 71 tput sgr0 # Reset colors to "normal."
 72
 73 echo
 74
 75 exit 0

Example 36-14. Drawing a box

 1 #!/bin/bash
 2 # Draw-box.sh: Drawing a box using ASCII characters.
 3
 4 # Script by Stefano Palmeri, with minor editing by document author.
 5 # Minor edits suggested by Jim Angstadt.
 6 # Used in the ABS Guide with permission.
 7
 8
 9 ##
 10 ### draw_box function doc ###
 11
 12 # The "draw_box" function lets the user
 13 #+ draw a box in a terminal.
 14 #
 15 # Usage: draw_box ROW COLUMN HEIGHT WIDTH [COLOR]
 16 # ROW and COLUMN represent the position
 17 #+ of the upper left angle of the box you're going to draw.
 18 # ROW and COLUMN must be greater than 0
 19 #+ and less than current terminal dimension.
 20 # HEIGHT is the number of rows of the box, and must be > 0.
 21 # HEIGHT + ROW must be <= than current terminal height.
 22 # WIDTH is the number of columns of the box and must be > 0.
 23 # WIDTH + COLUMN must be <= than current terminal width.
 24 #
 25 # E.g.: If your terminal dimension is 20x80,
 26 # draw_box 2 3 10 45 is good
 27 # draw_box 2 3 19 45 has bad HEIGHT value (19+2 > 20)
 28 # draw_box 2 3 18 78 has bad WIDTH value (78+3 > 80)
 29 #
 30 # COLOR is the color of the box frame.
 31 # This is the 5th argument and is optional.
 32 # 0=black 1=red 2=green 3=tan 4=blue 5=purple 6=cyan 7=white.
 33 # If you pass the function bad arguments,
 34 #+ it will just exit with code 65,
 35 #+ and no messages will be printed on stderr.
 36 #
 37 # Clear the terminal before you start to draw a box.
 38 # The clear command is not contained within the function.

 39 # This allows the user to draw multiple boxes, even overlapping ones.
 40
 41 ### end of draw_box function doc ###
 42 ##
 43
 44 draw_box(){
 45
 46 #=============#
 47 HORZ="-"
 48 VERT="|"
 49 CORNER_CHAR="+"
 50
 51 MINARGS=4
 52 E_BADARGS=65
 53 #=============#
 54
 55
 56 if [$# -lt "$MINARGS"]; then # If args are less than 4, exit.
 57 exit $E_BADARGS
 58 fi
 59
 60 # Looking for non digit chars in arguments.
 61 # Probably it could be done better (exercise for the reader?).
 62 if echo $@ | tr -d [:blank:] | tr -d [:digit:] | grep . &> /dev/null; then
 63 exit $E_BADARGS
 64 fi
 65
 66 BOX_HEIGHT=`expr $3 - 1` # -1 correction needed because angle char "+"
 67 BOX_WIDTH=`expr $4 - 1` #+ is a part of both box height and width.
 68 T_ROWS=`tput lines` # Define current terminal dimension
 69 T_COLS=`tput cols` #+ in rows and columns.
 70
 71 if [$1 -lt 1] || [$1 -gt $T_ROWS]; then # Start checking if arguments
 72 exit $E_BADARGS #+ are correct.
 73 fi
 74 if [$2 -lt 1] || [$2 -gt $T_COLS]; then
 75 exit $E_BADARGS
 76 fi
 77 if [`expr $1 + $BOX_HEIGHT + 1` -gt $T_ROWS]; then
 78 exit $E_BADARGS
 79 fi
 80 if [`expr $2 + $BOX_WIDTH + 1` -gt $T_COLS]; then
 81 exit $E_BADARGS
 82 fi
 83 if [$3 -lt 1] || [$4 -lt 1]; then
 84 exit $E_BADARGS
 85 fi # End checking arguments.
 86
 87 plot_char(){ # Function within a function.
 88 echo -e "\E[${1};${2}H"$3
 89 }
 90
 91 echo -ne "\E[3${5}m" # Set box frame color, if defined.
 92
 93 # start drawing the box
 94
 95 count=1 # Draw vertical lines using
 96 for ((r=$1; count<=$BOX_HEIGHT; r++)); do #+ plot_char function.
 97 plot_char $r $2 $VERT
 98 let count=count+1
 99 done
 100
 101 count=1
 102 c=`expr $2 + $BOX_WIDTH`
 103 for ((r=$1; count<=$BOX_HEIGHT; r++)); do
 104 plot_char $r $c $VERT

 105 let count=count+1
 106 done
 107
 108 count=1 # Draw horizontal lines using
 109 for ((c=$2; count<=$BOX_WIDTH; c++)); do #+ plot_char function.
 110 plot_char $1 $c $HORZ
 111 let count=count+1
 112 done
 113
 114 count=1
 115 r=`expr $1 + $BOX_HEIGHT`
 116 for ((c=$2; count<=$BOX_WIDTH; c++)); do
 117 plot_char $r $c $HORZ
 118 let count=count+1
 119 done
 120
 121 plot_char $1 $2 $CORNER_CHAR # Draw box angles.
 122 plot_char $1 `expr $2 + $BOX_WIDTH` $CORNER_CHAR
 123 plot_char `expr $1 + $BOX_HEIGHT` $2 $CORNER_CHAR
 124 plot_char `expr $1 + $BOX_HEIGHT` `expr $2 + $BOX_WIDTH` $CORNER_CHAR
 125
 126 echo -ne "\E[0m" # Restore old colors.
 127
 128 P_ROWS=`expr $T_ROWS - 1` # Put the prompt at bottom of the terminal.
 129
 130 echo -e "\E[${P_ROWS};1H"
 131 }
 132
 133
 134 # Now, let's try drawing a box.
 135 clear # Clear the terminal.
 136 R=2 # Row
 137 C=3 # Column
 138 H=10 # Height
 139 W=45 # Width
 140 col=1 # Color (red)
 141 draw_box $R $C $H $W $col # Draw the box.
 142
 143 exit 0
 144
 145 # Exercise:
 146 # --------
 147 # Add the option of printing text within the drawn box.

The simplest, and perhaps most useful ANSI escape sequence is bold text, \033[1m ... \033[0m. The \033
represents an escape, the "[1" turns on the bold attribute, while the "[0" switches it off. The "m" terminates
each term of the escape sequence.

bash$ echo -e "\033[1mThis is bold text.\033[0m"

A similar escape sequence switches on the underline attribute (on an rxvt and an aterm).

bash$ echo -e "\033[4mThis is underlined text.\033[0m"

With an echo, the -e option enables the escape sequences.

Other escape sequences change the text and/or background color.

bash$ echo -e '\E[34;47mThis prints in blue.'; tput sgr0

bash$ echo -e '\E[33;44m'"yellow text on blue background"; tput sgr0

bash$ echo -e '\E[1;33;44m'"BOLD yellow text on blue background"; tput sgr0

It's usually advisable to set the bold attribute for light-colored foreground text.

The tput sgr0 restores the terminal settings to normal. Omitting this lets all subsequent output from that
particular terminal remain blue.

Since tput sgr0 fails to restore terminal settings under certain circumstances, echo -ne \E[0m may be a
better choice.

Use the following template for writing colored text on a colored background.

echo -e '\E[COLOR1;COLOR2mSome text goes here.'

The "\E[" begins the escape sequence. The semicolon-separated numbers "COLOR1" and "COLOR2"
specify a foreground and a background color, according to the table below. (The order of the numbers does
not matter, since the foreground and background numbers fall in non-overlapping ranges.) The "m"
terminates the escape sequence, and the text begins immediately after that.

Note also that single quotes enclose the remainder of the command sequence following the echo -e.

The numbers in the following table work for an rxvt terminal. Results may vary for other terminal emulators.

Table 36-1. Numbers representing colors in Escape Sequences

Color Foreground Background
black 30 40
red 31 41
green 32 42
yellow 33 43
blue 34 44
magenta 35 45
cyan 36 46
white 37 47

Example 36-15. Echoing colored text

 1 #!/bin/bash
 2 # color-echo.sh: Echoing text messages in color.
 3
 4 # Modify this script for your own purposes.
 5 # It's easier than hand-coding color.
 6
 7 black='\E[30;47m'
 8 red='\E[31;47m'
 9 green='\E[32;47m'
 10 yellow='\E[33;47m'
 11 blue='\E[34;47m'
 12 magenta='\E[35;47m'

 13 cyan='\E[36;47m'
 14 white='\E[37;47m'
 15
 16
 17 alias Reset="tput sgr0" # Reset text attributes to normal
 18 #+ without clearing screen.
 19
 20
 21 cecho () # Color-echo.
 22 # Argument $1 = message
 23 # Argument $2 = color
 24 {
 25 local default_msg="No message passed."
 26 # Doesn't really need to be a local variable.
 27
 28 message=${1:-$default_msg} # Defaults to default message.
 29 color=${2:-$black} # Defaults to black, if not specified.
 30
 31 echo -e "$color"
 32 echo "$message"
 33 Reset # Reset to normal.
 34
 35 return
 36 }
 37
 38
 39 # Now, let's try it out.
 40 # --
 41 cecho "Feeling blue..." $blue
 42 cecho "Magenta looks more like purple." $magenta
 43 cecho "Green with envy." $green
 44 cecho "Seeing red?" $red
 45 cecho "Cyan, more familiarly known as aqua." $cyan
 46 cecho "No color passed (defaults to black)."
 47 # Missing $color argument.
 48 cecho "\"Empty\" color passed (defaults to black)." ""
 49 # Empty $color argument.
 50 cecho
 51 # Missing $message and $color arguments.
 52 cecho "" ""
 53 # Empty $message and $color arguments.
 54 # --
 55
 56 echo
 57
 58 exit 0
 59
 60 # Exercises:
 61 # ---------
 62 # 1) Add the "bold" attribute to the 'cecho ()' function.
 63 # 2) Add options for colored backgrounds.

Example 36-16. A "horserace" game

 1 #!/bin/bash
 2 # horserace.sh: Very simple horserace simulation.
 3 # Author: Stefano Palmeri
 4 # Used with permission.
 5
 6 ##
 7 # Goals of the script:
 8 # playing with escape sequences and terminal colors.

 9 #
 10 # Exercise:
 11 # Edit the script to make it run less randomly,
 12 #+ set up a fake betting shop . . .
 13 # Um . . . um . . . it's starting to remind me of a movie . . .
 14 #
 15 # The script gives each horse a random handicap.
 16 # The odds are calculated upon horse handicap
 17 #+ and are expressed in European(?) style.
 18 # E.g., odds=3.75 means that if you bet $1 and win,
 19 #+ you receive $3.75.
 20 #
 21 # The script has been tested with a GNU/Linux OS,
 22 #+ using xterm and rxvt, and konsole.
 23 # On a machine with an AMD 900 MHz processor,
 24 #+ the average race time is 75 seconds.
 25 # On faster computers the race time would be lower.
 26 # So, if you want more suspense, reset the USLEEP_ARG variable.
 27 #
 28 # Script by Stefano Palmeri.
 29 ##
 30
 31 E_RUNERR=65
 32
 33 # Check if md5sum and bc are installed.
 34 if ! which bc &> /dev/null; then
 35 echo bc is not installed.
 36 echo "Can\'t run . . . "
 37 exit $E_RUNERR
 38 fi
 39 if ! which md5sum &> /dev/null; then
 40 echo md5sum is not installed.
 41 echo "Can\'t run . . . "
 42 exit $E_RUNERR
 43 fi
 44
 45 # Set the following variable to slow down script execution.
 46 # It will be passed as the argument for usleep (man usleep)
 47 #+ and is expressed in microseconds (500000 = half a second).
 48 USLEEP_ARG=0
 49
 50 # Clean up the temp directory, restore terminal cursor and
 51 #+ terminal colors -- if script interrupted by Ctl-C.
 52 trap 'echo -en "\E[?25h"; echo -en "\E[0m"; stty echo;\
 53 tput cup 20 0; rm -fr $HORSE_RACE_TMP_DIR' TERM EXIT
 54 # See the chapter on debugging for an explanation of 'trap.'
 55
 56 # Set a unique (paranoid) name for the temp directory the script needs.
 57 HORSE_RACE_TMP_DIR=$HOME/.horserace-`date +%s`-`head -c10 /dev/urandom \
 58 | md5sum | head -c30`
 59
 60 # Create the temp directory and move right in.
 61 mkdir $HORSE_RACE_TMP_DIR
 62 cd $HORSE_RACE_TMP_DIR
 63
 64
 65 # This function moves the cursor to line $1 column $2 and then prints $3.
 66 # E.g.: "move_and_echo 5 10 linux" is equivalent to
 67 #+ "tput cup 4 9; echo linux", but with one command instead of two.
 68 # Note: "tput cup" defines 0 0 the upper left angle of the terminal,
 69 #+ echo defines 1 1 the upper left angle of the terminal.
 70 move_and_echo() {
 71 echo -ne "\E[${1};${2}H""$3"
 72 }
 73
 74 # Function to generate a pseudo-random number between 1 and 9.

 75 random_1_9 ()
 76 {
 77 head -c10 /dev/urandom | md5sum | tr -d [a-z] | tr -d 0 | cut -c1
 78 }
 79
 80 # Two functions that simulate "movement," when drawing the horses.
 81 draw_horse_one() {
 82 echo -n " "//$MOVE_HORSE//
 83 }
 84 draw_horse_two(){
 85 echo -n " "\\\\$MOVE_HORSE\\\\
 86 }
 87
 88
 89 # Define current terminal dimension.
 90 N_COLS=`tput cols`
 91 N_LINES=`tput lines`
 92
 93 # Need at least a 20-LINES X 80-COLUMNS terminal. Check it.
 94 if [$N_COLS -lt 80] || [$N_LINES -lt 20]; then
 95 echo "`basename $0` needs a 80-cols X 20-lines terminal."
 96 echo "Your terminal is ${N_COLS}-cols X ${N_LINES}-lines."
 97 exit $E_RUNERR
 98 fi
 99
 100
 101 # Start drawing the race field.
 102
 103 # Need a string of 80 chars. See below.
 104 BLANK80=`seq -s "" 100 | head -c80`
 105
 106 clear
 107
 108 # Set foreground and background colors to white.
 109 echo -ne '\E[37;47m'
 110
 111 # Move the cursor on the upper left angle of the terminal.
 112 tput cup 0 0
 113
 114 # Draw six white lines.
 115 for n in `seq 5`; do
 116 echo $BLANK80 # Use the 80 chars string to colorize the terminal.
 117 done
 118
 119 # Sets foreground color to black.
 120 echo -ne '\E[30m'
 121
 122 move_and_echo 3 1 "START 1"
 123 move_and_echo 3 75 FINISH
 124 move_and_echo 1 5 "|"
 125 move_and_echo 1 80 "|"
 126 move_and_echo 2 5 "|"
 127 move_and_echo 2 80 "|"
 128 move_and_echo 4 5 "| 2"
 129 move_and_echo 4 80 "|"
 130 move_and_echo 5 5 "V 3"
 131 move_and_echo 5 80 "V"
 132
 133 # Set foreground color to red.
 134 echo -ne '\E[31m'
 135
 136 # Some ASCII art.
 137 move_and_echo 1 8 "..@@@..@@@@@...@@@@@.@...@..@@@@..."
 138 move_and_echo 2 8 ".@...@...@.......@...@...@.@......."
 139 move_and_echo 3 8 ".@@@@@...@.......@...@@@@@.@@@@...."
 140 move_and_echo 4 8 ".@...@...@.......@...@...@.@......."

 141 move_and_echo 5 8 ".@...@...@.......@...@...@..@@@@..."
 142 move_and_echo 1 43 "@@@@...@@@...@@@@..@@@@..@@@@."
 143 move_and_echo 2 43 "@...@.@...@.@.....@.....@....."
 144 move_and_echo 3 43 "@@@@..@@@@@.@.....@@@@...@@@.."
 145 move_and_echo 4 43 "@..@..@...@.@.....@.........@."
 146 move_and_echo 5 43 "@...@.@...@..@@@@..@@@@.@@@@.."
 147
 148
 149 # Set foreground and background colors to green.
 150 echo -ne '\E[32;42m'
 151
 152 # Draw eleven green lines.
 153 tput cup 5 0
 154 for n in `seq 11`; do
 155 echo $BLANK80
 156 done
 157
 158 # Set foreground color to black.
 159 echo -ne '\E[30m'
 160 tput cup 5 0
 161
 162 # Draw the fences.
 163 echo "++++++++++++++++++++++++++++++++++++++\
 164 ++"
 165
 166 tput cup 15 0
 167 echo "++++++++++++++++++++++++++++++++++++++\
 168 ++"
 169
 170 # Set foreground and background colors to white.
 171 echo -ne '\E[37;47m'
 172
 173 # Draw three white lines.
 174 for n in `seq 3`; do
 175 echo $BLANK80
 176 done
 177
 178 # Set foreground color to black.
 179 echo -ne '\E[30m'
 180
 181 # Create 9 files to stores handicaps.
 182 for n in `seq 10 7 68`; do
 183 touch $n
 184 done
 185
 186 # Set the first type of "horse" the script will draw.
 187 HORSE_TYPE=2
 188
 189 # Create position-file and odds-file for every "horse".
 190 #+ In these files, store the current position of the horse,
 191 #+ the type and the odds.
 192 for HN in `seq 9`; do
 193 touch horse_${HN}_position
 194 touch odds_${HN}
 195 echo \-1 > horse_${HN}_position
 196 echo $HORSE_TYPE >> horse_${HN}_position
 197 # Define a random handicap for horse.
 198 HANDICAP=`random_1_9`
 199 # Check if the random_1_9 function returned a good value.
 200 while ! echo $HANDICAP | grep [1-9] &> /dev/null; do
 201 HANDICAP=`random_1_9`
 202 done
 203 # Define last handicap position for horse.
 204 LHP=`expr $HANDICAP * 7 + 3`
 205 for FILE in `seq 10 7 $LHP`; do
 206 echo $HN >> $FILE

 207 done
 208
 209 # Calculate odds.
 210 case $HANDICAP in
 211 1) ODDS=`echo $HANDICAP * 0.25 + 1.25 | bc`
 212 echo $ODDS > odds_${HN}
 213 ;;
 214 2 | 3) ODDS=`echo $HANDICAP * 0.40 + 1.25 | bc`
 215 echo $ODDS > odds_${HN}
 216 ;;
 217 4 | 5 | 6) ODDS=`echo $HANDICAP * 0.55 + 1.25 | bc`
 218 echo $ODDS > odds_${HN}
 219 ;;
 220 7 | 8) ODDS=`echo $HANDICAP * 0.75 + 1.25 | bc`
 221 echo $ODDS > odds_${HN}
 222 ;;
 223 9) ODDS=`echo $HANDICAP * 0.90 + 1.25 | bc`
 224 echo $ODDS > odds_${HN}
 225 esac
 226
 227
 228 done
 229
 230
 231 # Print odds.
 232 print_odds() {
 233 tput cup 6 0
 234 echo -ne '\E[30;42m'
 235 for HN in `seq 9`; do
 236 echo "#$HN odds->" `cat odds_${HN}`
 237 done
 238 }
 239
 240 # Draw the horses at starting line.
 241 draw_horses() {
 242 tput cup 6 0
 243 echo -ne '\E[30;42m'
 244 for HN in `seq 9`; do
 245 echo /\\$HN/\\" "
 246 done
 247 }
 248
 249 print_odds
 250
 251 echo -ne '\E[47m'
 252 # Wait for a enter key press to start the race.
 253 # The escape sequence '\E[?25l' disables the cursor.
 254 tput cup 17 0
 255 echo -e '\E[?25l'Press [enter] key to start the race...
 256 read -s
 257
 258 # Disable normal echoing in the terminal.
 259 # This avoids key presses that might "contaminate" the screen
 260 #+ during the race.
 261 stty -echo
 262
 263 # --
 264 # Start the race.
 265
 266 draw_horses
 267 echo -ne '\E[37;47m'
 268 move_and_echo 18 1 $BLANK80
 269 echo -ne '\E[30m'
 270 move_and_echo 18 1 Starting...
 271 sleep 1
 272

 273 # Set the column of the finish line.
 274 WINNING_POS=74
 275
 276 # Define the time the race started.
 277 START_TIME=`date +%s`
 278
 279 # COL variable needed by following "while" construct.
 280 COL=0
 281
 282 while [$COL -lt $WINNING_POS]; do
 283
 284 MOVE_HORSE=0
 285
 286 # Check if the random_1_9 function has returned a good value.
 287 while ! echo $MOVE_HORSE | grep [1-9] &> /dev/null; do
 288 MOVE_HORSE=`random_1_9`
 289 done
 290
 291 # Define old type and position of the "randomized horse".
 292 HORSE_TYPE=`cat horse_${MOVE_HORSE}_position | tail -n 1`
 293 COL=$(expr `cat horse_${MOVE_HORSE}_position | head -n 1`)
 294
 295 ADD_POS=1
 296 # Check if the current position is an handicap position.
 297 if seq 10 7 68 | grep -w $COL &> /dev/null; then
 298 if grep -w $MOVE_HORSE $COL &> /dev/null; then
 299 ADD_POS=0
 300 grep -v -w $MOVE_HORSE $COL > ${COL}_new
 301 rm -f $COL
 302 mv -f ${COL}_new $COL
 303 else ADD_POS=1
 304 fi
 305 else ADD_POS=1
 306 fi
 307 COL=`expr $COL + $ADD_POS`
 308 echo $COL > horse_${MOVE_HORSE}_position # Store new position.
 309
 310 # Choose the type of horse to draw.
 311 case $HORSE_TYPE in
 312 1) HORSE_TYPE=2; DRAW_HORSE=draw_horse_two
 313 ;;
 314 2) HORSE_TYPE=1; DRAW_HORSE=draw_horse_one
 315 esac
 316 echo $HORSE_TYPE >> horse_${MOVE_HORSE}_position
 317 # Store current type.
 318
 319 # Set foreground color to black and background to green.
 320 echo -ne '\E[30;42m'
 321
 322 # Move the cursor to new horse position.
 323 tput cup `expr $MOVE_HORSE + 5` \
 324 `cat horse_${MOVE_HORSE}_position | head -n 1`
 325
 326 # Draw the horse.
 327 $DRAW_HORSE
 328 usleep $USLEEP_ARG
 329
 330 # When all horses have gone beyond field line 15, reprint odds.
 331 touch fieldline15
 332 if [$COL = 15]; then
 333 echo $MOVE_HORSE >> fieldline15
 334 fi
 335 if [`wc -l fieldline15 | cut -f1 -d " "` = 9]; then
 336 print_odds
 337 : > fieldline15
 338 fi

 339
 340 # Define the leading horse.
 341 HIGHEST_POS=`cat *position | sort -n | tail -1`
 342
 343 # Set background color to white.
 344 echo -ne '\E[47m'
 345 tput cup 17 0
 346 echo -n Current leader: `grep -w $HIGHEST_POS *position | cut -c7`\
 347 " "
 348
 349 done
 350
 351 # Define the time the race finished.
 352 FINISH_TIME=`date +%s`
 353
 354 # Set background color to green and enable blinking text.
 355 echo -ne '\E[30;42m'
 356 echo -en '\E[5m'
 357
 358 # Make the winning horse blink.
 359 tput cup `expr $MOVE_HORSE + 5` \
 360 `cat horse_${MOVE_HORSE}_position | head -n 1`
 361 $DRAW_HORSE
 362
 363 # Disable blinking text.
 364 echo -en '\E[25m'
 365
 366 # Set foreground and background color to white.
 367 echo -ne '\E[37;47m'
 368 move_and_echo 18 1 $BLANK80
 369
 370 # Set foreground color to black.
 371 echo -ne '\E[30m'
 372
 373 # Make winner blink.
 374 tput cup 17 0
 375 echo -e "\E[5mWINNER: $MOVE_HORSE\E[25m"" Odds: `cat odds_${MOVE_HORSE}`"\
 376 " Race time: `expr $FINISH_TIME - $START_TIME` secs"
 377
 378 # Restore cursor and old colors.
 379 echo -en "\E[?25h"
 380 echo -en "\E[0m"
 381
 382 # Restore echoing.
 383 stty echo
 384
 385 # Remove race temp directory.
 386 rm -rf $HORSE_RACE_TMP_DIR
 387
 388 tput cup 19 0
 389
 390 exit 0

See also Example A-21, Example A-44, Example A-52, and Example A-40.

There is, however, a major problem with all this. ANSI escape sequences are emphatically non-portable.
What works fine on some terminal emulators (or the console) may work differently, or not at all, on
others. A "colorized" script that looks stunning on the script author's machine may produce unreadable
output on someone else's. This somewhat compromises the usefulness of colorizing scripts, and possibly
relegates this technique to the status of a gimmick. Colorized scripts are probably inappropriate in a
commercial setting, i.e., your supervisor might disapprove.

Alister's ansi-color utility (based on Moshe Jacobson's color utility considerably simplifies using ANSI
escape sequences. It substitutes a clean and logical syntax for the clumsy constructs just discussed.

http://code.google.com/p/ansi-color/
http://bash.deta.in/color-1.1.tar.gz

Henry/teikedvl has likewise created a utility (http://scriptechocolor.sourceforge.net/) to simplify creation of
colorized scripts.

Notes

[1] ANSI is, of course, the acronym for the American National Standards Institute. This august body
establishes and maintains various technical and industrial standards.

Prev Home Next
Recursion: a script calling itself Up Optimizations

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Chapter 36. Miscellany Next

http://scriptechocolor.sourceforge.net/

36.6. Optimizations
Most shell scripts are quick 'n dirty solutions to non-complex problems. As such, optimizing them for speed is
not much of an issue. Consider the case, though, where a script carries out an important task, does it well, but
runs too slowly. Rewriting it in a compiled language may not be a palatable option. The simplest fix would be
to rewrite the parts of the script that slow it down. Is it possible to apply principles of code optimization even
to a lowly shell script?

Check the loops in the script. Time consumed by repetitive operations adds up quickly. If at all possible,
remove time-consuming operations from within loops.

Use builtin commands in preference to system commands. Builtins execute faster and usually do not launch a
subshell when invoked.

Avoid unnecessary commands, particularly in a pipe.

 1 cat "$file" | grep "$word"
 2
 3 grep "$word" "$file"
 4
 5 # The above command-lines have an identical effect,
 6 #+ but the second runs faster since it launches one fewer subprocess.

The cat command seems especially prone to overuse in scripts.

Disabling certain Bash options can speed up scripts.

As Erik Brandsberg points out:

If you don't need Unicode support, you can get potentially a 2x or more improvement in speed by simply
setting the LC_ALL variable.

 1 export LC_ALL=C
 2
 3 [specifies the locale as ANSI C,
 4 thereby disabling Unicode support]
 5
 6 [In an example script ...]
 7
 8 Without [Unicode support]:
 9 erik@erik-desktop:~/capture$ time ./cap-ngrep.sh
 10 live2.pcap > out.txt
 11
 12 real 0m20.483s
 13 user 1m34.470s
 14 sys 0m12.869s
 15
 16 With [Unicode support]:
 17 erik@erik-desktop:~/capture$ time ./cap-ngrep.sh
 18 live2.pcap > out.txt
 19
 20 real 0m50.232s
 21 user 3m51.118s
 22 sys 0m11.221s
 23
 24 A large part of the overhead that is optimized is, I believe,

 25 regex match using [[string =~ REGEX]],
 26 but it may help with other portions of the code as well.
 27 I hadn't [seen it] mentioned that this optimization helped
 28 with Bash, but I had seen it helped with "grep,"
 29 so why not try?

Certain operators, notably expr, are very inefficient and might be replaced by double parentheses
arithmetic expansion. See Example A-59.

 1 Math tests
 2
 3 math via $(())
 4 real 0m0.294s
 5 user 0m0.288s
 6 sys 0m0.008s
 7
 8 math via expr:
 9 real 1m17.879s # Much slower!
 10 user 0m3.600s
 11 sys 0m8.765s
 12
 13 math via let:
 14 real 0m0.364s
 15 user 0m0.372s
 16 sys 0m0.000s

Condition testing constructs in scripts deserve close scrutiny. Substitute case for if-then constructs and
combine tests when possible, to minimize script execution time. Again, refer to Example A-59.

 1 Test using "case" construct:
 2 real 0m0.329s
 3 user 0m0.320s
 4 sys 0m0.000s
 5
 6
 7 Test with if [], no quotes:
 8 real 0m0.438s
 9 user 0m0.432s
 10 sys 0m0.008s
 11
 12
 13 Test with if [], quotes:
 14 real 0m0.476s
 15 user 0m0.452s
 16 sys 0m0.024s
 17
 18
 19 Test with if [], using -eq:
 20 real 0m0.457s
 21 user 0m0.456s
 22 sys 0m0.000s

Erik Brandsberg recommends using associative arrays in preference to conventional numeric-indexed
arrays in most cases. When overwriting values in a numeric array, there is a significant performance
penalty vs. associative arrays. Running a test script confirms this. See Example A-60.

 1 Assignment tests
 2
 3 Assigning a simple variable
 4 real 0m0.418s
 5 user 0m0.416s
 6 sys 0m0.004s

 7
 8 Assigning a numeric index array entry
 9 real 0m0.582s
 10 user 0m0.564s
 11 sys 0m0.016s
 12
 13 Overwriting a numeric index array entry
 14 real 0m21.931s
 15 user 0m21.913s
 16 sys 0m0.016s
 17
 18 Linear reading of numeric index array
 19 real 0m0.422s
 20 user 0m0.416s
 21 sys 0m0.004s
 22
 23 Assigning an associative array entry
 24 real 0m1.800s
 25 user 0m1.796s
 26 sys 0m0.004s
 27
 28 Overwriting an associative array entry
 29 real 0m1.798s
 30 user 0m1.784s
 31 sys 0m0.012s
 32
 33 Linear reading an associative array entry
 34 real 0m0.420s
 35 user 0m0.420s
 36 sys 0m0.000s
 37
 38 Assigning a random number to a simple variable
 39 real 0m0.402s
 40 user 0m0.388s
 41 sys 0m0.016s
 42
 43 Assigning a sparse numeric index array entry randomly into 64k cells
 44 real 0m12.678s
 45 user 0m12.649s
 46 sys 0m0.028s
 47
 48 Reading sparse numeric index array entry
 49 real 0m0.087s
 50 user 0m0.084s
 51 sys 0m0.000s
 52
 53 Assigning a sparse associative array entry randomly into 64k cells
 54 real 0m0.698s
 55 user 0m0.696s
 56 sys 0m0.004s
 57
 58 Reading sparse associative index array entry
 59 real 0m0.083s
 60 user 0m0.084s
 61 sys 0m0.000s

Use the time and times tools to profile computation-intensive commands. Consider rewriting time-critical
code sections in C, or even in assembler.

Try to minimize file I/O. Bash is not particularly efficient at handling files, so consider using more
appropriate tools for this within the script, such as awk or Perl.

Write your scripts in a modular and coherent form, [1] so they can be reorganized and tightened up as
necessary. Some of the optimization techniques applicable to high-level languages may work for scripts, but
others, such as loop unrolling, are mostly irrelevant. Above all, use common sense.

For an excellent demonstration of how optimization can dramatically reduce the execution time of a script, see
Example 16-47.

Notes

[1] This usually means liberal use of functions.

Prev Home Next
"Colorizing" Scripts Up Assorted Tips

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Chapter 36. Miscellany Next

36.7. Assorted Tips

36.7.1. Ideas for more powerful scripts

You have a problem that you want to solve by writing a Bash script. Unfortunately, you don't know
quite where to start. One method is to plunge right in and code those parts of the script that come
easily, and write the hard parts as pseudo-code.

 1 #!/bin/bash
 2
 3 ARGCOUNT=1 # Need name as argument.
 4 E_WRONGARGS=65
 5
 6 if [number-of-arguments is-not-equal-to "$ARGCOUNT"]
 7 # ^^^^^^^^^^^^^^^^^^^ ^^^^^^^^^^^^^^^
 8 # Can't figure out how to code this . . .
 9 #+ . . . so write it in pseudo-code.
 10
 11 then
 12 echo "Usage: name-of-script name"
 13 # ^^^^^^^^^^^^^^ More pseudo-code.
 14 exit $E_WRONGARGS
 15 fi
 16
 17 . . .
 18
 19 exit 0
 20
 21
 22 # Later on, substitute working code for the pseudo-code.
 23
 24 # Line 6 becomes:
 25 if [$# -ne "$ARGCOUNT"]
 26
 27 # Line 12 becomes:
 28 echo "Usage: `basename $0` name"

For an example of using pseudo-code, see the Square Root exercise.

•

To keep a record of which user scripts have run during a particular session or over a number of
sessions, add the following lines to each script you want to keep track of. This will keep a continuing
file record of the script names and invocation times.

 1 # Append (>>) following to end of each script tracked.
 2
 3 whoami>> $SAVE_FILE # User invoking the script.
 4 echo $0>> $SAVE_FILE # Script name.
 5 date>> $SAVE_FILE # Date and time.
 6 echo>> $SAVE_FILE # Blank line as separator.
 7
 8 # Of course, SAVE_FILE defined and exported as environmental variable in ~/.bashrc
 9 #+ (something like ~/.scripts-run)

•

The >> operator appends lines to a file. What if you wish to prepend a line to an existing file, that is,
to paste it in at the beginning?

 1 file=data.txt
 2 title="***This is the title line of data text file***"
 3
 4 echo $title | cat - $file >$file.new

•

 5 # "cat -" concatenates stdout to $file.
 6 # End result is
 7 #+ to write a new file with $title appended at *beginning*.

This is a simplified variant of the Example 19-13 script given earlier. And, of course, sed can also do
this.

A shell script may act as an embedded command inside another shell script, a Tcl or wish script, or
even a Makefile. It can be invoked as an external shell command in a C program using the
system() call, i.e., system("script_name");.

•

Setting a variable to the contents of an embedded sed or awk script increases the readability of the
surrounding shell wrapper. See Example A-1 and Example 15-20.

•

Put together files containing your favorite and most useful definitions and functions. As necessary,
"include" one or more of these "library files" in scripts with either the dot (.) or source command.

 1 # SCRIPT LIBRARY
 2 # ------ -------
 3
 4 # Note:
 5 # No "#!" here.
 6 # No "live code" either.
 7
 8
 9 # Useful variable definitions
 10
 11 ROOT_UID=0 # Root has $UID 0.
 12 E_NOTROOT=101 # Not root user error.
 13 MAXRETVAL=255 # Maximum (positive) return value of a function.
 14 SUCCESS=0
 15 FAILURE=-1
 16
 17
 18
 19 # Functions
 20
 21 Usage () # "Usage:" message.
 22 {
 23 if [-z "$1"] # No arg passed.
 24 then
 25 msg=filename
 26 else
 27 msg=$@
 28 fi
 29
 30 echo "Usage: `basename $0` "$msg""
 31 }
 32
 33
 34 Check_if_root () # Check if root running script.
 35 { # From "ex39.sh" example.
 36 if ["$UID" -ne "$ROOT_UID"]
 37 then
 38 echo "Must be root to run this script."
 39 exit $E_NOTROOT
 40 fi
 41 }
 42
 43
 44 CreateTempfileName () # Creates a "unique" temp filename.
 45 { # From "ex51.sh" example.
 46 prefix=temp
 47 suffix=`eval date +%s`

•

 48 Tempfilename=$prefix.$suffix
 49 }
 50
 51
 52 isalpha2 () # Tests whether *entire string* is alphabetic.
 53 { # From "isalpha.sh" example.
 54 [$# -eq 1] || return $FAILURE
 55
 56 case $1 in
 57 *[!a-zA-Z]*|"") return $FAILURE;;
 58 *) return $SUCCESS;;
 59 esac # Thanks, S.C.
 60 }
 61
 62
 63 abs () # Absolute value.
 64 { # Caution: Max return value = 255.
 65 E_ARGERR=-999999
 66
 67 if [-z "$1"] # Need arg passed.
 68 then
 69 return $E_ARGERR # Obvious error value returned.
 70 fi
 71
 72 if ["$1" -ge 0] # If non-negative,
 73 then #
 74 absval=$1 # stays as-is.
 75 else # Otherwise,
 76 let "absval = ((0 - $1))" # change sign.
 77 fi
 78
 79 return $absval
 80 }
 81
 82
 83 tolower () # Converts string(s) passed as argument(s)
 84 { #+ to lowercase.
 85
 86 if [-z "$1"] # If no argument(s) passed,
 87 then #+ send error message
 88 echo "(null)" #+ (C-style void-pointer error message)
 89 return #+ and return from function.
 90 fi
 91
 92 echo "$@" | tr A-Z a-z
 93 # Translate all passed arguments ($@).
 94
 95 return
 96
 97 # Use command substitution to set a variable to function output.
 98 # For example:
 99 # oldvar="A seT of miXed-caSe LEtTerS"
 100 # newvar=`tolower "$oldvar"`
 101 # echo "$newvar" # a set of mixed-case letters
 102 #
 103 # Exercise: Rewrite this function to change lowercase passed argument(s)
 104 # to uppercase ... toupper() [easy].
 105 }

Use special-purpose comment headers to increase clarity and legibility in scripts.

 1 ## Caution.
 2 rm -rf *.zzy ## The "-rf" options to "rm" are very dangerous,
 3 ##+ especially with wild cards.
 4

•

 5 #+ Line continuation.
 6 # This is line 1
 7 #+ of a multi-line comment,
 8 #+ and this is the final line.
 9
 10 #* Note.
 11
 12 #o List item.
 13
 14 #> Another point of view.
 15 while ["$var1" != "end"] #> while test "$var1" != "end"

Dotan Barak contributes template code for a progress bar in a script.

Example 36-17. A Progress Bar

 1 #!/bin/bash
 2 # progress-bar.sh
 3
 4 # Author: Dotan Barak (very minor revisions by ABS Guide author).
 5 # Used in ABS Guide with permission (thanks!).
 6
 7
 8 BAR_WIDTH=50
 9 BAR_CHAR_START="["
 10 BAR_CHAR_END="]"
 11 BAR_CHAR_EMPTY="."
 12 BAR_CHAR_FULL="="
 13 BRACKET_CHARS=2
 14 LIMIT=100
 15
 16 print_progress_bar()
 17 {
 18 # Calculate how many characters will be full.
 19 let "full_limit = ((($1 - $BRACKET_CHARS) * $2) / $LIMIT)"
 20
 21 # Calculate how many characters will be empty.
 22 let "empty_limit = ($1 - $BRACKET_CHARS) - ${full_limit}"
 23
 24 # Prepare the bar.
 25 bar_line="${BAR_CHAR_START}"
 26 for ((j=0; j<full_limit; j++)); do
 27 bar_line="${bar_line}${BAR_CHAR_FULL}"
 28 done
 29
 30 for ((j=0; j<empty_limit; j++)); do
 31 bar_line="${bar_line}${BAR_CHAR_EMPTY}"
 32 done
 33
 34 bar_line="${bar_line}${BAR_CHAR_END}"
 35
 36 printf "%3d%% %s" $2 ${bar_line}
 37 }
 38
 39 # Here is a sample of code that uses it.
 40 MAX_PERCENT=100
 41 for ((i=0; i<=MAX_PERCENT; i++)); do
 42 #
 43 usleep 10000
 44 # ... Or run some other commands ...
 45 #
 46 print_progress_bar ${BAR_WIDTH} ${i}
 47 echo -en "\r"

•

 48 done
 49
 50 echo ""
 51
 52 exit

A particularly clever use of if-test constructs is for comment blocks.

 1 #!/bin/bash
 2
 3 COMMENT_BLOCK=
 4 # Try setting the above variable to some value
 5 #+ for an unpleasant surprise.
 6
 7 if [$COMMENT_BLOCK]; then
 8
 9 Comment block --
 10 =================================
 11 This is a comment line.
 12 This is another comment line.
 13 This is yet another comment line.
 14 =================================
 15
 16 echo "This will not echo."
 17
 18 Comment blocks are error-free! Whee!
 19
 20 fi
 21
 22 echo "No more comments, please."
 23
 24 exit 0

Compare this with using here documents to comment out code blocks.

•

Using the $? exit status variable, a script may test if a parameter contains only digits, so it can be
treated as an integer.

 1 #!/bin/bash
 2
 3 SUCCESS=0
 4 E_BADINPUT=85
 5
 6 test "$1" -ne 0 -o "$1" -eq 0 2>/dev/null
 7 # An integer is either equal to 0 or not equal to 0.
 8 # 2>/dev/null suppresses error message.
 9
 10 if [$? -ne "$SUCCESS"]
 11 then
 12 echo "Usage: `basename $0` integer-input"
 13 exit $E_BADINPUT
 14 fi
 15
 16 let "sum = $1 + 25" # Would give error if $1 not integer.
 17 echo "Sum = $sum"
 18
 19 # Any variable, not just a command-line parameter, can be tested this way.
 20
 21 exit 0

•

The 0 - 255 range for function return values is a severe limitation. Global variables and other
workarounds are often problematic. An alternative method for a function to communicate a value
back to the main body of the script is to have the function write to stdout (usually with echo) the

•

"return value," and assign this to a variable. This is actually a variant of command substitution.

Example 36-18. Return value trickery

 1 #!/bin/bash
 2 # multiplication.sh
 3
 4 multiply () # Multiplies params passed.
 5 { # Will accept a variable number of args.
 6
 7 local product=1
 8
 9 until [-z "$1"] # Until uses up arguments passed...
 10 do
 11 let "product *= $1"
 12 shift
 13 done
 14
 15 echo $product # Will not echo to stdout,
 16 } #+ since this will be assigned to a variable.
 17
 18 mult1=15383; mult2=25211
 19 val1=`multiply $mult1 $mult2`
 20 # Assigns stdout (echo) of function to the variable val1.
 21 echo "$mult1 X $mult2 = $val1" # 387820813
 22
 23 mult1=25; mult2=5; mult3=20
 24 val2=`multiply $mult1 $mult2 $mult3`
 25 echo "$mult1 X $mult2 X $mult3 = $val2" # 2500
 26
 27 mult1=188; mult2=37; mult3=25; mult4=47
 28 val3=`multiply $mult1 $mult2 $mult3 $mult4`
 29 echo "$mult1 X $mult2 X $mult3 X $mult4 = $val3" # 8173300
 30
 31 exit 0

The same technique also works for alphanumeric strings. This means that a function can "return" a
non-numeric value.

 1 capitalize_ichar () # Capitalizes initial character
 2 { #+ of argument string(s) passed.
 3
 4 string0="$@" # Accepts multiple arguments.
 5
 6 firstchar=${string0:0:1} # First character.
 7 string1=${string0:1} # Rest of string(s).
 8
 9 FirstChar=`echo "$firstchar" | tr a-z A-Z`
 10 # Capitalize first character.
 11
 12 echo "$FirstChar$string1" # Output to stdout.
 13
 14 }
 15
 16 newstring=`capitalize_ichar "every sentence should start with a capital letter."`
 17 echo "$newstring" # Every sentence should start with a capital letter.

It is even possible for a function to "return" multiple values with this method.

Example 36-19. Even more return value trickery

 1 #!/bin/bash
 2 # sum-product.sh
 3 # A function may "return" more than one value.
 4
 5 sum_and_product () # Calculates both sum and product of passed args.
 6 {
 7 echo $(($1 + $2)) $(($1 * $2))
 8 # Echoes to stdout each calculated value, separated by space.
 9 }
 10
 11 echo
 12 echo "Enter first number "
 13 read first
 14
 15 echo
 16 echo "Enter second number "
 17 read second
 18 echo
 19
 20 retval=`sum_and_product $first $second` # Assigns output of function.
 21 sum=`echo "$retval" | awk '{print $1}'` # Assigns first field.
 22 product=`echo "$retval" | awk '{print $2}'` # Assigns second field.
 23
 24 echo "$first + $second = $sum"
 25 echo "$first * $second = $product"
 26 echo
 27
 28 exit 0

There can be only one echo statement in the function for this to work. If you alter the previous
example:

 1 sum_and_product ()
 2 {
 3 echo "This is the sum_and_product function." # This messes things up!
 4 echo $(($1 + $2)) $(($1 * $2))
 5 }
 6 ...
 7 retval=`sum_and_product $first $second` # Assigns output of function.
 8 # Now, this will not work correctly.

Next in our bag of tricks are techniques for passing an array to a function, then "returning" an array
back to the main body of the script.

Passing an array involves loading the space-separated elements of the array into a variable with
command substitution. Getting an array back as the "return value" from a function uses the previously
mentioned strategem of echoing the array in the function, then invoking command substitution and
the (...) operator to assign it to an array.

Example 36-20. Passing and returning arrays

 1 #!/bin/bash
 2 # array-function.sh: Passing an array to a function and ...
 3 # "returning" an array from a function
 4
 5
 6 Pass_Array ()
 7 {
 8 local passed_array # Local variable!
 9 passed_array=(`echo "$1"`)

•

 10 echo "${passed_array[@]}"
 11 # List all the elements of the new array
 12 #+ declared and set within the function.
 13 }
 14
 15
 16 original_array=(element1 element2 element3 element4 element5)
 17
 18 echo
 19 echo "original_array = ${original_array[@]}"
 20 # List all elements of original array.
 21
 22
 23 # This is the trick that permits passing an array to a function.
 24 # **********************************
 25 argument=`echo ${original_array[@]}`
 26 # **********************************
 27 # Pack a variable
 28 #+ with all the space-separated elements of the original array.
 29 #
 30 # Attempting to just pass the array itself will not work.
 31
 32
 33 # This is the trick that allows grabbing an array as a "return value".
 34 # ***
 35 returned_array=(`Pass_Array "$argument"`)
 36 # ***
 37 # Assign 'echoed' output of function to array variable.
 38
 39 echo "returned_array = ${returned_array[@]}"
 40
 41 echo "==="
 42
 43 # Now, try it again,
 44 #+ attempting to access (list) the array from outside the function.
 45 Pass_Array "$argument"
 46
 47 # The function itself lists the array, but ...
 48 #+ accessing the array from outside the function is forbidden.
 49 echo "Passed array (within function) = ${passed_array[@]}"
 50 # NULL VALUE since the array is a variable local to the function.
 51
 52 echo
 53
 54 ##
 55
 56 # And here is an even more explicit example:
 57
 58 ret_array ()
 59 {
 60 for element in {11..20}
 61 do
 62 echo "$element " # Echo individual elements
 63 done #+ of what will be assembled into an array.
 64 }
 65
 66 arr=($(ret_array)) # Assemble into array.
 67
 68 echo "Capturing array \"arr\" from function ret_array () ..."
 69 echo "Third element of array \"arr\" is ${arr[2]}." # 13 (zero-indexed)
 70 echo -n "Entire array is: "
 71 echo ${arr[@]} # 11 12 13 14 15 16 17 18 19 20
 72
 73 echo
 74
 75 exit 0

 76
 77 # Nathan Coulter points out that passing arrays with elements containing
 78 #+ whitespace breaks this example.

For a more elaborate example of passing arrays to functions, see Example A-10.

Using the double-parentheses construct, it is possible to use C-style syntax for setting and
incrementing/decrementing variables and in for and while loops. See Example 11-13 and Example
11-18.

•

Setting the path and umask at the beginning of a script makes it more portable -- more likely to run on
a "foreign" machine whose user may have bollixed up the $PATH and umask.

 1 #!/bin/bash
 2 PATH=/bin:/usr/bin:/usr/local/bin ; export PATH
 3 umask 022 # Files that the script creates will have 755 permission.
 4
 5 # Thanks to Ian D. Allen, for this tip.

•

A useful scripting technique is to repeatedly feed the output of a filter (by piping) back to the same
filter, but with a different set of arguments and/or options. Especially suitable for this are tr and grep.

 1 # From "wstrings.sh" example.
 2
 3 wlist=`strings "$1" | tr A-Z a-z | tr '[:space:]' Z | \
 4 tr -cs '[:alpha:]' Z | tr -s '\173-\377' Z | tr Z ' '`

Example 36-21. Fun with anagrams

 1 #!/bin/bash
 2 # agram.sh: Playing games with anagrams.
 3
 4 # Find anagrams of...
 5 LETTERSET=etaoinshrdlu
 6 FILTER='.......' # How many letters minimum?
 7 # 1234567
 8
 9 anagram "$LETTERSET" | # Find all anagrams of the letterset...
 10 grep "$FILTER" | # With at least 7 letters,
 11 grep '^is' | # starting with 'is'
 12 grep -v 's$' | # no plurals
 13 grep -v 'ed$' # no past tense verbs
 14 # Possible to add many combinations of conditions and filters.
 15
 16 # Uses "anagram" utility
 17 #+ that is part of the author's "yawl" word list package.
 18 # http://ibiblio.org/pub/Linux/libs/yawl-0.3.2.tar.gz
 19 # http://bash.deta.in/yawl-0.3.2.tar.gz
 20
 21 exit 0 # End of code.
 22
 23
 24 bash$ sh agram.sh
 25 islander
 26 isolate
 27 isolead
 28 isotheral
 29
 30
 31

•

 32 # Exercises:
 33 # ---------
 34 # Modify this script to take the LETTERSET as a command-line parameter.
 35 # Parameterize the filters in lines 11 - 13 (as with $FILTER),
 36 #+ so that they can be specified by passing arguments to a function.
 37
 38 # For a slightly different approach to anagramming,
 39 #+ see the agram2.sh script.

See also Example 29-4, Example 16-25, and Example A-9.

Use "anonymous here documents" to comment out blocks of code, to save having to individually
comment out each line with a #. See Example 19-11.

•

Running a script on a machine that relies on a command that might not be installed is dangerous. Use
whatis to avoid potential problems with this.

 1 CMD=command1 # First choice.
 2 PlanB=command2 # Fallback option.
 3
 4 command_test=$(whatis "$CMD" | grep 'nothing appropriate')
 5 # If 'command1' not found on system , 'whatis' will return
 6 #+ "command1: nothing appropriate."
 7 #
 8 # A safer alternative is:
 9 # command_test=$(whereis "$CMD" | grep \/)
 10 # But then the sense of the following test would have to be reversed,
 11 #+ since the $command_test variable holds content only if
 12 #+ the $CMD exists on the system.
 13 # (Thanks, bojster.)
 14
 15
 16 if [[-z "$command_test"]] # Check whether command present.
 17 then
 18 $CMD option1 option2 # Run command1 with options.
 19 else # Otherwise,
 20 $PlanB #+ run command2.
 21 fi

•

An if-grep test may not return expected results in an error case, when text is output to stderr, rather
that stdout.

 1 if ls -l nonexistent_filename | grep -q 'No such file or directory'
 2 then echo "File \"nonexistent_filename\" does not exist."
 3 fi

Redirecting stderr to stdout fixes this.

 1 if ls -l nonexistent_filename 2>&1 | grep -q 'No such file or directory'
 2 # ^^^^
 3 then echo "File \"nonexistent_filename\" does not exist."
 4 fi
 5
 6 # Thanks, Chris Martin, for pointing this out.

•

If you absolutely must access a subshell variable outside the subshell, here's a way to do it.

 1 TMPFILE=tmpfile # Create a temp file to store the variable.
 2
 3 (# Inside the subshell ...
 4 inner_variable=Inner
 5 echo $inner_variable
 6 echo $inner_variable >>$TMPFILE # Append to temp file.

•

 7)
 8
 9 # Outside the subshell ...
 10
 11 echo; echo "-----"; echo
 12 echo $inner_variable # Null, as expected.
 13 echo "-----"; echo
 14
 15 # Now ...
 16 read inner_variable <$TMPFILE # Read back shell variable.
 17 rm -f "$TMPFILE" # Get rid of temp file.
 18 echo "$inner_variable" # It's an ugly kludge, but it works.

The run-parts command is handy for running a set of command scripts in a particular sequence,
especially in combination with cron or at.

•

For doing multiple revisions on a complex script, use the rcs Revision Control System package.

Among other benefits of this is automatically updated ID header tags. The co command in rcs does a
parameter replacement of certain reserved key words, for example, replacing # Id in a script with
something like:

 1 # $Id: hello-world.sh,v 1.1 2004/10/16 02:43:05 bozo Exp $

•

36.7.2. Widgets

It would be nice to be able to invoke X-Windows widgets from a shell script. There happen to exist several
packages that purport to do so, namely Xscript, Xmenu, and widtools. The first two of these no longer seem to
be maintained. Fortunately, it is still possible to obtain widtools here.

The widtools (widget tools) package requires the XForms library to be installed. Additionally, the
Makefile needs some judicious editing before the package will build on a typical Linux system. Finally,
three of the six widgets offered do not work (and, in fact, segfault).

The dialog family of tools offers a method of calling "dialog" widgets from a shell script. The original dialog
utility works in a text console, but its successors, gdialog, Xdialog, and kdialog use X-Windows-based widget
sets.

Example 36-22. Widgets invoked from a shell script

 1 #!/bin/bash
 2 # dialog.sh: Using 'gdialog' widgets.
 3
 4 # Must have 'gdialog' installed on your system to run this script.
 5 # Or, you can replace all instance of 'gdialog' below with 'kdialog' ...
 6 # Version 1.1 (corrected 04/05/05)
 7
 8 # This script was inspired by the following article.
 9 # "Scripting for X Productivity," by Marco Fioretti,
 10 # LINUX JOURNAL, Issue 113, September 2003, pp. 86-9.
 11 # Thank you, all you good people at LJ.
 12
 13
 14 # Input error in dialog box.
 15 E_INPUT=85
 16 # Dimensions of display, input widgets.

http://www.batse.msfc.nasa.gov/~mallozzi/home/software/xforms/src/widtools-2.0.tgz

 17 HEIGHT=50
 18 WIDTH=60
 19
 20 # Output file name (constructed out of script name).
 21 OUTFILE=$0.output
 22
 23 # Display this script in a text widget.
 24 gdialog --title "Displaying: $0" --textbox $0 $HEIGHT $WIDTH
 25
 26
 27
 28 # Now, we'll try saving input in a file.
 29 echo -n "VARIABLE=" > $OUTFILE
 30 gdialog --title "User Input" --inputbox "Enter variable, please:" \
 31 $HEIGHT $WIDTH 2>> $OUTFILE
 32
 33
 34 if ["$?" -eq 0]
 35 # It's good practice to check exit status.
 36 then
 37 echo "Executed \"dialog box\" without errors."
 38 else
 39 echo "Error(s) in \"dialog box\" execution."
 40 # Or, clicked on "Cancel", instead of "OK" button.
 41 rm $OUTFILE
 42 exit $E_INPUT
 43 fi
 44
 45
 46
 47 # Now, we'll retrieve and display the saved variable.
 48 . $OUTFILE # 'Source' the saved file.
 49 echo "The variable input in the \"input box\" was: "$VARIABLE""
 50
 51
 52 rm $OUTFILE # Clean up by removing the temp file.
 53 # Some applications may need to retain this file.
 54
 55 exit $?
 56
 57 # Exercise: Rewrite this script using the 'zenity' widget set.

The xmessage command is a simple method of popping up a message/query window. For example:

 1 xmessage Fatal error in script! -button exit

The latest entry in the widget sweepstakes is zenity. This utility pops up GTK+ dialog widgets-and-windows,
and it works very nicely within a script.

 1 get_info ()
 2 {
 3 zenity --entry # Pops up query window . . .
 4 #+ and prints user entry to stdout.
 5
 6 # Also try the --calendar and --scale options.
 7 }
 8
 9 answer=$(get_info) # Capture stdout in $answer variable.
 10
 11 echo "User entered: "$answer""

For other methods of scripting with widgets, try Tk or wish (Tcl derivatives), PerlTk (Perl with Tk
extensions), tksh (ksh with Tk extensions), XForms4Perl (Perl with XForms extensions), Gtk-Perl (Perl with
Gtk extensions), or PyQt (Python with Qt extensions).

Prev Home Next
Optimizations Up Security Issues

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Chapter 36. Miscellany Next

36.8. Security Issues

36.8.1. Infected Shell Scripts

A brief warning about script security is indicated. A shell script may contain a worm, trojan, or even a virus.
For that reason, never run as root a script (or permit it to be inserted into the system startup scripts in
/etc/rc.d) unless you have obtained said script from a trusted source or you have carefully analyzed it to
make certain it does nothing harmful.

Various researchers at Bell Labs and other sites, including M. Douglas McIlroy, Tom Duff, and Fred Cohen
have investigated the implications of shell script viruses. They conclude that it is all too easy for even a
novice, a "script kiddie," to write one. [1]

Here is yet another reason to learn scripting. Being able to look at and understand scripts may protect your
system from being compromised by a rogue script.

36.8.2. Hiding Shell Script Source

For security purposes, it may be necessary to render a script unreadable. If only there were a utility to create a
stripped binary executable from a script. Francisco Rosales' shc -- generic shell script compiler does exactly
that.

Unfortunately, according to an article in the October, 2005 Linux Journal, the binary can, in at least some
cases, be decrypted to recover the original script source. Still, this could be a useful method of keeping scripts
secure from all but the most skilled hackers.

36.8.3. Writing Secure Shell Scripts

Dan Stromberg suggests the following guidelines for writing (relatively) secure shell scripts.

Don't put secret data in environment variables.•
Don't pass secret data in an external command's arguments (pass them in via a pipe or redirection
instead).

•

Set your $PATH carefully. Don't just trust whatever path you inherit from the caller if your script is
running as root. In fact, whenever you use an environment variable inherited from the caller, think
about what could happen if the caller put something misleading in the variable, e.g., if the caller set
$HOME to /etc.

•

Notes

[1] See Marius van Oers' article, Unix Shell Scripting Malware, and also the Denning reference in the
bibliography.

Prev Home Next
Assorted Tips Up Portability Issues

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Chapter 36. Miscellany Next

http://www.datsi.fi.upm.es/~frosal/sources/
http://www.linuxjournal.com/article/8256
http://www.virusbtn.com/magazine/archives/200204/malshell.xml

36.9. Portability Issues
It is easier to port a shell than a shell script.

--Larry Wall
This book deals specifically with Bash scripting on a GNU/Linux system. All the same, users of sh and ksh
will find much of value here.

As it happens, many of the various shells and scripting languages seem to be converging toward the POSIX
1003.2 standard. Invoking Bash with the --posix option or inserting a set -o posix at the head of a script
causes Bash to conform very closely to this standard. Another alternative is to use a #!/bin/sh sha-bang header
in the script, rather than #!/bin/bash. [1] Note that /bin/sh is a link to /bin/bash in Linux and certain
other flavors of UNIX, and a script invoked this way disables extended Bash functionality.

Most Bash scripts will run as-is under ksh, and vice-versa, since Chet Ramey has been busily porting ksh
features to the latest versions of Bash.

On a commercial UNIX machine, scripts using GNU-specific features of standard commands may not work.
This has become less of a problem in the last few years, as the GNU utilities have pretty much displaced their
proprietary counterparts even on "big-iron" UNIX. Caldera's release of the source to many of the original
UNIX utilities has accelerated the trend.

Bash has certain features that the traditional Bourne shell lacks. Among these are:

Certain extended invocation options•
Command substitution using $() notation•
Brace expansion•
Certain array operations, and associative arrays•
The double brackets extended test construct•
The double-parentheses arithmetic-evaluation construct•
Certain string manipulation operations•
Process substitution•
A Regular Expression matching operator•
Bash-specific builtins•
Coprocesses•

See the Bash F.A.Q. for a complete listing.

36.9.1. A Test Suite

Let us illustrate some of the incompatibilities between Bash and the classic Bourne shell. Download and
install the "Heirloom Bourne Shell" and run the following script, first using Bash, then the classic sh.

Example 36-23. Test Suite

 1 #!/bin/bash
 2 # test-suite.sh
 3 # A partial Bash compatibility test suite.
 4 # Run this on your version of Bash, or some other shell.
 5
 6 default_option=FAIL # Tests below will fail unless . . .
 7

http://linux.oreillynet.com/pub/a/linux/2002/02/28/caldera.html
ftp://ftp.cwru.edu/pub/bash/FAQ
http://freshmeat.net/projects/bournesh

 8 echo
 9 echo -n "Testing "
 10 sleep 1; echo -n ". "
 11 sleep 1; echo -n ". "
 12 sleep 1; echo ". "
 13 echo
 14
 15 # Double brackets
 16 String="Double brackets supported?"
 17 echo -n "Double brackets test: "
 18 if [["$String" = "Double brackets supported?"]]
 19 then
 20 echo "PASS"
 21 else
 22 echo "FAIL"
 23 fi
 24
 25
 26 # Double brackets and regex matching
 27 String="Regex matching supported?"
 28 echo -n "Regex matching: "
 29 if [["$String" =~ R.....matching*]]
 30 then
 31 echo "PASS"
 32 else
 33 echo "FAIL"
 34 fi
 35
 36
 37 # Arrays
 38 test_arr=$default_option # FAIL
 39 Array=(If supports arrays will print PASS)
 40 test_arr=${Array[5]}
 41 echo "Array test: $test_arr"
 42
 43
 44 # Command Substitution
 45 csub_test ()
 46 {
 47 echo "PASS"
 48 }
 49
 50 test_csub=$default_option # FAIL
 51 test_csub=$(csub_test)
 52 echo "Command substitution test: $test_csub"
 53
 54 echo
 55
 56 # Completing this script is an exercise for the reader.
 57 # Add to the above similar tests for double parentheses,
 58 #+ brace expansion, process substitution, etc.
 59
 60 exit $?

Notes

[1] Or, better yet, #!/bin/env sh.

Prev Home Next
Security Issues Up Shell Scripting Under Windows

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Chapter 36. Miscellany Next

36.10. Shell Scripting Under Windows
Even users running that other OS can run UNIX-like shell scripts, and therefore benefit from many of the
lessons of this book. The Cygwin package from Cygnus and the MKS utilities from Mortice Kern Associates
add shell scripting capabilities to Windows.

Another alternative is UWIN, written by David Korn of AT&T, of Korn Shell fame.

In 2006, Microsoft released the Windows Powershell®, which contains limited Bash-like command-line
scripting capabilities.

Prev Home Next
Portability Issues Up Bash, versions 2, 3, and 4

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Next

http://sourceware.cygnus.com/cygwin/
http://www.mkssoftware.com/
http://www2.research.att.com/~gsf/download/uwin/uwin.html

Chapter 37. Bash, versions 2, 3, and 4

37.1. Bash, version 2

The current version of Bash, the one you have running on your machine, is most likely version 2.xx.yy,
3.xx.yy, or 4.xx.yy.

bash$ echo $BASH_VERSION
3.2.25(1)-release

The version 2 update of the classic Bash scripting language added array variables, string and parameter
expansion, and a better method of indirect variable references, among other features.

Example 37-1. String expansion

 1 #!/bin/bash
 2
 3 # String expansion.
 4 # Introduced with version 2 of Bash.
 5
 6 # Strings of the form $'xxx'
 7 #+ have the standard escaped characters interpreted.
 8
 9 echo $'Ringing bell 3 times \a \a \a'
 10 # May only ring once with certain terminals.
 11 # Or ...
 12 # May not ring at all, depending on terminal settings.
 13 echo $'Three form feeds \f \f \f'
 14 echo $'10 newlines \n\n\n\n\n\n\n\n\n\n'
 15 echo $'\102\141\163\150'
 16 # B a s h
 17 # Octal equivalent of characters.
 18
 19 exit

Example 37-2. Indirect variable references - the new way

 1 #!/bin/bash
 2
 3 # Indirect variable referencing.
 4 # This has a few of the attributes of references in C++.
 5
 6
 7 a=letter_of_alphabet
 8 letter_of_alphabet=z
 9
 10 echo "a = $a" # Direct reference.
 11
 12 echo "Now a = ${!a}" # Indirect reference.
 13 # The ${!variable} notation is more intuitive than the old
 14 #+ eval var1=\$$var2
 15
 16 echo
 17
 18 t=table_cell_3
 19 table_cell_3=24
 20 echo "t = ${!t}" # t = 24
 21 table_cell_3=387

 22 echo "Value of t changed to ${!t}" # 387
 23 # No 'eval' necessary.
 24
 25 # This is useful for referencing members of an array or table,
 26 #+ or for simulating a multi-dimensional array.
 27 # An indexing option (analogous to pointer arithmetic)
 28 #+ would have been nice. Sigh.
 29
 30 exit 0
 31
 32 # See also, ind-ref.sh example.

Example 37-3. Simple database application, using indirect variable referencing

 1 #!/bin/bash
 2 # resistor-inventory.sh
 3 # Simple database / table-lookup application.
 4
 5 # == #
 6 # Data
 7
 8 B1723_value=470 # Ohms
 9 B1723_powerdissip=.25 # Watts
 10 B1723_colorcode="yellow-violet-brown" # Color bands
 11 B1723_loc=173 # Where they are
 12 B1723_inventory=78 # How many
 13
 14 B1724_value=1000
 15 B1724_powerdissip=.25
 16 B1724_colorcode="brown-black-red"
 17 B1724_loc=24N
 18 B1724_inventory=243
 19
 20 B1725_value=10000
 21 B1725_powerdissip=.125
 22 B1725_colorcode="brown-black-orange"
 23 B1725_loc=24N
 24 B1725_inventory=89
 25
 26 # == #
 27
 28
 29 echo
 30
 31 PS3='Enter catalog number: '
 32
 33 echo
 34
 35 select catalog_number in "B1723" "B1724" "B1725"
 36 do
 37 Inv=${catalog_number}_inventory
 38 Val=${catalog_number}_value
 39 Pdissip=${catalog_number}_powerdissip
 40 Loc=${catalog_number}_loc
 41 Ccode=${catalog_number}_colorcode
 42
 43 echo
 44 echo "Catalog number $catalog_number:"
 45 # Now, retrieve value, using indirect referencing.
 46 echo "There are ${!Inv} of [${!Val} ohm / ${!Pdissip} watt]\
 47 resistors in stock." # ^ ^
 48 # As of Bash 4.2, you can replace "ohm" with \u2126 (using echo -e).

 49 echo "These are located in bin # ${!Loc}."
 50 echo "Their color code is \"${!Ccode}\"."
 51
 52 break
 53 done
 54
 55 echo; echo
 56
 57 # Exercises:
 58 # ---------
 59 # 1) Rewrite this script to read its data from an external file.
 60 # 2) Rewrite this script to use arrays,
 61 #+ rather than indirect variable referencing.
 62 # Which method is more straightforward and intuitive?
 63 # Which method is easier to code?
 64
 65
 66 # Notes:
 67 # -----
 68 # Shell scripts are inappropriate for anything except the most simple
 69 #+ database applications, and even then it involves workarounds and kludges.
 70 # Much better is to use a language with native support for data structures,
 71 #+ such as C++ or Java (or even Perl).
 72
 73 exit 0

Example 37-4. Using arrays and other miscellaneous trickery to deal four random hands from a deck of
cards

 1 #!/bin/bash
 2 # cards.sh
 3
 4 # Deals four random hands from a deck of cards.
 5
 6 UNPICKED=0
 7 PICKED=1
 8
 9 DUPE_CARD=99
 10
 11 LOWER_LIMIT=0
 12 UPPER_LIMIT=51
 13 CARDS_IN_SUIT=13
 14 CARDS=52
 15
 16 declare -a Deck
 17 declare -a Suits
 18 declare -a Cards
 19 # It would have been easier to implement and more intuitive
 20 #+ with a single, 3-dimensional array.
 21 # Perhaps a future version of Bash will support multidimensional arrays.
 22
 23
 24 initialize_Deck ()
 25 {
 26 i=$LOWER_LIMIT
 27 until ["$i" -gt $UPPER_LIMIT]
 28 do
 29 Deck[i]=$UNPICKED # Set each card of "Deck" as unpicked.
 30 let "i += 1"
 31 done
 32 echo
 33 }

 34
 35 initialize_Suits ()
 36 {
 37 Suits[0]=C #Clubs
 38 Suits[1]=D #Diamonds
 39 Suits[2]=H #Hearts
 40 Suits[3]=S #Spades
 41 }
 42
 43 initialize_Cards ()
 44 {
 45 Cards=(2 3 4 5 6 7 8 9 10 J Q K A)
 46 # Alternate method of initializing an array.
 47 }
 48
 49 pick_a_card ()
 50 {
 51 card_number=$RANDOM
 52 let "card_number %= $CARDS" # Restrict range to 0 - 51, i.e., 52 cards.
 53 if ["${Deck[card_number]}" -eq $UNPICKED]
 54 then
 55 Deck[card_number]=$PICKED
 56 return $card_number
 57 else
 58 return $DUPE_CARD
 59 fi
 60 }
 61
 62 parse_card ()
 63 {
 64 number=$1
 65 let "suit_number = number / CARDS_IN_SUIT"
 66 suit=${Suits[suit_number]}
 67 echo -n "$suit-"
 68 let "card_no = number % CARDS_IN_SUIT"
 69 Card=${Cards[card_no]}
 70 printf %-4s $Card
 71 # Print cards in neat columns.
 72 }
 73
 74 seed_random () # Seed random number generator.
 75 { # What happens if you don't do this?
 76 seed=`eval date +%s`
 77 let "seed %= 32766"
 78 RANDOM=$seed
 79 } # Consider other methods of seeding the random number generator.
 80
 81 deal_cards ()
 82 {
 83 echo
 84
 85 cards_picked=0
 86 while ["$cards_picked" -le $UPPER_LIMIT]
 87 do
 88 pick_a_card
 89 t=$?
 90
 91 if ["$t" -ne $DUPE_CARD]
 92 then
 93 parse_card $t
 94
 95 u=$cards_picked+1
 96 # Change back to 1-based indexing, temporarily. Why?
 97 let "u %= $CARDS_IN_SUIT"
 98 if ["$u" -eq 0] # Nested if/then condition test.
 99 then

 100 echo
 101 echo
 102 fi # Each hand set apart with a blank line.
 103
 104 let "cards_picked += 1"
 105 fi
 106 done
 107
 108 echo
 109
 110 return 0
 111 }
 112
 113
 114 # Structured programming:
 115 # Entire program logic modularized in functions.
 116
 117 #===============
 118 seed_random
 119 initialize_Deck
 120 initialize_Suits
 121 initialize_Cards
 122 deal_cards
 123 #===============
 124
 125 exit
 126
 127
 128
 129 # Exercise 1:
 130 # Add comments to thoroughly document this script.
 131
 132 # Exercise 2:
 133 # Add a routine (function) to print out each hand sorted in suits.
 134 # You may add other bells and whistles if you like.
 135
 136 # Exercise 3:
 137 # Simplify and streamline the logic of the script.

Prev Home Next
Shell Scripting Under Windows Up Bash, version 3

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Chapter 37. Bash, versions 2, 3, and 4 Next

37.2. Bash, version 3

On July 27, 2004, Chet Ramey released version 3 of Bash. This update fixed quite a number of bugs and
added new features.

Some of the more important added features:

A new, more generalized {a..z} brace expansion operator.

 1 #!/bin/bash
 2
 3 for i in {1..10}
 4 # Simpler and more straightforward than
 5 #+ for i in $(seq 10)
 6 do
 7 echo -n "$i "
 8 done
 9
 10 echo
 11
 12 # 1 2 3 4 5 6 7 8 9 10
 13
 14
 15
 16 # Or just . . .
 17
 18 echo {a..z} # a b c d e f g h i j k l m n o p q r s t u v w x y z
 19 echo {e..m} # e f g h i j k l m
 20 echo {z..a} # z y x w v u t s r q p o n m l k j i h g f e d c b a
 21 # Works backwards, too.
 22 echo {25..30} # 25 26 27 28 29 30
 23 echo {3..-2} # 3 2 1 0 -1 -2
 24 echo {X..d} # X Y Z [] ^ _ ` a b c d
 25 # Shows (some of) the ASCII characters between Z and a,
 26 #+ but don't rely on this type of behavior because . . .
 27 echo {]..a} # {]..a}
 28 # Why?
 29
 30
 31 # You can tack on prefixes and suffixes.
 32 echo "Number #"{1..4}, "..."
 33 # Number #1, Number #2, Number #3, Number #4, ...
 34
 35
 36 # You can concatenate brace-expansion sets.
 37 echo {1..3}{x..z}" +" "..."
 38 # 1x + 1y + 1z + 2x + 2y + 2z + 3x + 3y + 3z + ...
 39 # Generates an algebraic expression.
 40 # This could be used to find permutations.
 41
 42 # You can nest brace-expansion sets.
 43 echo {{a..c},{1..3}}
 44 # a b c 1 2 3
 45 # The "comma operator" splices together strings.
 46
 47 # ########## ######### ############ ########### ######### ###############
 48 # Unfortunately, brace expansion does not lend itself to parameterization.
 49 var1=1
 50 var2=5
 51 echo {$var1..$var2} # {1..5}
 52

•

 53
 54 # Yet, as Emiliano G. points out, using "eval" overcomes this limitation.
 55
 56 start=0
 57 end=10
 58 for index in $(eval echo {$start..$end})
 59 do
 60 echo -n "$index " # 0 1 2 3 4 5 6 7 8 9 10
 61 done
 62
 63 echo

The ${!array[@]} operator, which expands to all the indices of a given array.

 1 #!/bin/bash
 2
 3 Array=(element-zero element-one element-two element-three)
 4
 5 echo ${Array[0]} # element-zero
 6 # First element of array.
 7
 8 echo ${!Array[@]} # 0 1 2 3
 9 # All the indices of Array.
 10
 11 for i in ${!Array[@]}
 12 do
 13 echo ${Array[i]} # element-zero
 14 # element-one
 15 # element-two
 16 # element-three
 17 #
 18 # All the elements in Array.
 19 done

•

The =~ Regular Expression matching operator within a double brackets test expression. (Perl has a
similar operator.)

 1 #!/bin/bash
 2
 3 variable="This is a fine mess."
 4
 5 echo "$variable"
 6
 7 # Regex matching with =~ operator within [[double brackets]].
 8 if [["$variable" =~ T.........fin*es*]]
 9 # NOTE: As of version 3.2 of Bash, expression to match no longer quoted.
 10 then
 11 echo "match found"
 12 # match found
 13 fi

Or, more usefully:

 1 #!/bin/bash
 2
 3 input=$1
 4
 5
 6 if [["$input" =~ "[0-9][0-9][0-9]-[0-9][0-9]-[0-9][0-9][0-9][0-9]"]]
 7 # ^ NOTE: Quoting not necessary, as of version 3.2 of Bash.
 8 # NNN-NN-NNNN (where each N is a digit).
 9 then
 10 echo "Social Security number."
 11 # Process SSN.
 12 else

•

 13 echo "Not a Social Security number!"
 14 # Or, ask for corrected input.
 15 fi

For additional examples of using the =~ operator, see Example A-29, Example 19-14, Example A-35,
and Example A-24.

The new set -o pipefail option is useful for debugging pipes. If this option is set, then the exit
status of a pipe is the exit status of the last command in the pipe to fail (return a non-zero value),
rather than the actual final command in the pipe.

See Example 16-43.

•

The update to version 3 of Bash breaks a few scripts that worked under earlier versions. Test critical
legacy scripts to make sure they still work!

As it happens, a couple of the scripts in the Advanced Bash Scripting Guide had to be fixed up (see
Example 9-4, for instance).

37.2.1. Bash, version 3.1

The version 3.1 update of Bash introduces a number of bugfixes and a few minor changes.

The += operator is now permitted in in places where previously only the = assignment operator was
recognized.

 1 a=1
 2 echo $a # 1
 3
 4 a+=5 # Won't work under versions of Bash earlier than 3.1.
 5 echo $a # 15
 6
 7 a+=Hello
 8 echo $a # 15Hello

Here, += functions as a string concatenation operator. Note that its behavior in this particular context
is different than within a let construct.

 1 a=1
 2 echo $a # 1
 3
 4 let a+=5 # Integer arithmetic, rather than string concatenation.
 5 echo $a # 6
 6
 7 let a+=Hello # Doesn't "add" anything to a.
 8 echo $a # 6

Jeffrey Haemer points out that this concatenation operator can be quite useful. In this instance, we
append a directory to the $PATH.

bash$ echo $PATH
/usr/bin:/bin:/usr/local/bin:/usr/X11R6/bin/:/usr/games

bash$ PATH+=:/opt/bin

bash$ echo $PATH
/usr/bin:/bin:/usr/local/bin:/usr/X11R6/bin/:/usr/games:/opt/bin

•

37.2.2. Bash, version 3.2

This is pretty much a bugfix update.

In global parameter substitutions, the pattern no longer anchors at the start of the string.•
The --wordexp option disables process substitution.•
The =~ Regular Expression match operator no longer requires quoting of the pattern within [[...]].

In fact, quoting in this context is not advisable as it may cause regex evaluation to fail.
Chet Ramey states in the Bash FAQ that quoting explicitly disables regex evaluation.
See also the Ubuntu Bug List and Wikinerds on Bash syntax.

Setting shopt -s compat31 in a script causes reversion to the original behavior.

•

Prev Home Next
Bash, versions 2, 3, and 4 Up Bash, version 4

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Chapter 37. Bash, versions 2, 3, and 4 Next

https://bugs.launchpad.net/ubuntu-website/+bug/109931
http://en.wikinerds.org/index.php/Bash_syntax_and_semantics

37.3. Bash, version 4

Chet Ramey announced Version 4 of Bash on the 20th of February, 2009. This release has a number of
significant new features, as well as some important bugfixes.

Among the new goodies:

Associative arrays. [1]

An associative array can be thought of as a set of two linked arrays -- one holding the data, and the
other the keys that index the individual elements of the data array.

Example 37-5. A simple address database

 1 #!/bin/bash4
 2 # fetch_address.sh
 3
 4 declare -A address
 5 # -A option declares associative array.
 6
 7 address[Charles]="414 W. 10th Ave., Baltimore, MD 21236"
 8 address[John]="202 E. 3rd St., New York, NY 10009"
 9 address[Wilma]="1854 Vermont Ave, Los Angeles, CA 90023"
 10
 11
 12 echo "Charles's address is ${address[Charles]}."
 13 # Charles's address is 414 W. 10th Ave., Baltimore, MD 21236.
 14 echo "Wilma's address is ${address[Wilma]}."
 15 # Wilma's address is 1854 Vermont Ave, Los Angeles, CA 90023.
 16 echo "John's address is ${address[John]}."
 17 # John's address is 202 E. 3rd St., New York, NY 10009.
 18
 19 echo
 20
 21 echo "${!address[*]}" # The array indices ...
 22 # Charles John Wilma

Example 37-6. A somewhat more elaborate address database

 1 #!/bin/bash4
 2 # fetch_address-2.sh
 3 # A more elaborate version of fetch_address.sh.
 4
 5 SUCCESS=0
 6 E_DB=99 # Error code for missing entry.
 7
 8 declare -A address
 9 # -A option declares associative array.
 10
 11
 12 store_address ()
 13 {
 14 address[$1]="$2"
 15 return $?

•

 16 }
 17
 18
 19 fetch_address ()
 20 {
 21 if [[-z "${address[$1]}"]]
 22 then
 23 echo "$1's address is not in database."
 24 return $E_DB
 25 fi
 26
 27 echo "$1's address is ${address[$1]}."
 28 return $?
 29 }
 30
 31
 32 store_address "Lucas Fayne" "414 W. 13th Ave., Baltimore, MD 21236"
 33 store_address "Arvid Boyce" "202 E. 3rd St., New York, NY 10009"
 34 store_address "Velma Winston" "1854 Vermont Ave, Los Angeles, CA 90023"
 35 # Exercise:
 36 # Rewrite the above store_address calls to read data from a file,
 37 #+ then assign field 1 to name, field 2 to address in the array.
 38 # Each line in the file would have a format corresponding to the above.
 39 # Use a while-read loop to read from file, sed or awk to parse the fields.
 40
 41 fetch_address "Lucas Fayne"
 42 # Lucas Fayne's address is 414 W. 13th Ave., Baltimore, MD 21236.
 43 fetch_address "Velma Winston"
 44 # Velma Winston's address is 1854 Vermont Ave, Los Angeles, CA 90023.
 45 fetch_address "Arvid Boyce"
 46 # Arvid Boyce's address is 202 E. 3rd St., New York, NY 10009.
 47 fetch_address "Bozo Bozeman"
 48 # Bozo Bozeman's address is not in database.
 49
 50 exit $? # In this case, exit code = 99, since that is function return.

See Example A-53 for an interesting usage of an associative array.

Elements of the index array may include embedded space characters, or even leading
and/or trailing space characters. However, index array elements containing only
whitespace are not permitted.

 1 address[]="Blank" # Error!

Enhancements to the case construct: the ;;& and ;& terminators.

Example 37-7. Testing characters

 1 #!/bin/bash4
 2
 3 test_char ()
 4 {
 5 case "$1" in
 6 [[:print:]]) echo "$1 is a printable character.";;& # |
 7 # The ;;& terminator continues to the next pattern test. |
 8 [[:alnum:]]) echo "$1 is an alpha/numeric character.";;& # v
 9 [[:alpha:]]) echo "$1 is an alphabetic character.";;& # v
 10 [[:lower:]]) echo "$1 is a lowercase alphabetic character.";;&
 11 [[:digit:]]) echo "$1 is an numeric character.";& # |
 12 # The ;& terminator executes the next statement ... # |
 13 %%%@@@@@) echo "********************************";; # v
 14 # ^^^^^^^^ ... even with a dummy pattern.

•

 15 esac
 16 }
 17
 18 echo
 19
 20 test_char 3
 21 # 3 is a printable character.
 22 # 3 is an alpha/numeric character.
 23 # 3 is an numeric character.
 24 # ********************************
 25 echo
 26
 27 test_char m
 28 # m is a printable character.
 29 # m is an alpha/numeric character.
 30 # m is an alphabetic character.
 31 # m is a lowercase alphabetic character.
 32 echo
 33
 34 test_char /
 35 # / is a printable character.
 36
 37 echo
 38
 39 # The ;;& terminator can save complex if/then conditions.
 40 # The ;& is somewhat less useful.

The new coproc builtin enables two parallel processes to communicate and interact. As Chet Ramey
states in the Bash FAQ [2] , ver. 4.01:

 There is a new 'coproc' reserved word that specifies a coprocess:
 an asynchronous command run with two pipes connected to the creating
 shell. Coprocs can be named. The input and output file descriptors
 and the PID of the coprocess are available to the calling shell in
 variables with coproc-specific names.

 George Dimitriu explains,
 "... coproc ... is a feature used in Bash process substitution,
 which now is made publicly available."
 This means it can be explicitly invoked in a script, rather than
 just being a behind-the-scenes mechanism used by Bash.

Coprocesses use file descriptors. File descriptors enable processes and pipes to communicate.

 1 #!/bin/bash4
 2 # A coprocess communicates with a while-read loop.
 3
 4
 5 coproc { cat mx_data.txt; sleep 2; }
 6 # ^^^^^^^
 7 # Try running this without "sleep 2" and see what happens.
 8
 9 while read -u ${COPROC[0]} line # ${COPROC[0]} is the
 10 do #+ file descriptor of the coprocess.
 11 echo "$line" | sed -e 's/line/NOT-ORIGINAL-TEXT/'
 12 done
 13
 14 kill $COPROC_PID # No longer need the coprocess,
 15 #+ so kill its PID.

•

But, be careful!

 1 #!/bin/bash4
 2
 3 echo; echo
 4 a=aaa
 5 b=bbb
 6 c=ccc
 7
 8 coproc echo "one two three"
 9 while read -u ${COPROC[0]} a b c; # Note that this loop
 10 do #+ runs in a subshell.
 11 echo "Inside while-read loop: ";
 12 echo "a = $a"; echo "b = $b"; echo "c = $c"
 13 echo "coproc file descriptor: ${COPROC[0]}"
 14 done
 15
 16 # a = one
 17 # b = two
 18 # c = three
 19 # So far, so good, but ...
 20
 21 echo "-----------------"
 22 echo "Outside while-read loop: "
 23 echo "a = $a" # a =
 24 echo "b = $b" # b =
 25 echo "c = $c" # c =
 26 echo "coproc file descriptor: ${COPROC[0]}"
 27 echo
 28 # The coproc is still running, but ...
 29 #+ it still doesn't enable the parent process
 30 #+ to "inherit" variables from the child process, the while-read loop.
 31
 32 # Compare this to the "badread.sh" script.

The coprocess is asynchronous, and this might cause a problem. It may terminate before
another process has finished communicating with it.

 1 #!/bin/bash4
 2
 3 coproc cpname { for i in {0..10}; do echo "index = $i"; done; }
 4 # ^^^^^^ This is a *named* coprocess.
 5 read -u ${cpname[0]}
 6 echo $REPLY # index = 0
 7 echo ${COPROC[0]} #+ No output ... the coprocess timed out
 8 # after the first loop iteration.
 9
 10
 11
 12 # However, George Dimitriu has a partial fix.
 13
 14 coproc cpname { for i in {0..10}; do echo "index = $i"; done; sleep 1;
 15 echo hi > myo; cat - >> myo; }
 16 # ^^^^^ This is a *named* coprocess.
 17
 18 echo "I am main"$'\04' >&${cpname[1]}
 19 myfd=${cpname[0]}
 20 echo myfd=$myfd
 21
 22 ### while read -u $myfd
 23 ### do
 24 ### echo $REPLY;
 25 ### done
 26
 27 echo $cpname_PID

 28
 29 # Run this with and without the commented-out while-loop, and it is
 30 #+ apparent that each process, the executing shell and the coprocess,
 31 #+ waits for the other to finish writing in its own write-enabled pipe.

The new mapfile builtin makes it possible to load an array with the contents of a text file without
using a loop or command substitution.

 1 #!/bin/bash4
 2
 3 mapfile Arr1 < $0
 4 # Same result as Arr1=($(cat $0))
 5 echo "${Arr1[@]}" # Copies this entire script out to stdout.
 6
 7 echo "--"; echo
 8
 9 # But, not the same as read -a !!!
 10 read -a Arr2 < $0
 11 echo "${Arr2[@]}" # Reads only first line of script into the array.
 12
 13 exit

•

The read builtin got a minor facelift. The -t timeout option now accepts (decimal) fractional values
[3] and the -i option permits preloading the edit buffer. [4] Unfortunately, these enhancements are
still a work in progress and not (yet) usable in scripts.

•

Parameter substitution gets case-modification operators.

 1 #!/bin/bash4
 2
 3 var=veryMixedUpVariable
 4 echo ${var} # veryMixedUpVariable
 5 echo ${var^} # VeryMixedUpVariable
 6 # * First char --> uppercase.
 7 echo ${var^^} # VERYMIXEDUPVARIABLE
 8 # ** All chars --> uppercase.
 9 echo ${var,} # veryMixedUpVariable
 10 # * First char --> lowercase.
 11 echo ${var,,} # verymixedupvariable
 12 # ** All chars --> lowercase.

•

The declare builtin now accepts the -l lowercase and -c capitalize options.

 1 #!/bin/bash4
 2
 3 declare -l var1 # Will change to lowercase
 4 var1=MixedCaseVARIABLE
 5 echo "$var1" # mixedcasevariable
 6 # Same effect as echo $var1 | tr A-Z a-z
 7
 8 declare -c var2 # Changes only initial char to uppercase.
 9 var2=originally_lowercase
 10 echo "$var2" # Originally_lowercase
 11 # NOT the same effect as echo $var2 | tr a-z A-Z

•

Brace expansion has more options.

Increment/decrement, specified in the final term within braces.

 1 #!/bin/bash4
 2
 3 echo {40..60..2}
 4 # 40 42 44 46 48 50 52 54 56 58 60
 5 # All the even numbers, between 40 and 60.
 6

•

 7 echo {60..40..2}
 8 # 60 58 56 54 52 50 48 46 44 42 40
 9 # All the even numbers, between 40 and 60, counting backwards.
 10 # In effect, a decrement.
 11 echo {60..40..-2}
 12 # The same output. The minus sign is not necessary.
 13
 14 # But, what about letters and symbols?
 15 echo {X..d}
 16 # X Y Z [] ^ _ ` a b c d
 17 # Does not echo the \ which escapes a space.

Zero-padding, specified in the first term within braces, prefixes each term in the output with the same
number of zeroes.

bash4$ echo {010..15}
010 011 012 013 014 015

bash4$ echo {000..10}
000 001 002 003 004 005 006 007 008 009 010

Substring extraction on positional parameters now starts with $0 as the zero-index. (This corrects an
inconsistency in the treatment of positional parameters.)

 1 #!/bin/bash
 2 # show-params.bash
 3 # Requires version 4+ of Bash.
 4
 5 # Invoke this scripts with at least one positional parameter.
 6
 7 E_BADPARAMS=99
 8
 9 if [-z "$1"]
 10 then
 11 echo "Usage $0 param1 ..."
 12 exit $E_BADPARAMS
 13 fi
 14
 15 echo ${@:0}
 16
 17 # bash3 show-params.bash4 one two three
 18 # one two three
 19
 20 # bash4 show-params.bash4 one two three
 21 # show-params.bash4 one two three
 22
 23 # $0 $1 $2 $3

•

The new ** globbing operator matches filenames and directories recursively.

 1 #!/bin/bash4
 2 # filelist.bash4
 3
 4 shopt -s globstar # Must enable globstar, otherwise ** doesn't work.
 5 # The globstar shell option is new to version 4 of Bash.
 6
 7 echo "Using *"; echo
 8 for filename in *
 9 do
 10 echo "$filename"
 11 done # Lists only files in current directory ($PWD).
 12
 13 echo; echo "--------------"; echo

•

 14
 15 echo "Using **"
 16 for filename in **
 17 do
 18 echo "$filename"
 19 done # Lists complete file tree, recursively.
 20
 21 exit
 22
 23 Using *
 24
 25 allmyfiles
 26 filelist.bash4
 27
 28 --------------
 29
 30 Using **
 31
 32 allmyfiles
 33 allmyfiles/file.index.txt
 34 allmyfiles/my_music
 35 allmyfiles/my_music/me-singing-60s-folksongs.ogg
 36 allmyfiles/my_music/me-singing-opera.ogg
 37 allmyfiles/my_music/piano-lesson.1.ogg
 38 allmyfiles/my_pictures
 39 allmyfiles/my_pictures/at-beach-with-Jade.png
 40 allmyfiles/my_pictures/picnic-with-Melissa.png
 41 filelist.bash4

The new $BASHPID internal variable.•

There is a new builtin error-handling function named command_not_found_handle.

 1 #!/bin/bash4
 2
 3 command_not_found_handle ()
 4 { # Accepts implicit parameters.
 5 echo "The following command is not valid: \""$1\"""
 6 echo "With the following argument(s): \""$2\"" \""$3\""" # $4, $5 ...
 7 } # $1, $2, etc. are not explicitly passed to the function.
 8
 9 bad_command arg1 arg2
 10
 11 # The following command is not valid: "bad_command"
 12 # With the following argument(s): "arg1" "arg2"

•

Editorial comment

Associative arrays? Coprocesses? Whatever happened to the lean and mean Bash we have come to know
and love? Could it be suffering from (horrors!) "feature creep"? Or perhaps even Korn shell envy?

Note to Chet Ramey: Please add only essential features in future Bash releases -- perhaps for-each loops and
support for multi-dimensional arrays. [5] Most Bash users won't need, won't use, and likely won't greatly
appreciate complex "features" like built-in debuggers, Perl interfaces, and bolt-on rocket boosters.

37.3.1. Bash, version 4.1

Version 4.1 of Bash, released in May, 2010, was primarily a bugfix update.

The printf command now accepts a -v option for setting array indices.•

Within double brackets, the > and < string comparison operators now conform to the locale. Since the
locale setting may affect the sorting order of string expressions, this has side-effects on comparison
tests within [[...]] expressions.

•

The read builtin now takes a -N option (read -N chars), which causes the read to terminate after
chars characters.

Example 37-8. Reading N characters

 1 #!/bin/bash
 2 # Requires Bash version -ge 4.1 ...
 3
 4 num_chars=61
 5
 6 read -N $num_chars var < $0 # Read first 61 characters of script!
 7 echo "$var"
 8 exit
 9
 10 ####### Output of Script #######
 11
 12 #!/bin/bash
 13 # Requires Bash version -ge 4.1 ...
 14
 15 num_chars=61

•

Here documents embedded in $(...) command substitution constructs may terminate with a
simple).

Example 37-9. Using a here document to set a variable

 1 #!/bin/bash
 2 # here-commsub.sh
 3 # Requires Bash version -ge 4.1 ...
 4
 5 multi_line_var=$(cat <<ENDxxx
 6 ------------------------------
 7 This is line 1 of the variable
 8 This is line 2 of the variable
 9 This is line 3 of the variable
 10 ------------------------------
 11 ENDxxx)
 12
 13 # Rather than what Bash 4.0 requires:
 14 #+ that the terminating limit string and
 15 #+ the terminating close-parenthesis be on separate lines.
 16
 17 # ENDxxx
 18 #)
 19
 20
 21 echo "$multi_line_var"
 22
 23 # Bash still emits a warning, though.
 24 # warning: here-document at line 10 delimited
 25 #+ by end-of-file (wanted `ENDxxx')

•

37.3.2. Bash, version 4.2

Version 4.2 of Bash, released in February, 2011, contains a number of new features and enhancements, in
addition to bugfixes.

Bash now supports the the \u and \U Unicode escape.

Unicode is a cross-platform standard for encoding into numerical values letters and graphic
symbols. This permits representing and displaying characters in foreign alphabets and unusual fonts.

 1 echo -e '\u2630' # Horizontal triple bar character.
 2 # Equivalent to the more roundabout:
 3 echo -e "\xE2\x98\xB0"
 4 # Recognized by earlier Bash versions.
 5
 6 echo -e '\u220F' # PI (Greek letter and mathematical symbol)
 7 echo -e '\u0416' # Capital "ZHE" (Cyrillic letter)
 8 echo -e '\u2708' # Airplane (Dingbat font) symbol
 9 echo -e '\u2622' # Radioactivity trefoil
 10
 11 echo -e "The amplifier circuit requires a 100 \u2126 pull-up resistor."
 12
 13
 14 unicode_var='\u2640'
 15 echo -e $unicode_var # Female symbol
 16 printf "$unicode_var \n" # Female symbol, with newline
 17
 18
 19 # And for something a bit more elaborate . . .
 20
 21 # We can store Unicode symbols in an associative array,
 22 #+ then retrieve them by name.
 23 # Run this in a gnome-terminal or a terminal with a large, bold font
 24 #+ for better legibility.
 25
 26 declare -A symbol # Associative array.
 27
 28 symbol[script_E]='\u2130'
 29 symbol[script_F]='\u2131'
 30 symbol[script_J]='\u2110'
 31 symbol[script_M]='\u2133'
 32 symbol[Rx]='\u211E'
 33 symbol[TEL]='\u2121'
 34 symbol[FAX]='\u213B'
 35 symbol[care_of]='\u2105'
 36 symbol[account]='\u2100'
 37 symbol[trademark]='\u2122'
 38
 39
 40 echo -ne "${symbol[script_E]} "
 41 echo -ne "${symbol[script_F]} "
 42 echo -ne "${symbol[script_J]} "
 43 echo -ne "${symbol[script_M]} "
 44 echo -ne "${symbol[Rx]} "
 45 echo -ne "${symbol[TEL]} "
 46 echo -ne "${symbol[FAX]} "
 47 echo -ne "${symbol[care_of]} "
 48 echo -ne "${symbol[account]} "
 49 echo -ne "${symbol[trademark]} "
 50 echo

•

The above example uses the $' ... ' string-expansion construct.

When the lastpipe shell option is set, the last command in a pipe doesn't run in a subshell.

Example 37-10. Piping input to a read

 1 #!/bin/bash
 2 # lastpipe-option.sh
 3
 4 line='' # Null value.
 5 echo "\$line = "$line"" # $line =
 6
 7 echo
 8
 9 shopt -s lastpipe # Error on Bash version -lt 4.2.
 10 echo "Exit status of attempting to set \"lastpipe\" option is $?"
 11 # 1 if Bash version -lt 4.2, 0 otherwise.
 12
 13 echo
 14
 15 head -1 $0 | read line # Pipe the first line of the script to read.
 16 # ^^^^^^^^^ Not in a subshell!!!
 17
 18 echo "\$line = "$line""
 19 # Older Bash releases $line =
 20 # Bash version 4.2 $line = #!/bin/bash

This option offers possible "fixups" for these example scripts: Example 34-3 and Example 15-8.

•

Negative array indices permit counting backwards from the end of an array.

Example 37-11. Negative array indices

 1 #!/bin/bash
 2 # neg-array.sh
 3 # Requires Bash, version -ge 4.2.
 4
 5 array=(zero one two three four five) # Six-element array.
 6 # 0 1 2 3 4 5
 7 # -6 -5 -4 -3 -2 -1
 8
 9 # Negative array indices now permitted.
 10 echo ${array[-1]} # five
 11 echo ${array[-2]} # four
 12 # ...
 13 echo ${array[-6]} # zero
 14 # Negative array indices count backward from the last element+1.
 15
 16 # But, you cannot index past the beginning of the array.
 17 echo ${array[-7]} # array: bad array subscript
 18
 19
 20 # So, what is this new feature good for?
 21
 22 echo "The last element in the array is "${array[-1]}""
 23 # Which is quite a bit more straightforward than:
 24 echo "The last element in the array is "${array[${#array[*]}-1]}""
 25 echo
 26
 27 # And ...
 28

•

 29 index=0
 30 let "neg_element_count = 0 - ${#array[*]}"
 31 # Number of elements, converted to a negative number.
 32
 33 while [$index -gt $neg_element_count]; do
 34 ((index--)); echo -n "${array[index]} "
 35 done # Lists the elements in the array, backwards.
 36 # We have just simulated the "tac" command on this array.
 37
 38 echo
 39
 40 # See also neg-offset.sh.

Substring extraction uses a negative length parameter to specify an offset from the end of the target
string.

Example 37-12. Negative parameter in string-extraction construct

 1 #!/bin/bash
 2 # Bash, version -ge 4.2
 3 # Negative length-index in substring extraction.
 4 # Important: It changes the interpretation of this construct!
 5
 6 stringZ=abcABC123ABCabc
 7
 8 echo ${stringZ} # abcABC123ABCabc
 9 # Position within string: 0123456789.....
 10 echo ${stringZ:2:3} # cAB
 11 # Count 2 chars forward from string beginning, and extract 3 chars.
 12 # ${string:position:length}
 13
 14 # So far, nothing new, but now ...
 15
 16 # abcABC123ABCabc
 17 # Position within string: 0123....6543210
 18 echo ${stringZ:3:-6} # ABC123
 19 # ^
 20 # Index 3 chars forward from beginning and 6 chars backward from end,
 21 #+ and extract everything in between.
 22 # ${string:offset-from-front:offset-from-end}
 23 # When the "length" parameter is negative,
 24 #+ it serves as an offset-from-end parameter.
 25
 26 # See also neg-array.sh.

•

Notes

[1] To be more specific, Bash 4+ has limited support for associative arrays. It's a bare-bones
implementation, and it lacks the much of the functionality of such arrays in other programming
languages. Note, however, that associative arrays in Bash seem to execute faster and more efficiently
than numerically-indexed arrays.

[2] Copyright 1995-2009 by Chester Ramey.
[3] This only works with pipes and certain other special files.
[4] But only in conjunction with readline, i.e., from the command-line.
[5] And while you're at it, consider fixing the notorious piped read problem.

Prev Home Next

Bash, version 3 Up Endnotes
Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting

Prev Next

Chapter 38. Endnotes

38.1. Author's Note
doce ut discas

(Teach, that you yourself may learn.)
How did I come to write a scripting book? It's a strange tale. It seems that a few years back I needed to learn
shell scripting -- and what better way to do that than to read a good book on the subject? I was looking to buy
a tutorial and reference covering all aspects of the subject. I was looking for a book that would take difficult
concepts, turn them inside out, and explain them in excruciating detail, with well-commented examples. [1] In
fact, I was looking for this very book, or something very much like it. Unfortunately, it didn't exist, and if I
wanted it, I'd have to write it. And so, here we are, folks.

That reminds me of the apocryphal story about a mad professor. Crazy as a loon, the fellow was. At the sight
of a book, any book -- at the library, at a bookstore, anywhere -- he would become totally obsessed with the
idea that he could have written it, should have written it -- and done a better job of it to boot. He would
thereupon rush home and proceed to do just that, write a book with the very same title. When he died some
years later, he allegedly had several thousand books to his credit, probably putting even Asimov to shame.
The books might not have been any good, who knows, but does that really matter? Here's a fellow who lived
his dream, even if he was obsessed by it, driven by it . . . and somehow I can't help admiring the old coot.

Notes

[1] This is the notorious flog it to death technique that works so well with slow learners, eccentrics, odd
ducks, fools and geniuses.

Prev Home Next
Bash, version 4 About the Author

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Chapter 38. Endnotes Next

38.2. About the Author
Who is this guy anyhow?

The author claims no credentials or special qualifications, [1] other than a compulsion to write. [2]

This book is somewhat of a departure from his other major work, HOW-2 Meet Women: The Shy Man's
Guide to Relationships. He has also written the Software-Building HOWTO. Of late, he has been trying his
(heavy) hand at fiction: Dave Dawson Over Berlin (First Installment) Dave Dawson Over Berlin (Second
Installment) and Dave Dawson Over Berlin (Third Installment) . He also has a few Instructables (here, here,
here, here, here, here, and here to his (dis)credit.

A Linux user since 1995 (Slackware 2.2, kernel 1.2.1), the author has emitted a few software truffles,
including the cruft one-time pad encryption utility, the mcalc mortgage calculator, the judge Scrabble®
adjudicator, the yawl word gaming list package, and the Quacky anagramming gaming package. He got off to
a rather shaky start in the computer game -- programming FORTRAN IV on a CDC 3800 (on paper coding
pads, with occasional forays on a keypunch machine and a Friden Flexowriter) -- and is not the least bit
nostalgic for those days.

Living in an out-of-the-way community with wife and orange tabby, he cherishes human frailty, especially his
own. [3]

Notes

[1] In fact, he has no credentials or special qualifications. He's a school dropout with no formal credentials
or professional experience whatsoever. None. Zero. Nada. Aside from the ABS Guide, his major claim
to fame is a First Place in the sack race at the Colfax Elementary School Field Day in June, 1958.

[2] Those who can, do. Those who can't . . . get an MCSE.
[3] Sometimes it seems as if he has spent his entire life flouting conventional wisdom and defying the

sonorous Voice of Authority: "Hey, you can't do that!"

Prev Home Next
Endnotes Up Where to Go For Help

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Chapter 38. Endnotes Next

http://bash.deta.in/hmw60.zip
http://bash.deta.in/hmw60.zip
http://tldp.org/HOWTO/Software-Building-HOWTO.html
http://bash.deta.in/dave-dawson-over-berlin.epub
http://bash.deta.in/dave-dawson-over-berlin.II.epub
http://bash.deta.in/dave-dawson-over-berlin.II.epub
http://bash.deta.in/dave-dawson-over-berlin.III.epub
http://www.instructables.com/id/Arduino-Morse-Code-Shield/
http://www.instructables.com/id/Haywired-Hackduino/
http://www.instructables.com/id/Arduino-DIY-SD-Card-Logging-Shield/
http://www.instructables.com/id/Binguino-An-Arduino-based-Bingo-Number-Generato/
http://www.instructables.com/id/The-Raspberry-Pi-Lapdock-Connection/
http://www.instructables.com/id/The-Raspberry-Pi-Arduino-Connection/
http://www.instructables.com/id/Switchable-Dual-Voltage-33v5v-Hacduino/
http://ibiblio.org/pub/Linux/utils/file/cruft-0.2.tar.gz
http://ibiblio.org/pub/Linux/apps/financial/mcalc-1.6.tar.gz
http://ibiblio.org/pub/Linux/games/amusements/judge-1.0.tar.gz
http://ibiblio.org/pub/Linux/libs/yawl-0.3.2.tar.gz
http://bash.deta.in/qky.README.html

38.3. Where to Go For Help
The author is no longer supporting or updating this document. He will not answer questions about this book or
about general scripting topics.

If you need assistance with a schoolwork assignment, read the pertinent sections of this and other reference
works. Do your best to solve the problem using your own wits and resources. Please do not waste the
author's time. You will get neither help nor sympathy. [1]

Likewise, kindly refrain from annoying the author with solicitations, offers of employment, or "business
opportunities." He is doing just fine, and requires neither help nor sympathy, thank you.

Please note that the author will not answer scripting questions for Sun/Solaris/Oracle or Apple systems. The
endarkened execs and the arachnoid corporate attorneys of those particular outfits have been using litigation
in a predatory manner and/or as a weapon against the Open Source Community. Any Solaris or Apple users
needing scripting help will therefore kindly direct their concerns to corporate customer service.

... sophisticated in mechanism but possibly agile
operating under noises being extremely
suppressed ...

--CI-300 printer manual
Notes

[1] Well, if you absolutely insist, you can try modifying Example A-44 to suit your purposes.

Prev Home Next
About the Author Up Tools Used to Produce This Book

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Chapter 38. Endnotes Next

mailto:thegrendel.abs@gmail.com

38.4. Tools Used to Produce This Book

38.4.1. Hardware

A used IBM Thinkpad, model 760XL laptop (P166, 104 meg RAM) running Red Hat 7.1/7.3. Sure, it's slow
and has a funky keyboard, but it beats the heck out of a No. 2 pencil and a Big Chief tablet.

Update: upgraded to a 770Z Thinkpad (P2-366, 192 meg RAM) running FC3. Anyone feel like donating a
later-model laptop to a starving writer <g>?

Update: upgraded to a T61 Thinkpad running Mandriva 2011. No longer starving <g>, but not too proud to
accept donations.

38.4.2. Software and Printware

Bram Moolenaar's powerful SGML-aware vim text editor.i.
OpenJade, a DSSSL rendering engine for converting SGML documents into other formats.ii.
Norman Walsh's DSSSL stylesheets.iii.
DocBook, The Definitive Guide, by Norman Walsh and Leonard Muellner (O'Reilly, ISBN
1-56592-580-7). This is still the standard reference for anyone attempting to write a document in
Docbook SGML format.

iv.

Prev Home Next
Where to Go For Help Up Credits

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Chapter 38. Endnotes Next

http://www.vim.org
http://www.netfolder.com/DSSSL/
http://nwalsh.com/docbook/dsssl/

38.5. Credits
Community participation made this project possible. The author gratefully acknowledges that writing this
book would have been unthinkable without help and feedback from all you people out there.

Philippe Martin translated the first version (0.1) of this document into DocBook/SGML. While not on the job
at a small French company as a software developer, he enjoys working on GNU/Linux documentation and
software, reading literature, playing music, and, for his peace of mind, making merry with friends. You may
run across him somewhere in France or in the Basque Country, or you can email him at feloy@free.fr.

Philippe Martin also pointed out that positional parameters past $9 are possible using {bracket} notation. (See
Example 4-5).

Stéphane Chazelas sent a long list of corrections, additions, and example scripts. More than a contributor, he
had, in effect, for a while taken on the role of co-editor for this document. Merci beaucoup!

Paulo Marcel Coelho Aragao offered many corrections, both major and minor, and contributed quite a number
of helpful suggestions.

I would like to especially thank Patrick Callahan, Mike Novak, and Pal Domokos for catching bugs, pointing
out ambiguities, and for suggesting clarifications and changes in the preliminary version (0.1) of this
document. Their lively discussion of shell scripting and general documentation issues inspired me to try to
make this document more readable.

I'm grateful to Jim Van Zandt for pointing out errors and omissions in version 0.2 of this document. He also
contributed an instructive example script.

Many thanks to Jordi Sanfeliu for giving permission to use his fine tree script (Example A-16), and to Rick
Boivie for revising it.

Likewise, thanks to Michel Charpentier for permission to use his dc factoring script (Example 16-52).

Kudos to Noah Friedman for permission to use his string function script (Example A-18).

Emmanuel Rouat suggested corrections and additions on command substitution, aliases, and path
management. He also contributed a very nice sample .bashrc file (Appendix M).

Heiner Steven kindly gave permission to use his base conversion script, Example 16-48. He also made a
number of corrections and many helpful suggestions. Special thanks.

Rick Boivie contributed the delightfully recursive pb.sh script (Example 36-11), revised the tree.sh script
(Example A-16), and suggested performance improvements for the monthlypmt.sh script (Example 16-47).

Florian Wisser enlightened me on some of the fine points of testing strings (see Example 7-6), and on other
matters.

Oleg Philon sent suggestions concerning cut and pidof.

Michael Zick extended the empty array example to demonstrate some surprising array properties. He also
contributed the isspammer scripts (Example 16-41 and Example A-28).

Marc-Jano Knopp sent corrections and clarifications on DOS batch files.

mailto:feloy@free.fr
mailto:feloy@free.fr
mailto:stephane_chazelas@yahoo.fr
mailto:mikaku@fiwix.org
mailto:charpov@cs.unh.edu
mailto:friedman@prep.ai.mit.edu
mailto:emmanuel.rouat@wanadoo.fr
mailto:heiner.steven@odn.de

Hyun Jin Cha found several typos in the document in the process of doing a Korean translation. Thanks for
pointing these out.

Andreas Abraham sent in a long list of typographical errors and other corrections. Special thanks!

Others contributing scripts, making helpful suggestions, and pointing out errors were Gabor Kiss, Leopold
Toetsch, Peter Tillier, Marcus Berglof, Tony Richardson, Nick Drage (script ideas!), Rich Bartell, Jess
Thrysoee, Adam Lazur, Bram Moolenaar, Baris Cicek, Greg Keraunen, Keith Matthews, Sandro Magi, Albert
Reiner, Dim Segebart, Rory Winston, Lee Bigelow, Wayne Pollock, "jipe," "bojster," "nyal," "Hobbit,"
"Ender," "Little Monster" (Alexis), "Mark," "Patsie," "vladz," Peggy Russell, Emilio Conti, Ian. D. Allen,
Hans-Joerg Diers, Arun Giridhar, Dennis Leeuw, Dan Jacobson, Aurelio Marinho Jargas, Edward Scholtz,
Jean Helou, Chris Martin, Lee Maschmeyer, Bruno Haible, Wilbert Berendsen, Sebastien Godard, Bjön
Eriksson, John MacDonald, John Lange, Joshua Tschida, Troy Engel, Manfred Schwarb, Amit Singh, Bill
Gradwohl, E. Choroba, David Lombard, Jason Parker, Steve Parker, Bruce W. Clare, William Park, Vernia
Damiano, Mihai Maties, Mark Alexander, Jeremy Impson, Ken Fuchs, Jared Martin, Frank Wang, Sylvain
Fourmanoit, Matthew Sage, Matthew Walker, Kenny Stauffer, Filip Moritz, Andrzej Stefanski, Daniel Albers,
Jeffrey Haemer, Stefano Palmeri, Nils Radtke, Sigurd Solaas, Serghey Rodin, Jeroen Domburg, Alfredo
Pironti, Phil Braham, Bruno de Oliveira Schneider, Stefano Falsetto, Chris Morgan, Walter Dnes, Linc
Fessenden, Michael Iatrou, Pharis Monalo, Jesse Gough, Fabian Kreutz, Mark Norman, Harald Koenig, Dan
Stromberg, Peter Knowles, Francisco Lobo, Mariusz Gniazdowski, Sebastian Arming, Chetankumar
Phulpagare, Benno Schulenberg, Tedman Eng, Jochen DeSmet, Juan Nicolas Ruiz, Oliver Beckstein, Achmed
Darwish, Dotan Barak, Richard Neill, Albert Siersema, Omair Eshkenazi, Geoff Lee, Graham Ewart, JuanJo
Ciarlante, Cliff Bamford, Nathan Coulter, Ramses Rodriguez Martinez, Evgeniy Ivanov, Craig Barnes,
George Dimitriu, Kevin LeBlanc, Antonio Macchi, Tomas Pospisek, David Wheeler, Erik Brandsberg,
YongYe, Andreas Kühne, Pádraig Brady, Joseph Steinhauser, and David Lawyer (himself an author of four
HOWTOs).

My gratitude to Chet Ramey and Brian Fox for writing Bash, and building into it elegant and powerful
scripting capabilities rivaling those of ksh.

Very special thanks to the hard-working volunteers at the Linux Documentation Project. The LDP hosts a
repository of Linux knowledge and lore, and has, to a great extent, enabled the publication of this book.

Thanks and appreciation to IBM, Red Hat, Google, the Free Software Foundation, and all the good people
fighting the good fight to keep Open Source software free and open.

Belated thanks to my fourth grade teacher, Miss Spencer, for emotional support and for convincing me that
maybe, just maybe I wasn't a total loss.

Thanks most of all to my wife, Anita, for her encouragement, inspiration, and emotional support.

Prev Home Next
Tools Used to Produce This Book Up Disclaimer

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Chapter 38. Endnotes Next

mailto:chet@po.cwru.edu
http://www.tldp.org
http://www.fsf.org

38.6. Disclaimer
(This is a variant of the standard LDP disclaimer.)

No liability for the contents of this document can be accepted. Use the concepts, examples and information at
your own risk. There may be errors, omissions, and inaccuracies that could cause you to lose data, harm your
system, or induce involuntary electrocution, so proceed with appropriate caution. The author takes no
responsibility for any damages, incidental or otherwise.

As it happens, it is highly unlikely that either you or your system will suffer ill effects, aside from
uncontrollable hiccups. In fact, the raison d'etre of this book is to enable its readers to analyze shell scripts
and determine whether they have unanticipated consequences.

Prev Home Next
Credits Up Bibliography

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Next

http://www.tldp.org

Bibliography

Those who do not understand UNIX are
condemned to reinvent it, poorly.

--Henry Spencer

Edited by Peter Denning, Computers Under Attack: Intruders, Worms, and Viruses, ACM Press, 1990,
0-201-53067-8.

This compendium contains a couple of articles on shell script viruses.

*

Ken Burtch, Linux Shell Scripting with Bash, 1st edition, Sams Publishing (Pearson), 2004, 0672326426.

Covers much of the same material as the ABS Guide, though in a different style.

*

Daniel Goldman, Definitive Guide to Sed, 1st edition, 2013.

This ebook is an excellent introduction to sed. Rather than being a conversion from a printed volume, it was
specifically designed and formatted for viewing on an ebook reader. Well-written, informative, and useful as a
reference as well as a tutorial. Highly recommended.

*

Dale Dougherty and Arnold Robbins, Sed and Awk, 2nd edition, O'Reilly and Associates, 1997,
1-156592-225-5.

Unfolding the full power of shell scripting requires at least a passing familiarity with sed and awk. This is the
classic tutorial. It includes an excellent introduction to Regular Expressions. Recommended.

*

Jeffrey Friedl, Mastering Regular Expressions, O'Reilly and Associates, 2002, 0-596-00289-0.

Still the best all-around reference on Regular Expressions.

*

Aeleen Frisch, Essential System Administration, 3rd edition, O'Reilly and Associates, 2002, 0-596-00343-9.

http://www.samspublishing.com/title/0672326426
http://www.sed-book.com/

This excellent manual provides a decent introduction to shell scripting from a sys admin point of view. It
includes comprehensive explanations of the startup and initialization scripts in a UNIX system.

*

Stephen Kochan and Patrick Wood, Unix Shell Programming, Hayden, 1990, 067248448X.

Still considered a standard reference, though somewhat dated, and a bit "wooden" stylistically speaking. [1] In
fact, this book was the ABS Guide author's first exposure to UNIX shell scripting, lo these many years ago.

*

Neil Matthew and Richard Stones, Beginning Linux Programming, Wrox Press, 1996, 1874416680.

Surprisingly good in-depth coverage of various programming languages available for Linux, including a fairly
strong chapter on shell scripting.

*

Herbert Mayer, Advanced C Programming on the IBM PC, Windcrest Books, 1989, 0830693637.

Excellent coverage of algorithms and general programming practices. Highly recommended, but unfortunately
out of print.

*

David Medinets, Unix Shell Programming Tools, McGraw-Hill, 1999, 0070397333.

Pretty good treatment of shell scripting, with examples, and a short intro to Tcl and Perl.

*

Cameron Newham and Bill Rosenblatt, Learning the Bash Shell, 2nd edition, O'Reilly and Associates, 1998,
1-56592-347-2.

This is a valiant effort at a decent shell primer, but sadly deficient in its coverage of writing scripts and
lacking sufficient examples.

*

Anatole Olczak, Bourne Shell Quick Reference Guide, ASP, Inc., 1991, 093573922X.

A very handy pocket reference, despite lacking coverage of Bash-specific features.

*

Jerry Peek, Tim O'Reilly, and Mike Loukides, Unix Power Tools, 3rd edition, O'Reilly and Associates,
Random House, 2002, 0-596-00330-7.

Contains a couple of sections of very informative in-depth articles on shell programming, but falls short of
being a self-teaching manual. It reproduces much of the Regular Expressions tutorial from the Dougherty and
Robbins book, above. The comprehensive coverage of UNIX commands makes this book worthy of a place
on your bookshelf.

*

Clifford Pickover, Computers, Pattern, Chaos, and Beauty, St. Martin's Press, 1990, 0-312-04123-3.

A treasure trove of ideas and recipes for computer-based exploration of mathematical oddities.

*

George Polya, How To Solve It, Princeton University Press, 1973, 0-691-02356-5.

The classic tutorial on problem-solving methods (algorithms), with special emphasis on how to teach them.

*

Chet Ramey and Brian Fox, The GNU Bash Reference Manual, Network Theory Ltd, 2003, 0-9541617-7-7.

This manual is the definitive reference for GNU Bash. The authors of this manual, Chet Ramey and Brian
Fox, are the original developers of GNU Bash. For each copy sold, the publisher donates $1 to the Free
Software Foundation.

*

Arnold Robbins, Bash Reference Card, SSC, 1998, 1-58731-010-5.

Excellent Bash pocket reference (don't leave home without it, especially if you're a sysadmin). A bargain at
$4.95, but unfortunately no longer available for free download.

*

Arnold Robbins, Effective Awk Programming, Free Software Foundation / O'Reilly and Associates, 2000,
1-882114-26-4.

The absolute best awk tutorial and reference. The free electronic version of this book is part of the awk
documentation, and printed copies of the latest version are available from O'Reilly and Associates.

This book served as an inspiration for the author of the ABS Guide.

*

Bill Rosenblatt, Learning the Korn Shell, O'Reilly and Associates, 1993, 1-56592-054-6.

http://www.network-theory.co.uk/bash/manual/

This well-written book contains some excellent pointers on shell scripting in general.

*

Paul Sheer, LINUX: Rute User's Tutorial and Exposition, 1st edition, , 2002, 0-13-033351-4.

Very detailed and readable introduction to Linux system administration.

The book is available in print, or on-line.

*

Ellen Siever and the staff of O'Reilly and Associates, Linux in a Nutshell, 2nd edition, O'Reilly and
Associates, 1999, 1-56592-585-8.

The all-around best Linux command reference. It even has a Bash section.

*

Dave Taylor, Wicked Cool Shell Scripts: 101 Scripts for Linux, Mac OS X, and Unix Systems, 1st edition, No
Starch Press, 2004, 1-59327-012-7.

Pretty much what the title promises . . .

*

The UNIX CD Bookshelf, 3rd edition, O'Reilly and Associates, 2003, 0-596-00392-7.

An array of seven UNIX books on CD ROM, including UNIX Power Tools, Sed and Awk, and Learning the
Korn Shell. A complete set of all the UNIX references and tutorials you would ever need at about $130. Buy
this one, even if it means going into debt and not paying the rent.

Update: Seems to have somehow fallen out of print. Ah, well. You can still buy the dead-tree editions of these
books.

*

The O'Reilly books on Perl. (Actually, any O'Reilly books.)

* * *

Other Resources

Fioretti, Marco, "Scripting for X Productivity," Linux Journal, Issue 113, September, 2003, pp. 86-9.

http://burks.brighton.ac.uk/burks/linux/rute/rute.htm

Ben Okopnik's well-written introductory Bash scripting articles in issues 53, 54, 55, 57, and 59 of the Linux
Gazette, and his explanation of "The Deep, Dark Secrets of Bash" in issue 56.

Chet Ramey's Bash - The GNU Shell, a two-part series published in issues 3 and 4 of the Linux Journal,
July-August 1994.

Mike G's Bash-Programming-Intro HOWTO.

Richard's Unix Scripting Universe.

Chet Ramey's Bash FAQ.

Greg's WIKI: Bash FAQ.

Example shell scripts at Lucc's Shell Scripts .

Example shell scripts at SHELLdorado .

Example shell scripts at Noah Friedman's script site.

Examples from the The Bash Scripting Cookbook, by Albing, Vossen, and Newham.

Example shell scripts at zazzybob.

Steve Parker's Shell Programming Stuff. In fact, all of his shell scripting books are highly recommended. See
also Steve's Arcade Games written in a shell script.

An excellent collection of Bash scripting tips, tricks, and resources at the Bash Hackers Wiki.

Giles Orr's Bash-Prompt HOWTO.

The Pixelbeat command-line reference.

Very nice sed, awk, and regular expression tutorials at The UNIX Grymoire.

The GNU sed and gawk manuals. As you recall, gawk is the enhanced GNU version of awk.

http://www.linuxgazette.net
http://www.linuxgazette.net
http://www.linuxjournal.com
http://www.tldp.org/HOWTO/Bash-Prog-Intro-HOWTO.html
http://www.injunea.demon.co.uk/index.htm
http://tiswww.case.edu/php/chet/bash/FAQ
http://wooledge.org:8000/BashFAQ
http://alge.anart.no/linux/scripts/
http://www.shelldorado.com
http://www.splode.com/~friedman/software/scripts/src/
http://bashcookbook.com/bashinfo/
http://www.zazzybob.com
http://steve-parker.org/sh/sh.shtml
http://nixshell.wordpress.com/2011/07/13/arcade-games-written-in-a-shell-script/
http://www.bash-hackers.org/wiki.doku.php
http://www.tldp.org/HOWTO/Bash-Prompt-HOWTO/
http://www.pixelbeat.org/cmdline.html
http://www.grymoire.com/Unix/index.html
http://www.gnu.org/software/sed/manual/
http://www.gnu.org/software/gawk/manual/

Many interesting sed scripts at the seder's grab bag.

Tips and tricks at Linux Reviews.

Trent Fisher's groff tutorial.

David Wheeler's Filenames in Shell essay.

"Shelltris" and "shellitaire" at Shell Script Games.

YongYe's wonderfully complex Tetris game script.

Mark Komarinski's Printing-Usage HOWTO.

The Linux USB subsystem (helpful in writing scripts affecting USB peripherals).

There is some nice material on I/O redirection in chapter 10 of the textutils documentation at the University
of Alberta site.

Rick Hohensee has written the osimpa i386 assembler entirely as Bash scripts.

dgatwood has a very nice shell script games site, featuring a Tetris® clone and solitaire.

Aurelio Marinho Jargas has written a Regular expression wizard. He has also written an informative book on
Regular Expressions, in Portuguese.

Ben Tomkins has created the Bash Navigator directory management tool.

William Park has been working on a project to incorporate certain Awk and Python features into Bash. Among
these is a gdbm interface. He has released bashdiff on Freshmeat.net. He has an article in the November, 2004
issue of the Linux Gazette on adding string functions to Bash, with a followup article in the December issue,
and yet another in the January, 2005 issue.

Peter Knowles has written an elaborate Bash script that generates a book list on the Sony Librie e-book
reader. This useful tool facilitates loading non-DRM user content on the Librie (and the newer PRS-xxx-series
devices).

Tim Waugh's xmlto is an elaborate Bash script for converting Docbook XML documents to other formats.

http://sed.sourceforge.net/grabbag/
http://linuxreviews.org
http://www.cs.pdx.edu/~trent/gnu/groff/groff.html
http://www.dwheeler.com/essays/filenames-in-shell.html
http://www.shellscriptgames.com
http://bash.deta.in/Tetris_Game.sh
http://www.tldp.org/HOWTO/Printing-Usage-HOWTO.html
http://www.linux-usb.org/USB-guide/book1.html
http://sunsite.ualberta.ca/Documentation/Gnu/textutils-2.0/html_chapter/textutils_10.html
http://sunsite.ualberta.ca/Documentation
http://sunsite.ualberta.ca/Documentation
mailto:humbubba@smarty.smart.net
http://www.shellscriptgames.com/
http://txt2regex.sf.net
http://guia-er.sf.net
mailto:brtompkins@comcast.net
http://bashnavigator.sourceforge.net
mailto:opengeometry@yahoo.ca
http://freshmeat.net
http://linuxgazette.net/108/park.html
http://www.linuxgazette.net
http://linuxgazette.net/109/park.html
http://linuxgazette.net/110/park.htm
http://booklistgensh.peterknowles.com/
http://www.dottocomu.com/b/archives/002571.html
http://cyberelk.net/tim/xmlto/

Philip Patterson's logforbash logging/debugging script.

AuctionGallery, an application for eBay "power sellers" coded in Bash.

Of historical interest are Colin Needham's original International Movie Database (IMDB) reader polling
scripts, which nicely illustrate the use of awk for string parsing. Unfortunately, the URL link is broken.

Fritz Mehner has written a bash-support plugin for the vim text editor. He has also also come up with his own
stylesheet for Bash. Compare it with the ABS Guide Unofficial Stylesheet.

Penguin Pete has quite a number of shell scripting tips and hints on his superb site. Highly recommended.

The excellent Bash Reference Manual, by Chet Ramey and Brian Fox, distributed as part of the bash-2-doc
package (available as an rpm). See especially the instructive example scripts in this package.

John Lion's classic, A Commentary on the Sixth Edition UNIX Operating System.

The comp.os.unix.shell newsgroup.

The dd thread on Linux Questions.

The comp.os.unix.shell FAQ.

Assorted comp.os.unix FAQs.

The Wikipedia article covering dc.

The manpages for bash and bash2, date, expect, expr, find, grep, gzip, ln, patch, tar, tr, bc, xargs. The
texinfo documentation on bash, dd, m4, gawk, and sed.

Notes

[1] It was hard to resist the obvious pun. No slight intended, since the book is a pretty decent introduction
to the basic concepts of shell scripting.

Prev Home Next

http://www.gossiplabs.org
http://auctiongallery.sourceforge.net
http://vim.sourceforge.net/scripts/script.php?script_id=365
http://lug.fh-swf.de/vim/vim-bash/StyleGuideShell.en.pdf
http://www.penguinpetes.com
http://www.lemis.com/grog/Documentation/Lions/index.html
http://www.linuxquestions.org/questions/showthread.php?t=362506
http://www.linuxquestions.org
http://www.newsville.com/cgi-bin/getfaq?file=comp.unix.shell/comp.unix.shell_FAQ_-_Answers_to_Frequently_Asked_Questions
http://www.faqs.org/faqs/by-newsgroup/comp/comp.unix.shell.html
http://en.wikipedia.org/wiki/Dc_(Unix)

Disclaimer Contributed Scripts
Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting

Prev Next

Appendix A. Contributed Scripts
These scripts, while not fitting into the text of this document, do illustrate some interesting shell programming
techniques. Some are useful, too. Have fun analyzing and running them.

Example A-1. mailformat: Formatting an e-mail message

 1 #!/bin/bash
 2 # mail-format.sh (ver. 1.1): Format e-mail messages.
 3
 4 # Gets rid of carets, tabs, and also folds excessively long lines.
 5
 6 # ===
 7 # Standard Check for Script Argument(s)
 8 ARGS=1
 9 E_BADARGS=85
 10 E_NOFILE=86
 11
 12 if [$# -ne $ARGS] # Correct number of arguments passed to script?
 13 then
 14 echo "Usage: `basename $0` filename"
 15 exit $E_BADARGS
 16 fi
 17
 18 if [-f "$1"] # Check if file exists.
 19 then
 20 file_name=$1
 21 else
 22 echo "File \"$1\" does not exist."
 23 exit $E_NOFILE
 24 fi
 25 # ---
 26
 27 MAXWIDTH=70 # Width to fold excessively long lines to.
 28
 29 # =================================
 30 # A variable can hold a sed script.
 31 # It's a useful technique.
 32 sedscript='s/^>//
 33 s/^ *>//
 34 s/^ *//
 35 s/ *//'
 36 # =================================
 37
 38 # Delete carets and tabs at beginning of lines,
 39 #+ then fold lines to $MAXWIDTH characters.
 40 sed "$sedscript" $1 | fold -s --width=$MAXWIDTH
 41 # -s option to "fold"
 42 #+ breaks lines at whitespace, if possible.
 43
 44
 45 # This script was inspired by an article in a well-known trade journal
 46 #+ extolling a 164K MS Windows utility with similar functionality.
 47 #
 48 # An nice set of text processing utilities and an efficient
 49 #+ scripting language provide an alternative to the bloated executables
 50 #+ of a clunky operating system.
 51
 52 exit $?

Example A-2. rn: A simple-minded file renaming utility

This script is a modification of Example 16-22.

 1 #! /bin/bash
 2 # rn.sh
 3
 4 # Very simpleminded filename "rename" utility (based on "lowercase.sh").
 5 #
 6 # The "ren" utility, by Vladimir Lanin (lanin@csd2.nyu.edu),
 7 #+ does a much better job of this.
 8
 9
 10 ARGS=2
 11 E_BADARGS=85
 12 ONE=1 # For getting singular/plural right (see below).
 13
 14 if [$# -ne "$ARGS"]
 15 then
 16 echo "Usage: `basename $0` old-pattern new-pattern"
 17 # As in "rn gif jpg", which renames all gif files in working directory to jpg.
 18 exit $E_BADARGS
 19 fi
 20
 21 number=0 # Keeps track of how many files actually renamed.
 22
 23
 24 for filename in *$1* #Traverse all matching files in directory.
 25 do
 26 if [-f "$filename"] # If finds match...
 27 then
 28 fname=`basename $filename` # Strip off path.
 29 n=`echo $fname | sed -e "s/$1/$2/"` # Substitute new for old in filename.
 30 mv $fname $n # Rename.
 31 let "number += 1"
 32 fi
 33 done
 34
 35 if ["$number" -eq "$ONE"] # For correct grammar.
 36 then
 37 echo "$number file renamed."
 38 else
 39 echo "$number files renamed."
 40 fi
 41
 42 exit $?
 43
 44
 45 # Exercises:
 46 # ---------
 47 # What types of files will this not work on?
 48 # How can this be fixed?

Example A-3. blank-rename: Renames filenames containing blanks

This is an even simpler-minded version of previous script.

 1 #! /bin/bash
 2 # blank-rename.sh
 3 #
 4 # Substitutes underscores for blanks in all the filenames in a directory.

 5
 6 ONE=1 # For getting singular/plural right (see below).
 7 number=0 # Keeps track of how many files actually renamed.
 8 FOUND=0 # Successful return value.
 9
 10 for filename in * #Traverse all files in directory.
 11 do
 12 echo "$filename" | grep -q " " # Check whether filename
 13 if [$? -eq $FOUND] #+ contains space(s).
 14 then
 15 fname=$filename # Yes, this filename needs work.
 16 n=`echo $fname | sed -e "s/ /_/g"` # Substitute underscore for blank.
 17 mv "$fname" "$n" # Do the actual renaming.
 18 let "number += 1"
 19 fi
 20 done
 21
 22 if ["$number" -eq "$ONE"] # For correct grammar.
 23 then
 24 echo "$number file renamed."
 25 else
 26 echo "$number files renamed."
 27 fi
 28
 29 exit 0

Example A-4. encryptedpw: Uploading to an ftp site, using a locally encrypted password

 1 #!/bin/bash
 2
 3 # Example "ex72.sh" modified to use encrypted password.
 4
 5 # Note that this is still rather insecure,
 6 #+ since the decrypted password is sent in the clear.
 7 # Use something like "ssh" if this is a concern.
 8
 9 E_BADARGS=85
 10
 11 if [-z "$1"]
 12 then
 13 echo "Usage: `basename $0` filename"
 14 exit $E_BADARGS
 15 fi
 16
 17 Username=bozo # Change to suit.
 18 pword=/home/bozo/secret/password_encrypted.file
 19 # File containing encrypted password.
 20
 21 Filename=`basename $1` # Strips pathname out of file name.
 22
 23 Server="XXX"
 24 Directory="YYY" # Change above to actual server name & directory.
 25
 26
 27 Password=`cruft <$pword` # Decrypt password.
 28 # Uses the author's own "cruft" file encryption package,
 29 #+ based on the classic "onetime pad" algorithm,
 30 #+ and obtainable from:
 31 #+ Primary-site: ftp://ibiblio.org/pub/Linux/utils/file
 32 #+ cruft-0.2.tar.gz [16k]
 33
 34

 35 ftp -n $Server <<End-Of-Session
 36 user $Username $Password
 37 binary
 38 bell
 39 cd $Directory
 40 put $Filename
 41 bye
 42 End-Of-Session
 43 # -n option to "ftp" disables auto-logon.
 44 # Note that "bell" rings 'bell' after each file transfer.
 45
 46 exit 0

Example A-5. copy-cd: Copying a data CD

 1 #!/bin/bash
 2 # copy-cd.sh: copying a data CD
 3
 4 CDROM=/dev/cdrom # CD ROM device
 5 OF=/home/bozo/projects/cdimage.iso # output file
 6 # /xxxx/xxxxxxxx/ Change to suit your system.
 7 BLOCKSIZE=2048
 8 # SPEED=10 # If unspecified, uses max spd.
 9 # DEVICE=/dev/cdrom older version.
 10 DEVICE="1,0,0"
 11
 12 echo; echo "Insert source CD, but do *not* mount it."
 13 echo "Press ENTER when ready. "
 14 read ready # Wait for input, $ready not used.
 15
 16 echo; echo "Copying the source CD to $OF."
 17 echo "This may take a while. Please be patient."
 18
 19 dd if=$CDROM of=$OF bs=$BLOCKSIZE # Raw device copy.
 20
 21
 22 echo; echo "Remove data CD."
 23 echo "Insert blank CDR."
 24 echo "Press ENTER when ready. "
 25 read ready # Wait for input, $ready not used.
 26
 27 echo "Copying $OF to CDR."
 28
 29 # cdrecord -v -isosize speed=$SPEED dev=$DEVICE $OF # Old version.
 30 wodim -v -isosize dev=$DEVICE $OF
 31 # Uses Joerg Schilling's "cdrecord" package (see its docs).
 32 # http://www.fokus.gmd.de/nthp/employees/schilling/cdrecord.html
 33 # Newer Linux distros may use "wodim" rather than "cdrecord" ...
 34
 35
 36 echo; echo "Done copying $OF to CDR on device $CDROM."
 37
 38 echo "Do you want to erase the image file (y/n)? " # Probably a huge file.
 39 read answer
 40
 41 case "$answer" in
 42 [yY]) rm -f $OF
 43 echo "$OF erased."
 44 ;;
 45 *) echo "$OF not erased.";;
 46 esac
 47

 48 echo
 49
 50 # Exercise:
 51 # Change the above "case" statement to also accept "yes" and "Yes" as input.
 52
 53 exit 0

Example A-6. Collatz series

 1 #!/bin/bash
 2 # collatz.sh
 3
 4 # The notorious "hailstone" or Collatz series.
 5 # ---
 6 # 1) Get the integer "seed" from the command-line.
 7 # 2) NUMBER <-- seed
 8 # 3) Print NUMBER.
 9 # 4) If NUMBER is even, divide by 2, or
 10 # 5)+ if odd, multiply by 3 and add 1.
 11 # 6) NUMBER <-- result
 12 # 7) Loop back to step 3 (for specified number of iterations).
 13 #
 14 # The theory is that every such sequence,
 15 #+ no matter how large the initial value,
 16 #+ eventually settles down to repeating "4,2,1..." cycles,
 17 #+ even after fluctuating through a wide range of values.
 18 #
 19 # This is an instance of an "iterate,"
 20 #+ an operation that feeds its output back into its input.
 21 # Sometimes the result is a "chaotic" series.
 22
 23
 24 MAX_ITERATIONS=200
 25 # For large seed numbers (>32000), try increasing MAX_ITERATIONS.
 26
 27 h=${1:-$$} # Seed.
 28 # Use $PID as seed,
 29 #+ if not specified as command-line arg.
 30
 31 echo
 32 echo "C($h) -*- $MAX_ITERATIONS Iterations"
 33 echo
 34
 35 for ((i=1; i<=MAX_ITERATIONS; i++))
 36 do
 37
 38 # echo -n "$h "
 39 # ^^^
 40 # tab
 41 # printf does it better ...
 42 COLWIDTH=%7d
 43 printf $COLWIDTH $h
 44
 45 let "remainder = h % 2"
 46 if ["$remainder" -eq 0] # Even?
 47 then
 48 let "h /= 2" # Divide by 2.
 49 else
 50 let "h = h*3 + 1" # Multiply by 3 and add 1.
 51 fi
 52
 53

 54 COLUMNS=10 # Output 10 values per line.
 55 let "line_break = i % $COLUMNS"
 56 if ["$line_break" -eq 0]
 57 then
 58 echo
 59 fi
 60
 61 done
 62
 63 echo
 64
 65 # For more information on this strange mathematical function,
 66 #+ see _Computers, Pattern, Chaos, and Beauty_, by Pickover, p. 185 ff.,
 67 #+ as listed in the bibliography.
 68
 69 exit 0

Example A-7. days-between: Days between two dates

 1 #!/bin/bash
 2 # days-between.sh: Number of days between two dates.
 3 # Usage: ./days-between.sh [M]M/[D]D/YYYY [M]M/[D]D/YYYY
 4 #
 5 # Note: Script modified to account for changes in Bash, v. 2.05b +,
 6 #+ that closed the loophole permitting large negative
 7 #+ integer return values.
 8
 9 ARGS=2 # Two command-line parameters expected.
 10 E_PARAM_ERR=85 # Param error.
 11
 12 REFYR=1600 # Reference year.
 13 CENTURY=100
 14 DIY=365
 15 ADJ_DIY=367 # Adjusted for leap year + fraction.
 16 MIY=12
 17 DIM=31
 18 LEAPCYCLE=4
 19
 20 MAXRETVAL=255 # Largest permissible
 21 #+ positive return value from a function.
 22
 23 diff= # Declare global variable for date difference.
 24 value= # Declare global variable for absolute value.
 25 day= # Declare globals for day, month, year.
 26 month=
 27 year=
 28
 29
 30 Param_Error () # Command-line parameters wrong.
 31 {
 32 echo "Usage: `basename $0` [M]M/[D]D/YYYY [M]M/[D]D/YYYY"
 33 echo " (date must be after 1/3/1600)"
 34 exit $E_PARAM_ERR
 35 }
 36
 37
 38 Parse_Date () # Parse date from command-line params.
 39 {
 40 month=${1%%/**}
 41 dm=${1%/**} # Day and month.
 42 day=${dm#*/}
 43 let "year = `basename $1`" # Not a filename, but works just the same.

 44 }
 45
 46
 47 check_date () # Checks for invalid date(s) passed.
 48 {
 49 ["$day" -gt "$DIM"] || ["$month" -gt "$MIY"] ||
 50 ["$year" -lt "$REFYR"] && Param_Error
 51 # Exit script on bad value(s).
 52 # Uses or-list / and-list.
 53 #
 54 # Exercise: Implement more rigorous date checking.
 55 }
 56
 57
 58 strip_leading_zero () # Better to strip possible leading zero(s)
 59 { #+ from day and/or month
 60 return ${1#0} #+ since otherwise Bash will interpret them
 61 } #+ as octal values (POSIX.2, sect 2.9.2.1).
 62
 63
 64 day_index () # Gauss' Formula:
 65 { # Days from March 1, 1600 to date passed as param.
 66 # ^^^^^^^^^^^^^
 67 day=$1
 68 month=$2
 69 year=$3
 70
 71 let "month = $month - 2"
 72 if ["$month" -le 0]
 73 then
 74 let "month += 12"
 75 let "year -= 1"
 76 fi
 77
 78 let "year -= $REFYR"
 79 let "indexyr = $year / $CENTURY"
 80
 81
 82 let "Days = $DIY*$year + $year/$LEAPCYCLE - $indexyr \
 83 + $indexyr/$LEAPCYCLE + ADJ_DIY*month/$MIY + $day - $DIM"
 84 # For an in-depth explanation of this algorithm, see
 85 #+ http://weblogs.asp.net/pgreborio/archive/2005/01/06/347968.aspx
 86
 87
 88 echo $Days
 89
 90 }
 91
 92
 93 calculate_difference () # Difference between two day indices.
 94 {
 95 let "diff = $1 - $2" # Global variable.
 96 }
 97
 98
 99 abs () # Absolute value
 100 { # Uses global "value" variable.
 101 if ["$1" -lt 0] # If negative
 102 then #+ then
 103 let "value = 0 - $1" #+ change sign,
 104 else #+ else
 105 let "value = $1" #+ leave it alone.
 106 fi
 107 }
 108
 109

 110
 111 if [$# -ne "$ARGS"] # Require two command-line params.
 112 then
 113 Param_Error
 114 fi
 115
 116 Parse_Date $1
 117 check_date $day $month $year # See if valid date.
 118
 119 strip_leading_zero $day # Remove any leading zeroes
 120 day=$? #+ on day and/or month.
 121 strip_leading_zero $month
 122 month=$?
 123
 124 let "date1 = `day_index $day $month $year`"
 125
 126
 127 Parse_Date $2
 128 check_date $day $month $year
 129
 130 strip_leading_zero $day
 131 day=$?
 132 strip_leading_zero $month
 133 month=$?
 134
 135 date2=$(day_index $day $month $year) # Command substitution.
 136
 137
 138 calculate_difference $date1 $date2
 139
 140 abs $diff # Make sure it's positive.
 141 diff=$value
 142
 143 echo $diff
 144
 145 exit 0
 146
 147 # Exercise:
 148 # --------
 149 # If given only one command-line parameter, have the script
 150 #+ use today's date as the second.
 151
 152
 153 # Compare this script with
 154 #+ the implementation of Gauss' Formula in a C program at
 155 #+ http://buschencrew.hypermart.net/software/datedif

Example A-8. Making a dictionary

 1 #!/bin/bash
 2 # makedict.sh [make dictionary]
 3
 4 # Modification of /usr/sbin/mkdict (/usr/sbin/cracklib-forman) script.
 5 # Original script copyright 1993, by Alec Muffett.
 6 #
 7 # This modified script included in this document in a manner
 8 #+ consistent with the "LICENSE" document of the "Crack" package
 9 #+ that the original script is a part of.
 10
 11 # This script processes text files to produce a sorted list
 12 #+ of words found in the files.
 13 # This may be useful for compiling dictionaries

 14 #+ and for other lexicographic purposes.
 15
 16
 17 E_BADARGS=85
 18
 19 if [! -r "$1"] # Need at least one
 20 then #+ valid file argument.
 21 echo "Usage: $0 files-to-process"
 22 exit $E_BADARGS
 23 fi
 24
 25
 26 # SORT="sort" # No longer necessary to define
 27 #+ options to sort. Changed from
 28 #+ original script.
 29
 30 cat $* | # Dump specified files to stdout.
 31 tr A-Z a-z | # Convert to lowercase.
 32 tr ' ' '\012' | # New: change spaces to newlines.
 33 # tr -cd '\012[a-z][0-9]' | # Get rid of everything
 34 #+ non-alphanumeric (in orig. script).
 35 tr -c '\012a-z' '\012' | # Rather than deleting non-alpha
 36 #+ chars, change them to newlines.
 37 sort | # $SORT options unnecessary now.
 38 uniq | # Remove duplicates.
 39 grep -v '^#' | # Delete lines starting with #.
 40 grep -v '^$' # Delete blank lines.
 41
 42 exit $?

Example A-9. Soundex conversion

 1 #!/bin/bash
 2 # soundex.sh: Calculate "soundex" code for names
 3
 4 # ===
 5 # Soundex script
 6 # by
 7 # Mendel Cooper
 8 # thegrendel.abs@gmail.com
 9 # reldate: 23 January, 2002
 10 #
 11 # Placed in the Public Domain.
 12 #
 13 # A slightly different version of this script appeared in
 14 #+ Ed Schaefer's July, 2002 "Shell Corner" column
 15 #+ in "Unix Review" on-line,
 16 #+ http://www.unixreview.com/documents/uni1026336632258/
 17 # ===
 18
 19
 20 ARGCOUNT=1 # Need name as argument.
 21 E_WRONGARGS=90
 22
 23 if [$# -ne "$ARGCOUNT"]
 24 then
 25 echo "Usage: `basename $0` name"
 26 exit $E_WRONGARGS
 27 fi
 28
 29
 30 assign_value () # Assigns numerical value

 31 { #+ to letters of name.
 32
 33 val1=bfpv # 'b,f,p,v' = 1
 34 val2=cgjkqsxz # 'c,g,j,k,q,s,x,z' = 2
 35 val3=dt # etc.
 36 val4=l
 37 val5=mn
 38 val6=r
 39
 40 # Exceptionally clever use of 'tr' follows.
 41 # Try to figure out what is going on here.
 42
 43 value=$(echo "$1" \
 44 | tr -d wh \
 45 | tr $val1 1 | tr $val2 2 | tr $val3 3 \
 46 | tr $val4 4 | tr $val5 5 | tr $val6 6 \
 47 | tr -s 123456 \
 48 | tr -d aeiouy)
 49
 50 # Assign letter values.
 51 # Remove duplicate numbers, except when separated by vowels.
 52 # Ignore vowels, except as separators, so delete them last.
 53 # Ignore 'w' and 'h', even as separators, so delete them first.
 54 #
 55 # The above command substitution lays more pipe than a plumber <g>.
 56
 57 }
 58
 59
 60 input_name="$1"
 61 echo
 62 echo "Name = $input_name"
 63
 64
 65 # Change all characters of name input to lowercase.
 66 # --
 67 name=$(echo $input_name | tr A-Z a-z)
 68 # --
 69 # Just in case argument to script is mixed case.
 70
 71
 72 # Prefix of soundex code: first letter of name.
 73 # --
 74
 75
 76 char_pos=0 # Initialize character position.
 77 prefix0=${name:$char_pos:1}
 78 prefix=`echo $prefix0 | tr a-z A-Z`
 79 # Uppercase 1st letter of soundex.
 80
 81 let "char_pos += 1" # Bump character position to 2nd letter of name.
 82 name1=${name:$char_pos}
 83
 84
 85 # ++++++++++++++++++++++++++ Exception Patch ++++++++++++++++++++++++++++++
 86 # Now, we run both the input name and the name shifted one char
 87 #+ to the right through the value-assigning function.
 88 # If we get the same value out, that means that the first two characters
 89 #+ of the name have the same value assigned, and that one should cancel.
 90 # However, we also need to test whether the first letter of the name
 91 #+ is a vowel or 'w' or 'h', because otherwise this would bollix things up.
 92
 93 char1=`echo $prefix | tr A-Z a-z` # First letter of name, lowercased.
 94
 95 assign_value $name
 96 s1=$value

 97 assign_value $name1
 98 s2=$value
 99 assign_value $char1
 100 s3=$value
 101 s3=9$s3 # If first letter of name is a vowel
 102 #+ or 'w' or 'h',
 103 #+ then its "value" will be null (unset).
 104 #+ Therefore, set it to 9, an otherwise
 105 #+ unused value, which can be tested for.
 106
 107
 108 if [["$s1" -ne "$s2" || "$s3" -eq 9]]
 109 then
 110 suffix=$s2
 111 else
 112 suffix=${s2:$char_pos}
 113 fi
 114 # ++++++++++++++++++++++ end Exception Patch ++++++++++++++++++++++++++++++
 115
 116
 117 padding=000 # Use at most 3 zeroes to pad.
 118
 119
 120 soun=$prefix$suffix$padding # Pad with zeroes.
 121
 122 MAXLEN=4 # Truncate to maximum of 4 chars.
 123 soundex=${soun:0:$MAXLEN}
 124
 125 echo "Soundex = $soundex"
 126
 127 echo
 128
 129 # The soundex code is a method of indexing and classifying names
 130 #+ by grouping together the ones that sound alike.
 131 # The soundex code for a given name is the first letter of the name,
 132 #+ followed by a calculated three-number code.
 133 # Similar sounding names should have almost the same soundex codes.
 134
 135 # Examples:
 136 # Smith and Smythe both have a "S-530" soundex.
 137 # Harrison = H-625
 138 # Hargison = H-622
 139 # Harriman = H-655
 140
 141 # This works out fairly well in practice, but there are numerous anomalies.
 142 #
 143 #
 144 # The U.S. Census and certain other governmental agencies use soundex,
 145 # as do genealogical researchers.
 146 #
 147 # For more information,
 148 #+ see the "National Archives and Records Administration home page",
 149 #+ http://www.nara.gov/genealogy/soundex/soundex.html
 150
 151
 152
 153 # Exercise:
 154 # --------
 155 # Simplify the "Exception Patch" section of this script.
 156
 157 exit 0

Example A-10. Game of Life

 1 #!/bin/bash
 2 # life.sh: "Life in the Slow Lane"
 3 # Author: Mendel Cooper
 4 # License: GPL3
 5
 6 # Version 0.2: Patched by Daniel Albers
 7 #+ to allow non-square grids as input.
 8 # Version 0.2.1: Added 2-second delay between generations.
 9
 10 # ### #
 11 # This is the Bash script version of John Conway's "Game of Life". #
 12 # "Life" is a simple implementation of cellular automata. #
 13 # --- #
 14 # On a rectangular grid, let each "cell" be either "living" or "dead." #
 15 # Designate a living cell with a dot, and a dead one with a blank space.#
 16 # Begin with an arbitrarily drawn dot-and-blank grid, #
 17 #+ and let this be the starting generation: generation 0. #
 18 # Determine each successive generation by the following rules: #
 19 # 1) Each cell has 8 neighbors, the adjoining cells #
 20 #+ left, right, top, bottom, and the 4 diagonals. #
 21 # #
 22 # 123 #
 23 # 4*5 The * is the cell under consideration. #
 24 # 678 #
 25 # #
 26 # 2) A living cell with either 2 or 3 living neighbors remains alive. #
 27 SURVIVE=2 #
 28 # 3) A dead cell with 3 living neighbors comes alive, a "birth." #
 29 BIRTH=3 #
 30 # 4) All other cases result in a dead cell for the next generation. #
 31 # ### #
 32
 33
 34 startfile=gen0 # Read the starting generation from the file "gen0" ...
 35 # Default, if no other file specified when invoking script.
 36 #
 37 if [-n "$1"] # Specify another "generation 0" file.
 38 then
 39 startfile="$1"
 40 fi
 41
 42 ##
 43 # Abort script if "startfile" not specified
 44 #+ and
 45 #+ default file "gen0" not present.
 46
 47 E_NOSTARTFILE=86
 48
 49 if [! -e "$startfile"]
 50 then
 51 echo "Startfile \""$startfile"\" missing!"
 52 exit $E_NOSTARTFILE
 53 fi
 54 ##
 55
 56
 57 ALIVE1=.
 58 DEAD1=_
 59 # Represent living and dead cells in the start-up file.
 60
 61 # ---#
 62 # This script uses a 10 x 10 grid (may be increased,
 63 #+ but a large grid will slow down execution).
 64 ROWS=10
 65 COLS=10
 66 # Change above two variables to match desired grid size.

 67 # ---#
 68
 69 GENERATIONS=10 # How many generations to cycle through.
 70 # Adjust this upwards
 71 #+ if you have time on your hands.
 72
 73 NONE_ALIVE=85 # Exit status on premature bailout,
 74 #+ if no cells left alive.
 75 DELAY=2 # Pause between generations.
 76 TRUE=0
 77 FALSE=1
 78 ALIVE=0
 79 DEAD=1
 80
 81 avar= # Global; holds current generation.
 82 generation=0 # Initialize generation count.
 83
 84 # ===
 85
 86 let "cells = $ROWS * $COLS" # How many cells.
 87
 88 # Arrays containing "cells."
 89 declare -a initial
 90 declare -a current
 91
 92 display ()
 93 {
 94
 95 alive=0 # How many cells alive at any given time.
 96 # Initially zero.
 97
 98 declare -a arr
 99 arr=(`echo "$1"`) # Convert passed arg to array.
 100
 101 element_count=${#arr[*]}
 102
 103 local i
 104 local rowcheck
 105
 106 for ((i=0; i<$element_count; i++))
 107 do
 108
 109 # Insert newline at end of each row.
 110 let "rowcheck = $i % COLS"
 111 if ["$rowcheck" -eq 0]
 112 then
 113 echo # Newline.
 114 echo -n " " # Indent.
 115 fi
 116
 117 cell=${arr[i]}
 118
 119 if ["$cell" = .]
 120 then
 121 let "alive += 1"
 122 fi
 123
 124 echo -n "$cell" | sed -e 's/_/ /g'
 125 # Print out array, changing underscores to spaces.
 126 done
 127
 128 return
 129
 130 }
 131
 132 IsValid () # Test if cell coordinate valid.

 133 {
 134
 135 if [-z "$1" -o -z "$2"] # Mandatory arguments missing?
 136 then
 137 return $FALSE
 138 fi
 139
 140 local row
 141 local lower_limit=0 # Disallow negative coordinate.
 142 local upper_limit
 143 local left
 144 local right
 145
 146 let "upper_limit = $ROWS * $COLS - 1" # Total number of cells.
 147
 148
 149 if ["$1" -lt "$lower_limit" -o "$1" -gt "$upper_limit"]
 150 then
 151 return $FALSE # Out of array bounds.
 152 fi
 153
 154 row=$2
 155 let "left = $row * $COLS" # Left limit.
 156 let "right = $left + $COLS - 1" # Right limit.
 157
 158 if ["$1" -lt "$left" -o "$1" -gt "$right"]
 159 then
 160 return $FALSE # Beyond row boundary.
 161 fi
 162
 163 return $TRUE # Valid coordinate.
 164
 165 }
 166
 167
 168 IsAlive () # Test whether cell is alive.
 169 # Takes array, cell number, and
 170 { #+ state of cell as arguments.
 171 GetCount "$1" $2 # Get alive cell count in neighborhood.
 172 local nhbd=$?
 173
 174 if ["$nhbd" -eq "$BIRTH"] # Alive in any case.
 175 then
 176 return $ALIVE
 177 fi
 178
 179 if ["$3" = "." -a "$nhbd" -eq "$SURVIVE"]
 180 then # Alive only if previously alive.
 181 return $ALIVE
 182 fi
 183
 184 return $DEAD # Defaults to dead.
 185
 186 }
 187
 188
 189 GetCount () # Count live cells in passed cell's neighborhood.
 190 # Two arguments needed:
 191 # $1) variable holding array
 192 # $2) cell number
 193 {
 194 local cell_number=$2
 195 local array
 196 local top
 197 local center
 198 local bottom

 199 local r
 200 local row
 201 local i
 202 local t_top
 203 local t_cen
 204 local t_bot
 205 local count=0
 206 local ROW_NHBD=3
 207
 208 array=(`echo "$1"`)
 209
 210 let "top = $cell_number - $COLS - 1" # Set up cell neighborhood.
 211 let "center = $cell_number - 1"
 212 let "bottom = $cell_number + $COLS - 1"
 213 let "r = $cell_number / $COLS"
 214
 215 for ((i=0; i<$ROW_NHBD; i++)) # Traverse from left to right.
 216 do
 217 let "t_top = $top + $i"
 218 let "t_cen = $center + $i"
 219 let "t_bot = $bottom + $i"
 220
 221
 222 let "row = $r" # Count center row.
 223 IsValid $t_cen $row # Valid cell position?
 224 if [$? -eq "$TRUE"]
 225 then
 226 if [${array[$t_cen]} = "$ALIVE1"] # Is it alive?
 227 then # If yes, then ...
 228 let "count += 1" # Increment count.
 229 fi
 230 fi
 231
 232 let "row = $r - 1" # Count top row.
 233 IsValid $t_top $row
 234 if [$? -eq "$TRUE"]
 235 then
 236 if [${array[$t_top]} = "$ALIVE1"] # Redundancy here.
 237 then # Can it be optimized?
 238 let "count += 1"
 239 fi
 240 fi
 241
 242 let "row = $r + 1" # Count bottom row.
 243 IsValid $t_bot $row
 244 if [$? -eq "$TRUE"]
 245 then
 246 if [${array[$t_bot]} = "$ALIVE1"]
 247 then
 248 let "count += 1"
 249 fi
 250 fi
 251
 252 done
 253
 254
 255 if [${array[$cell_number]} = "$ALIVE1"]
 256 then
 257 let "count -= 1" # Make sure value of tested cell itself
 258 fi #+ is not counted.
 259
 260
 261 return $count
 262
 263 }
 264

 265 next_gen () # Update generation array.
 266 {
 267
 268 local array
 269 local i=0
 270
 271 array=(`echo "$1"`) # Convert passed arg to array.
 272
 273 while ["$i" -lt "$cells"]
 274 do
 275 IsAlive "$1" $i ${array[$i]} # Is the cell alive?
 276 if [$? -eq "$ALIVE"]
 277 then # If alive, then
 278 array[$i]=. #+ represent the cell as a period.
 279 else
 280 array[$i]="_" # Otherwise underscore
 281 fi #+ (will later be converted to space).
 282 let "i += 1"
 283 done
 284
 285
 286 # let "generation += 1" # Increment generation count.
 287 ### Why was the above line commented out?
 288
 289
 290 # Set variable to pass as parameter to "display" function.
 291 avar=`echo ${array[@]}` # Convert array back to string variable.
 292 display "$avar" # Display it.
 293 echo; echo
 294 echo "Generation $generation - $alive alive"
 295
 296 if ["$alive" -eq 0]
 297 then
 298 echo
 299 echo "Premature exit: no more cells alive!"
 300 exit $NONE_ALIVE # No point in continuing
 301 fi #+ if no live cells.
 302
 303 }
 304
 305
 306 # ===
 307
 308 # main ()
 309 # {
 310
 311 # Load initial array with contents of startup file.
 312 initial=(`cat "$startfile" | sed -e '/#/d' | tr -d '\n' |\
 313 # Delete lines containing '#' comment character.
 314 sed -e 's/\./\. /g' -e 's/_/_ /g'`)
 315 # Remove linefeeds and insert space between elements.
 316
 317 clear # Clear screen.
 318
 319 echo # Title
 320 setterm -reverse on
 321 echo "======================="
 322 setterm -reverse off
 323 echo " $GENERATIONS generations"
 324 echo " of"
 325 echo "\"Life in the Slow Lane\""
 326 setterm -reverse on
 327 echo "======================="
 328 setterm -reverse off
 329
 330 sleep $DELAY # Display "splash screen" for 2 seconds.

 331
 332
 333 # -------- Display first generation. --------
 334 Gen0=`echo ${initial[@]}`
 335 display "$Gen0" # Display only.
 336 echo; echo
 337 echo "Generation $generation - $alive alive"
 338 sleep $DELAY
 339 # ---
 340
 341
 342 let "generation += 1" # Bump generation count.
 343 echo
 344
 345 # ------- Display second generation. -------
 346 Cur=`echo ${initial[@]}`
 347 next_gen "$Cur" # Update & display.
 348 sleep $DELAY
 349 # --
 350
 351 let "generation += 1" # Increment generation count.
 352
 353 # ------ Main loop for displaying subsequent generations ------
 354 while ["$generation" -le "$GENERATIONS"]
 355 do
 356 Cur="$avar"
 357 next_gen "$Cur"
 358 let "generation += 1"
 359 sleep $DELAY
 360 done
 361 # ==
 362
 363 echo
 364 # }
 365
 366 exit 0 # CEOF:EOF
 367
 368
 369
 370 # The grid in this script has a "boundary problem."
 371 # The the top, bottom, and sides border on a void of dead cells.
 372 # Exercise: Change the script to have the grid wrap around,
 373 # + so that the left and right sides will "touch,"
 374 # + as will the top and bottom.
 375 #
 376 # Exercise: Create a new "gen0" file to seed this script.
 377 # Use a 12 x 16 grid, instead of the original 10 x 10 one.
 378 # Make the necessary changes to the script,
 379 #+ so it will run with the altered file.
 380 #
 381 # Exercise: Modify this script so that it can determine the grid size
 382 #+ from the "gen0" file, and set any variables necessary
 383 #+ for the script to run.
 384 # This would make unnecessary any changes to variables
 385 #+ in the script for an altered grid size.
 386 #
 387 # Exercise: Optimize this script.
 388 # It has redundant code.

Example A-11. Data file for Game of Life

 1 # gen0

 2 #
 3 # This is an example "generation 0" start-up file for "life.sh".
 4 # --
 5 # The "gen0" file is a 10 x 10 grid using a period (.) for live cells,
 6 #+ and an underscore (_) for dead ones. We cannot simply use spaces
 7 #+ for dead cells in this file because of a peculiarity in Bash arrays.
 8 # [Exercise for the reader: explain this.]
 9 #
 10 # Lines beginning with a '#' are comments, and the script ignores them.
 11 __.__..___
 12 __.._.____
 13 ____.___..
 14 _._______.
 15 ____._____
 16 ..__...___
 17 ____._____
 18 ___...____
 19 __.._..___
 20 _..___..__

+++

The following script is by Mark Moraes of the University of Toronto. See the file Moraes-COPYRIGHT for
permissions and restrictions. This file is included in the combined HTML/source tarball of the ABS Guide.

Example A-12. behead: Removing mail and news message headers

 1 #! /bin/sh
 2 # Strips off the header from a mail/News message i.e. till the first
 3 #+ empty line.
 4 # Author: Mark Moraes, University of Toronto
 5
 6 # ==> These comments added by author of this document.
 7
 8 if [$# -eq 0]; then
 9 # ==> If no command-line args present, then works on file redirected to stdin.
 10 sed -e '1,/^$/d' -e '/^[]*$/d'
 11 # --> Delete empty lines and all lines until
 12 # --> first one beginning with white space.
 13 else
 14 # ==> If command-line args present, then work on files named.
 15 for i do
 16 sed -e '1,/^$/d' -e '/^[]*$/d' $i
 17 # --> Ditto, as above.
 18 done
 19 fi
 20
 21 exit
 22
 23 # ==> Exercise: Add error checking and other options.
 24 # ==>
 25 # ==> Note that the small sed script repeats, except for the arg passed.
 26 # ==> Does it make sense to embed it in a function? Why or why not?
 27
 28
 29 /*
 30 * Copyright University of Toronto 1988, 1989.
 31 * Written by Mark Moraes
 32 *
 33 * Permission is granted to anyone to use this software for any purpose on
 34 * any computer system, and to alter it and redistribute it freely, subject
 35 * to the following restrictions:

 36 *
 37 * 1. The author and the University of Toronto are not responsible
 38 * for the consequences of use of this software, no matter how awful,
 39 * even if they arise from flaws in it.
 40 *
 41 * 2. The origin of this software must not be misrepresented, either by
 42 * explicit claim or by omission. Since few users ever read sources,
 43 * credits must appear in the documentation.
 44 *
 45 * 3. Altered versions must be plainly marked as such, and must not be
 46 * misrepresented as being the original software. Since few users
 47 * ever read sources, credits must appear in the documentation.
 48 *
 49 * 4. This notice may not be removed or altered.
 50 */

+

Antek Sawicki contributed the following script, which makes very clever use of the parameter substitution
operators discussed in Section 10.2.

Example A-13. password: Generating random 8-character passwords

 1 #!/bin/bash
 2 #
 3 #
 4 # Random password generator for Bash 2.x +
 5 #+ by Antek Sawicki <tenox@tenox.tc>,
 6 #+ who generously gave usage permission to the ABS Guide author.
 7 #
 8 # ==> Comments added by document author ==>
 9
 10
 11 MATRIX="0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"
 12 # ==> Password will consist of alphanumeric characters.
 13 LENGTH="8"
 14 # ==> May change 'LENGTH' for longer password.
 15
 16
 17 while ["${n:=1}" -le "$LENGTH"]
 18 # ==> Recall that := is "default substitution" operator.
 19 # ==> So, if 'n' has not been initialized, set it to 1.
 20 do
 21 PASS="$PASS${MATRIX:$(($RANDOM%${#MATRIX})):1}"
 22 # ==> Very clever, but tricky.
 23
 24 # ==> Starting from the innermost nesting...
 25 # ==> ${#MATRIX} returns length of array MATRIX.
 26
 27 # ==> $RANDOM%${#MATRIX} returns random number between 1
 28 # ==> and [length of MATRIX] - 1.
 29
 30 # ==> ${MATRIX:$(($RANDOM%${#MATRIX})):1}
 31 # ==> returns expansion of MATRIX at random position, by length 1.
 32 # ==> See {var:pos:len} parameter substitution in Chapter 9.
 33 # ==> and the associated examples.
 34
 35 # ==> PASS=... simply pastes this result onto previous PASS (concatenation).
 36
 37 # ==> To visualize this more clearly, uncomment the following line
 38 # echo "$PASS"

 39 # ==> to see PASS being built up,
 40 # ==> one character at a time, each iteration of the loop.
 41
 42 let n+=1
 43 # ==> Increment 'n' for next pass.
 44 done
 45
 46 echo "$PASS" # ==> Or, redirect to a file, as desired.
 47
 48 exit 0

+

James R. Van Zandt contributed this script which uses named pipes and, in his words, "really exercises
quoting and escaping."

Example A-14. fifo: Making daily backups, using named pipes

 1 #!/bin/bash
 2 # ==> Script by James R. Van Zandt, and used here with his permission.
 3
 4 # ==> Comments added by author of this document.
 5
 6
 7 HERE=`uname -n` # ==> hostname
 8 THERE=bilbo
 9 echo "starting remote backup to $THERE at `date +%r`"
 10 # ==> `date +%r` returns time in 12-hour format, i.e. "08:08:34 PM".
 11
 12 # make sure /pipe really is a pipe and not a plain file
 13 rm -rf /pipe
 14 mkfifo /pipe # ==> Create a "named pipe", named "/pipe" ...
 15
 16 # ==> 'su xyz' runs commands as user "xyz".
 17 # ==> 'ssh' invokes secure shell (remote login client).
 18 su xyz -c "ssh $THERE \"cat > /home/xyz/backup/${HERE}-daily.tar.gz\" < /pipe"&
 19 cd /
 20 tar -czf - bin boot dev etc home info lib man root sbin share usr var > /pipe
 21 # ==> Uses named pipe, /pipe, to communicate between processes:
 22 # ==> 'tar/gzip' writes to /pipe and 'ssh' reads from /pipe.
 23
 24 # ==> The end result is this backs up the main directories, from / on down.
 25
 26 # ==> What are the advantages of a "named pipe" in this situation,
 27 # ==>+ as opposed to an "anonymous pipe", with |?
 28 # ==> Will an anonymous pipe even work here?
 29
 30 # ==> Is it necessary to delete the pipe before exiting the script?
 31 # ==> How could that be done?
 32
 33
 34 exit 0

+

Stéphane Chazelas used the following script to demonstrate generating prime numbers without arrays.

Example A-15. Generating prime numbers using the modulo operator

 1 #!/bin/bash
 2 # primes.sh: Generate prime numbers, without using arrays.
 3 # Script contributed by Stephane Chazelas.
 4
 5 # This does *not* use the classic "Sieve of Eratosthenes" algorithm,
 6 #+ but instead the more intuitive method of testing each candidate number
 7 #+ for factors (divisors), using the "%" modulo operator.
 8
 9
 10 LIMIT=1000 # Primes, 2 ... 1000.
 11
 12 Primes()
 13 {
 14 ((n = $1 + 1)) # Bump to next integer.
 15 shift # Next parameter in list.
 16 # echo "_n=$n i=$i_"
 17
 18 if ((n == LIMIT))
 19 then echo $*
 20 return
 21 fi
 22
 23 for i; do # "i" set to "@", previous values of $n.
 24 # echo "-n=$n i=$i-"
 25 ((i * i > n)) && break # Optimization.
 26 ((n % i)) && continue # Sift out non-primes using modulo operator.
 27 Primes $n $@ # Recursion inside loop.
 28 return
 29 done
 30
 31 Primes $n $@ $n # Recursion outside loop.
 32 # Successively accumulate
 33 #+ positional parameters.
 34 # "$@" is the accumulating list of primes.
 35 }
 36
 37 Primes 1
 38
 39 exit $?
 40
 41 # Pipe output of the script to 'fmt' for prettier printing.
 42
 43 # Uncomment lines 16 and 24 to help figure out what is going on.
 44
 45 # Compare the speed of this algorithm for generating primes
 46 #+ with the Sieve of Eratosthenes (ex68.sh).
 47
 48
 49 # Exercise: Rewrite this script without recursion.

+

Rick Boivie's revision of Jordi Sanfeliu's tree script.

Example A-16. tree: Displaying a directory tree

 1 #!/bin/bash
 2 # tree.sh
 3
 4 # Written by Rick Boivie.

 5 # Used with permission.
 6 # This is a revised and simplified version of a script
 7 #+ by Jordi Sanfeliu (the original author), and patched by Ian Kjos.
 8 # This script replaces the earlier version used in
 9 #+ previous releases of the Advanced Bash Scripting Guide.
 10 # Copyright (c) 2002, by Jordi Sanfeliu, Rick Boivie, and Ian Kjos.
 11
 12 # ==> Comments added by the author of this document.
 13
 14
 15 search () {
 16 for dir in `echo *`
 17 # ==> `echo *` lists all the files in current working directory,
 18 #+ ==> without line breaks.
 19 # ==> Similar effect to for dir in *
 20 # ==> but "dir in `echo *`" will not handle filenames with blanks.
 21 do
 22 if [-d "$dir"] ; then # ==> If it is a directory (-d)...
 23 zz=0 # ==> Temp variable, keeping track of
 24 # directory level.
 25 while [$zz != $1] # Keep track of inner nested loop.
 26 do
 27 echo -n "| " # ==> Display vertical connector symbol,
 28 # ==> with 2 spaces & no line feed
 29 # in order to indent.
 30 zz=`expr $zz + 1` # ==> Increment zz.
 31 done
 32
 33 if [-L "$dir"] ; then # ==> If directory is a symbolic link...
 34 echo "+---$dir" `ls -l $dir | sed 's/^.*'$dir' //'`
 35 # ==> Display horiz. connector and list directory name, but...
 36 # ==> delete date/time part of long listing.
 37 else
 38 echo "+---$dir" # ==> Display horizontal connector symbol...
 39 # ==> and print directory name.
 40 numdirs=`expr $numdirs + 1` # ==> Increment directory count.
 41 if cd "$dir" ; then # ==> If can move to subdirectory...
 42 search `expr $1 + 1` # with recursion ;-)
 43 # ==> Function calls itself.
 44 cd ..
 45 fi
 46 fi
 47 fi
 48 done
 49 }
 50
 51 if [$# != 0] ; then
 52 cd $1 # Move to indicated directory.
 53 #else # stay in current directory
 54 fi
 55
 56 echo "Initial directory = `pwd`"
 57 numdirs=0
 58
 59 search 0
 60 echo "Total directories = $numdirs"
 61
 62 exit 0

Patsie's version of a directory tree script.

Example A-17. tree2: Alternate directory tree script

 1 #!/bin/bash
 2 # tree2.sh
 3
 4 # Lightly modified/reformatted by ABS Guide author.
 5 # Included in ABS Guide with permission of script author (thanks!).
 6
 7 ## Recursive file/dirsize checking script, by Patsie
 8 ##
 9 ## This script builds a list of files/directories and their size (du -akx)
 10 ## and processes this list to a human readable tree shape
 11 ## The 'du -akx' is only as good as the permissions the owner has.
 12 ## So preferably run as root* to get the best results, or use only on
 13 ## directories for which you have read permissions. Anything you can't
 14 ## read is not in the list.
 15
 16 #* ABS Guide author advises caution when running scripts as root!
 17
 18
 19 ########## THIS IS CONFIGURABLE ##########
 20
 21 TOP=5 # Top 5 biggest (sub)directories.
 22 MAXRECURS=5 # Max 5 subdirectories/recursions deep.
 23 E_BL=80 # Blank line already returned.
 24 E_DIR=81 # Directory not specified.
 25
 26
 27 ########## DON'T CHANGE ANYTHING BELOW THIS LINE ##########
 28
 29 PID=$$ # Our own process ID.
 30 SELF=`basename $0` # Our own program name.
 31 TMP="/tmp/${SELF}.${PID}.tmp" # Temporary 'du' result.
 32
 33 # Convert number to dotted thousand.
 34 function dot { echo " $*" |
 35 sed -e :a -e 's/\(.*[0-9]\)\([0-9]\{3\}\)/\1,\2/;ta' |
 36 tail -c 12; }
 37
 38 # Usage: tree <recursion> <indent prefix> <min size> <directory>
 39 function tree {
 40 recurs="$1" # How deep nested are we?
 41 prefix="$2" # What do we display before file/dirname?
 42 minsize="$3" # What is the minumum file/dirsize?
 43 dirname="$4" # Which directory are we checking?
 44
 45 # Get ($TOP) biggest subdirs/subfiles from TMP file.
 46 LIST=`egrep "[[:space:]]${dirname}/[^/]*$" "$TMP" |
 47 awk '{if($1>'$minsize') print;}' | sort -nr | head -$TOP`
 48 [-z "$LIST"] && return # Empty list, then go back.
 49
 50 cnt=0
 51 num=`echo "$LIST" | wc -l` # How many entries in the list.
 52
 53 ## Main loop
 54 echo "$LIST" | while read size name; do
 55 ((cnt+=1)) # Count entry number.
 56 bname=`basename "$name"` # We only need a basename of the entry.
 57 [-d "$name"] && bname="$bname/"
 58 # If it's a directory, append a slash.
 59 echo "`dot $size`$prefix +-$bname"
 60 # Display the result.
 61 # Call ourself recursively if it's a directory
 62 #+ and we're not nested too deep ($MAXRECURS).
 63 # The recursion goes up: $((recurs+1))
 64 # The prefix gets a space if it's the last entry,
 65 #+ or a pipe if there are more entries.
 66 # The minimum file/dirsize becomes

 67 #+ a tenth of his parent: $((size/10)).
 68 # Last argument is the full directory name to check.
 69 if [-d "$name" -a $recurs -lt $MAXRECURS]; then
 70 [$cnt -lt $num] \
 71 || (tree $((recurs+1)) "$prefix " $((size/10)) "$name") \
 72 && (tree $((recurs+1)) "$prefix |" $((size/10)) "$name")
 73 fi
 74 done
 75
 76 [$? -eq 0] && echo " $prefix"
 77 # Every time we jump back add a 'blank' line.
 78 return $E_BL
 79 # We return 80 to tell we added a blank line already.
 80 }
 81
 82 ### ###
 83 ### main program ###
 84 ### ###
 85
 86 rootdir="$@"
 87 [-d "$rootdir"] ||
 88 { echo "$SELF: Usage: $SELF <directory>" >&2; exit $E_DIR; }
 89 # We should be called with a directory name.
 90
 91 echo "Building inventory list, please wait ..."
 92 # Show "please wait" message.
 93 du -akx "$rootdir" 1>"$TMP" 2>/dev/null
 94 # Build a temporary list of all files/dirs and their size.
 95 size=`tail -1 "$TMP" | awk '{print $1}'`
 96 # What is our rootdirectory's size?
 97 echo "`dot $size` $rootdir"
 98 # Display rootdirectory's entry.
 99 tree 0 "" 0 "$rootdir"
 100 # Display the tree below our rootdirectory.
 101
 102 rm "$TMP" 2>/dev/null
 103 # Clean up TMP file.
 104
 105 exit $?

Noah Friedman permitted use of his string function script. It essentially reproduces some of the C-library
string manipulation functions.

Example A-18. string functions: C-style string functions

 1 #!/bin/bash
 2
 3 # string.bash --- bash emulation of string(3) library routines
 4 # Author: Noah Friedman <friedman@prep.ai.mit.edu>
 5 # ==> Used with his kind permission in this document.
 6 # Created: 1992-07-01
 7 # Last modified: 1993-09-29
 8 # Public domain
 9
 10 # Conversion to bash v2 syntax done by Chet Ramey
 11
 12 # Commentary:
 13 # Code:
 14
 15 #:docstring strcat:
 16 # Usage: strcat s1 s2
 17 #
 18 # Strcat appends the value of variable s2 to variable s1.

 19 #
 20 # Example:
 21 # a="foo"
 22 # b="bar"
 23 # strcat a b
 24 # echo $a
 25 # => foobar
 26 #
 27 #:end docstring:
 28
 29 ###;;;autoload ==> Autoloading of function commented out.
 30 function strcat ()
 31 {
 32 local s1_val s2_val
 33
 34 s1_val=${!1} # indirect variable expansion
 35 s2_val=${!2}
 36 eval "$1"=\'"${s1_val}${s2_val}"\'
 37 # ==> eval $1='${s1_val}${s2_val}' avoids problems,
 38 # ==> if one of the variables contains a single quote.
 39 }
 40
 41 #:docstring strncat:
 42 # Usage: strncat s1 s2 $n
 43 #
 44 # Line strcat, but strncat appends a maximum of n characters from the value
 45 # of variable s2. It copies fewer if the value of variabl s2 is shorter
 46 # than n characters. Echoes result on stdout.
 47 #
 48 # Example:
 49 # a=foo
 50 # b=barbaz
 51 # strncat a b 3
 52 # echo $a
 53 # => foobar
 54 #
 55 #:end docstring:
 56
 57 ###;;;autoload
 58 function strncat ()
 59 {
 60 local s1="$1"
 61 local s2="$2"
 62 local -i n="$3"
 63 local s1_val s2_val
 64
 65 s1_val=${!s1} # ==> indirect variable expansion
 66 s2_val=${!s2}
 67
 68 if [${#s2_val} -gt ${n}]; then
 69 s2_val=${s2_val:0:$n} # ==> substring extraction
 70 fi
 71
 72 eval "$s1"=\'"${s1_val}${s2_val}"\'
 73 # ==> eval $1='${s1_val}${s2_val}' avoids problems,
 74 # ==> if one of the variables contains a single quote.
 75 }
 76
 77 #:docstring strcmp:
 78 # Usage: strcmp $s1 $s2
 79 #
 80 # Strcmp compares its arguments and returns an integer less than, equal to,
 81 # or greater than zero, depending on whether string s1 is lexicographically
 82 # less than, equal to, or greater than string s2.
 83 #:end docstring:
 84

 85 ###;;;autoload
 86 function strcmp ()
 87 {
 88 ["$1" = "$2"] && return 0
 89
 90 ["${1}" '<' "${2}"] > /dev/null && return -1
 91
 92 return 1
 93 }
 94
 95 #:docstring strncmp:
 96 # Usage: strncmp $s1 $s2 $n
 97 #
 98 # Like strcmp, but makes the comparison by examining a maximum of n
 99 # characters (n less than or equal to zero yields equality).
 100 #:end docstring:
 101
 102 ###;;;autoload
 103 function strncmp ()
 104 {
 105 if [-z "${3}" -o "${3}" -le "0"]; then
 106 return 0
 107 fi
 108
 109 if [${3} -ge ${#1} -a ${3} -ge ${#2}]; then
 110 strcmp "$1" "$2"
 111 return $?
 112 else
 113 s1=${1:0:$3}
 114 s2=${2:0:$3}
 115 strcmp $s1 $s2
 116 return $?
 117 fi
 118 }
 119
 120 #:docstring strlen:
 121 # Usage: strlen s
 122 #
 123 # Strlen returns the number of characters in string literal s.
 124 #:end docstring:
 125
 126 ###;;;autoload
 127 function strlen ()
 128 {
 129 eval echo "\${#${1}}"
 130 # ==> Returns the length of the value of the variable
 131 # ==> whose name is passed as an argument.
 132 }
 133
 134 #:docstring strspn:
 135 # Usage: strspn $s1 $s2
 136 #
 137 # Strspn returns the length of the maximum initial segment of string s1,
 138 # which consists entirely of characters from string s2.
 139 #:end docstring:
 140
 141 ###;;;autoload
 142 function strspn ()
 143 {
 144 # Unsetting IFS allows whitespace to be handled as normal chars.
 145 local IFS=
 146 local result="${1%%[!${2}]*}"
 147
 148 echo ${#result}
 149 }
 150

 151 #:docstring strcspn:
 152 # Usage: strcspn $s1 $s2
 153 #
 154 # Strcspn returns the length of the maximum initial segment of string s1,
 155 # which consists entirely of characters not from string s2.
 156 #:end docstring:
 157
 158 ###;;;autoload
 159 function strcspn ()
 160 {
 161 # Unsetting IFS allows whitspace to be handled as normal chars.
 162 local IFS=
 163 local result="${1%%[${2}]*}"
 164
 165 echo ${#result}
 166 }
 167
 168 #:docstring strstr:
 169 # Usage: strstr s1 s2
 170 #
 171 # Strstr echoes a substring starting at the first occurrence of string s2 in
 172 # string s1, or nothing if s2 does not occur in the string. If s2 points to
 173 # a string of zero length, strstr echoes s1.
 174 #:end docstring:
 175
 176 ###;;;autoload
 177 function strstr ()
 178 {
 179 # if s2 points to a string of zero length, strstr echoes s1
 180 [${#2} -eq 0] && { echo "$1" ; return 0; }
 181
 182 # strstr echoes nothing if s2 does not occur in s1
 183 case "$1" in
 184 *$2*) ;;
 185 *) return 1;;
 186 esac
 187
 188 # use the pattern matching code to strip off the match and everything
 189 # following it
 190 first=${1/$2*/}
 191
 192 # then strip off the first unmatched portion of the string
 193 echo "${1##$first}"
 194 }
 195
 196 #:docstring strtok:
 197 # Usage: strtok s1 s2
 198 #
 199 # Strtok considers the string s1 to consist of a sequence of zero or more
 200 # text tokens separated by spans of one or more characters from the
 201 # separator string s2. The first call (with a non-empty string s1
 202 # specified) echoes a string consisting of the first token on stdout. The
 203 # function keeps track of its position in the string s1 between separate
 204 # calls, so that subsequent calls made with the first argument an empty
 205 # string will work through the string immediately following that token. In
 206 # this way subsequent calls will work through the string s1 until no tokens
 207 # remain. The separator string s2 may be different from call to call.
 208 # When no token remains in s1, an empty value is echoed on stdout.
 209 #:end docstring:
 210
 211 ###;;;autoload
 212 function strtok ()
 213 {
 214 :
 215 }
 216

 217 #:docstring strtrunc:
 218 # Usage: strtrunc $n $s1 {$s2} {$...}
 219 #
 220 # Used by many functions like strncmp to truncate arguments for comparison.
 221 # Echoes the first n characters of each string s1 s2 ... on stdout.
 222 #:end docstring:
 223
 224 ###;;;autoload
 225 function strtrunc ()
 226 {
 227 n=$1 ; shift
 228 for z; do
 229 echo "${z:0:$n}"
 230 done
 231 }
 232
 233 # provide string
 234
 235 # string.bash ends here
 236
 237
 238 # == #
 239 # ==> Everything below here added by the document author.
 240
 241 # ==> Suggested use of this script is to delete everything below here,
 242 # ==> and "source" this file into your own scripts.
 243
 244 # strcat
 245 string0=one
 246 string1=two
 247 echo
 248 echo "Testing \"strcat\" function:"
 249 echo "Original \"string0\" = $string0"
 250 echo "\"string1\" = $string1"
 251 strcat string0 string1
 252 echo "New \"string0\" = $string0"
 253 echo
 254
 255 # strlen
 256 echo
 257 echo "Testing \"strlen\" function:"
 258 str=123456789
 259 echo "\"str\" = $str"
 260 echo -n "Length of \"str\" = "
 261 strlen str
 262 echo
 263
 264
 265
 266 # Exercise:
 267 # --------
 268 # Add code to test all the other string functions above.
 269
 270
 271 exit 0

Michael Zick's complex array example uses the md5sum check sum command to encode directory
information.

Example A-19. Directory information

 1 #! /bin/bash
 2 # directory-info.sh

 3 # Parses and lists directory information.
 4
 5 # NOTE: Change lines 273 and 353 per "README" file.
 6
 7 # Michael Zick is the author of this script.
 8 # Used here with his permission.
 9
 10 # Controls
 11 # If overridden by command arguments, they must be in the order:
 12 # Arg1: "Descriptor Directory"
 13 # Arg2: "Exclude Paths"
 14 # Arg3: "Exclude Directories"
 15 #
 16 # Environment Settings override Defaults.
 17 # Command arguments override Environment Settings.
 18
 19 # Default location for content addressed file descriptors.
 20 MD5UCFS=${1:-${MD5UCFS:-'/tmpfs/ucfs'}}
 21
 22 # Directory paths never to list or enter
 23 declare -a \
 24 EXCLUDE_PATHS=${2:-${EXCLUDE_PATHS:-'(/proc /dev /devfs /tmpfs)'}}
 25
 26 # Directories never to list or enter
 27 declare -a \
 28 EXCLUDE_DIRS=${3:-${EXCLUDE_DIRS:-'(ucfs lost+found tmp wtmp)'}}
 29
 30 # Files never to list or enter
 31 declare -a \
 32 EXCLUDE_FILES=${3:-${EXCLUDE_FILES:-'(core "Name with Spaces")'}}
 33
 34
 35 # Here document used as a comment block.
 36 : <<LSfieldsDoc
 37 # # # # # List Filesystem Directory Information # # # # #
 38 #
 39 # ListDirectory "FileGlob" "Field-Array-Name"
 40 # or
 41 # ListDirectory -of "FileGlob" "Field-Array-Filename"
 42 # '-of' meaning 'output to filename'
 43 # # # # #
 44
 45 String format description based on: ls (GNU fileutils) version 4.0.36
 46
 47 Produces a line (or more) formatted:
 48 inode permissions hard-links owner group ...
 49 32736 -rw------- 1 mszick mszick
 50
 51 size day month date hh:mm:ss year path
 52 2756608 Sun Apr 20 08:53:06 2003 /home/mszick/core
 53
 54 Unless it is formatted:
 55 inode permissions hard-links owner group ...
 56 266705 crw-rw---- 1 root uucp
 57
 58 major minor day month date hh:mm:ss year path
 59 4, 68 Sun Apr 20 09:27:33 2003 /dev/ttyS4
 60 NOTE: that pesky comma after the major number
 61
 62 NOTE: the 'path' may be multiple fields:
 63 /home/mszick/core
 64 /proc/982/fd/0 -> /dev/null
 65 /proc/982/fd/1 -> /home/mszick/.xsession-errors
 66 /proc/982/fd/13 -> /tmp/tmpfZVVOCs (deleted)
 67 /proc/982/fd/7 -> /tmp/kde-mszick/ksycoca
 68 /proc/982/fd/8 -> socket:[11586]

 69 /proc/982/fd/9 -> pipe:[11588]
 70
 71 If that isn't enough to keep your parser guessing,
 72 either or both of the path components may be relative:
 73 ../Built-Shared -> Built-Static
 74 ../linux-2.4.20.tar.bz2 -> ../../../SRCS/linux-2.4.20.tar.bz2
 75
 76 The first character of the 11 (10?) character permissions field:
 77 's' Socket
 78 'd' Directory
 79 'b' Block device
 80 'c' Character device
 81 'l' Symbolic link
 82 NOTE: Hard links not marked - test for identical inode numbers
 83 on identical filesystems.
 84 All information about hard linked files are shared, except
 85 for the names and the name's location in the directory system.
 86 NOTE: A "Hard link" is known as a "File Alias" on some systems.
 87 '-' An undistingushed file
 88
 89 Followed by three groups of letters for: User, Group, Others
 90 Character 1: '-' Not readable; 'r' Readable
 91 Character 2: '-' Not writable; 'w' Writable
 92 Character 3, User and Group: Combined execute and special
 93 '-' Not Executable, Not Special
 94 'x' Executable, Not Special
 95 's' Executable, Special
 96 'S' Not Executable, Special
 97 Character 3, Others: Combined execute and sticky (tacky?)
 98 '-' Not Executable, Not Tacky
 99 'x' Executable, Not Tacky
 100 't' Executable, Tacky
 101 'T' Not Executable, Tacky
 102
 103 Followed by an access indicator
 104 Haven't tested this one, it may be the eleventh character
 105 or it may generate another field
 106 ' ' No alternate access
 107 '+' Alternate access
 108 LSfieldsDoc
 109
 110
 111 ListDirectory()
 112 {
 113 local -a T
 114 local -i of=0 # Default return in variable
 115 # OLD_IFS=$IFS # Using BASH default ' \t\n'
 116
 117 case "$#" in
 118 3) case "$1" in
 119 -of) of=1 ; shift ;;
 120 *) return 1 ;;
 121 esac ;;
 122 2) : ;; # Poor man's "continue"
 123 *) return 1 ;;
 124 esac
 125
 126 # NOTE: the (ls) command is NOT quoted (")
 127 T=($(ls --inode --ignore-backups --almost-all --directory \
 128 --full-time --color=none --time=status --sort=none \
 129 --format=long $1))
 130
 131 case $of in
 132 # Assign T back to the array whose name was passed as $2
 133 0) eval $2=\(\"\$\{T\[@\]\}\" \) ;;
 134 # Write T into filename passed as $2

 135 1) echo "${T[@]}" > "$2" ;;
 136 esac
 137 return 0
 138 }
 139
 140 # # # # # Is that string a legal number? # # # # #
 141 #
 142 # IsNumber "Var"
 143 # # # # # There has to be a better way, sigh...
 144
 145 IsNumber()
 146 {
 147 local -i int
 148 if [$# -eq 0]
 149 then
 150 return 1
 151 else
 152 (let int=$1) 2>/dev/null
 153 return $? # Exit status of the let thread
 154 fi
 155 }
 156
 157 # # # # # Index Filesystem Directory Information # # # # #
 158 #
 159 # IndexList "Field-Array-Name" "Index-Array-Name"
 160 # or
 161 # IndexList -if Field-Array-Filename Index-Array-Name
 162 # IndexList -of Field-Array-Name Index-Array-Filename
 163 # IndexList -if -of Field-Array-Filename Index-Array-Filename
 164 # # # # #
 165
 166 : <<IndexListDoc
 167 Walk an array of directory fields produced by ListDirectory
 168
 169 Having suppressed the line breaks in an otherwise line oriented
 170 report, build an index to the array element which starts each line.
 171
 172 Each line gets two index entries, the first element of each line
 173 (inode) and the element that holds the pathname of the file.
 174
 175 The first index entry pair (Line-Number==0) are informational:
 176 Index-Array-Name[0] : Number of "Lines" indexed
 177 Index-Array-Name[1] : "Current Line" pointer into Index-Array-Name
 178
 179 The following index pairs (if any) hold element indexes into
 180 the Field-Array-Name per:
 181 Index-Array-Name[Line-Number * 2] : The "inode" field element.
 182 NOTE: This distance may be either +11 or +12 elements.
 183 Index-Array-Name[(Line-Number * 2) + 1] : The "pathname" element.
 184 NOTE: This distance may be a variable number of elements.
 185 Next line index pair for Line-Number+1.
 186 IndexListDoc
 187
 188
 189
 190 IndexList()
 191 {
 192 local -a LIST # Local of listname passed
 193 local -a -i INDEX=(0 0) # Local of index to return
 194 local -i Lidx Lcnt
 195 local -i if=0 of=0 # Default to variable names
 196
 197 case "$#" in # Simplistic option testing
 198 0) return 1 ;;
 199 1) return 1 ;;
 200 2) : ;; # Poor man's continue

 201 3) case "$1" in
 202 -if) if=1 ;;
 203 -of) of=1 ;;
 204 *) return 1 ;;
 205 esac ; shift ;;
 206 4) if=1 ; of=1 ; shift ; shift ;;
 207 *) return 1
 208 esac
 209
 210 # Make local copy of list
 211 case "$if" in
 212 0) eval LIST=\(\"\$\{$1\[@\]\}\" \) ;;
 213 1) LIST=($(cat $1)) ;;
 214 esac
 215
 216 # Grok (grope?) the array
 217 Lcnt=${#LIST[@]}
 218 Lidx=0
 219 until ((Lidx >= Lcnt))
 220 do
 221 if IsNumber ${LIST[$Lidx]}
 222 then
 223 local -i inode name
 224 local ft
 225 inode=Lidx
 226 local m=${LIST[$Lidx+2]} # Hard Links field
 227 ft=${LIST[$Lidx+1]:0:1} # Fast-Stat
 228 case $ft in
 229 b) ((Lidx+=12)) ;; # Block device
 230 c) ((Lidx+=12)) ;; # Character device
 231 *) ((Lidx+=11)) ;; # Anything else
 232 esac
 233 name=Lidx
 234 case $ft in
 235 -) ((Lidx+=1)) ;; # The easy one
 236 b) ((Lidx+=1)) ;; # Block device
 237 c) ((Lidx+=1)) ;; # Character device
 238 d) ((Lidx+=1)) ;; # The other easy one
 239 l) ((Lidx+=3)) ;; # At LEAST two more fields
 240 # A little more elegance here would handle pipes,
 241 #+ sockets, deleted files - later.
 242 *) until IsNumber ${LIST[$Lidx]} || ((Lidx >= Lcnt))
 243 do
 244 ((Lidx+=1))
 245 done
 246 ;; # Not required
 247 esac
 248 INDEX[${#INDEX[*]}]=$inode
 249 INDEX[${#INDEX[*]}]=$name
 250 INDEX[0]=${INDEX[0]}+1 # One more "line" found
 251 # echo "Line: ${INDEX[0]} Type: $ft Links: $m Inode: \
 252 # ${LIST[$inode]} Name: ${LIST[$name]}"
 253
 254 else
 255 ((Lidx+=1))
 256 fi
 257 done
 258 case "$of" in
 259 0) eval $2=\(\"\$\{INDEX\[@\]\}\" \) ;;
 260 1) echo "${INDEX[@]}" > "$2" ;;
 261 esac
 262 return 0 # What could go wrong?
 263 }
 264
 265 # # # # # Content Identify File # # # # #
 266 #

 267 # DigestFile Input-Array-Name Digest-Array-Name
 268 # or
 269 # DigestFile -if Input-FileName Digest-Array-Name
 270 # # # # #
 271
 272 # Here document used as a comment block.
 273 : <<DigestFilesDoc
 274
 275 The key (no pun intended) to a Unified Content File System (UCFS)
 276 is to distinguish the files in the system based on their content.
 277 Distinguishing files by their name is just so 20th Century.
 278
 279 The content is distinguished by computing a checksum of that content.
 280 This version uses the md5sum program to generate a 128 bit checksum
 281 representative of the file's contents.
 282 There is a chance that two files having different content might
 283 generate the same checksum using md5sum (or any checksum). Should
 284 that become a problem, then the use of md5sum can be replace by a
 285 cyrptographic signature. But until then...
 286
 287 The md5sum program is documented as outputting three fields (and it
 288 does), but when read it appears as two fields (array elements). This
 289 is caused by the lack of whitespace between the second and third field.
 290 So this function gropes the md5sum output and returns:
 291 [0] 32 character checksum in hexidecimal (UCFS filename)
 292 [1] Single character: ' ' text file, '*' binary file
 293 [2] Filesystem (20th Century Style) name
 294 Note: That name may be the character '-' indicating STDIN read.
 295
 296 DigestFilesDoc
 297
 298
 299
 300 DigestFile()
 301 {
 302 local if=0 # Default, variable name
 303 local -a T1 T2
 304
 305 case "$#" in
 306 3) case "$1" in
 307 -if) if=1 ; shift ;;
 308 *) return 1 ;;
 309 esac ;;
 310 2) : ;; # Poor man's "continue"
 311 *) return 1 ;;
 312 esac
 313
 314 case $if in
 315 0) eval T1=\(\"\$\{$1\[@\]\}\" \)
 316 T2=($(echo ${T1[@]} | md5sum -))
 317 ;;
 318 1) T2=($(md5sum $1))
 319 ;;
 320 esac
 321
 322 case ${#T2[@]} in
 323 0) return 1 ;;
 324 1) return 1 ;;
 325 2) case ${T2[1]:0:1} in # SanScrit-2.0.5
 326 *) T2[${#T2[@]}]=${T2[1]:1}
 327 T2[1]=*
 328 ;;
 329 *) T2[${#T2[@]}]=${T2[1]}
 330 T2[1]=" "
 331 ;;
 332 esac

 333 ;;
 334 3) : ;; # Assume it worked
 335 *) return 1 ;;
 336 esac
 337
 338 local -i len=${#T2[0]}
 339 if [$len -ne 32] ; then return 1 ; fi
 340 eval $2=\(\"\$\{T2\[@\]\}\" \)
 341 }
 342
 343 # # # # # Locate File # # # # #
 344 #
 345 # LocateFile [-l] FileName Location-Array-Name
 346 # or
 347 # LocateFile [-l] -of FileName Location-Array-FileName
 348 # # # # #
 349
 350 # A file location is Filesystem-id and inode-number
 351
 352 # Here document used as a comment block.
 353 : <<StatFieldsDoc
 354 Based on stat, version 2.2
 355 stat -t and stat -lt fields
 356 [0] name
 357 [1] Total size
 358 File - number of bytes
 359 Symbolic link - string length of pathname
 360 [2] Number of (512 byte) blocks allocated
 361 [3] File type and Access rights (hex)
 362 [4] User ID of owner
 363 [5] Group ID of owner
 364 [6] Device number
 365 [7] Inode number
 366 [8] Number of hard links
 367 [9] Device type (if inode device) Major
 368 [10] Device type (if inode device) Minor
 369 [11] Time of last access
 370 May be disabled in 'mount' with noatime
 371 atime of files changed by exec, read, pipe, utime, mknod (mmap?)
 372 atime of directories changed by addition/deletion of files
 373 [12] Time of last modification
 374 mtime of files changed by write, truncate, utime, mknod
 375 mtime of directories changed by addtition/deletion of files
 376 [13] Time of last change
 377 ctime reflects time of changed inode information (owner, group
 378 permissions, link count
 379 -*-*- Per:
 380 Return code: 0
 381 Size of array: 14
 382 Contents of array
 383 Element 0: /home/mszick
 384 Element 1: 4096
 385 Element 2: 8
 386 Element 3: 41e8
 387 Element 4: 500
 388 Element 5: 500
 389 Element 6: 303
 390 Element 7: 32385
 391 Element 8: 22
 392 Element 9: 0
 393 Element 10: 0
 394 Element 11: 1051221030
 395 Element 12: 1051214068
 396 Element 13: 1051214068
 397
 398 For a link in the form of linkname -> realname

 399 stat -t linkname returns the linkname (link) information
 400 stat -lt linkname returns the realname information
 401
 402 stat -tf and stat -ltf fields
 403 [0] name
 404 [1] ID-0? # Maybe someday, but Linux stat structure
 405 [2] ID-0? # does not have either LABEL nor UUID
 406 # fields, currently information must come
 407 # from file-system specific utilities
 408 These will be munged into:
 409 [1] UUID if possible
 410 [2] Volume Label if possible
 411 Note: 'mount -l' does return the label and could return the UUID
 412
 413 [3] Maximum length of filenames
 414 [4] Filesystem type
 415 [5] Total blocks in the filesystem
 416 [6] Free blocks
 417 [7] Free blocks for non-root user(s)
 418 [8] Block size of the filesystem
 419 [9] Total inodes
 420 [10] Free inodes
 421
 422 -*-*- Per:
 423 Return code: 0
 424 Size of array: 11
 425 Contents of array
 426 Element 0: /home/mszick
 427 Element 1: 0
 428 Element 2: 0
 429 Element 3: 255
 430 Element 4: ef53
 431 Element 5: 2581445
 432 Element 6: 2277180
 433 Element 7: 2146050
 434 Element 8: 4096
 435 Element 9: 1311552
 436 Element 10: 1276425
 437
 438 StatFieldsDoc
 439
 440
 441 # LocateFile [-l] FileName Location-Array-Name
 442 # LocateFile [-l] -of FileName Location-Array-FileName
 443
 444 LocateFile()
 445 {
 446 local -a LOC LOC1 LOC2
 447 local lk="" of=0
 448
 449 case "$#" in
 450 0) return 1 ;;
 451 1) return 1 ;;
 452 2) : ;;
 453 *) while (("$#" > 2))
 454 do
 455 case "$1" in
 456 -l) lk=-1 ;;
 457 -of) of=1 ;;
 458 *) return 1 ;;
 459 esac
 460 shift
 461 done ;;
 462 esac
 463
 464 # More Sanscrit-2.0.5

 465 # LOC1=($(stat -t $lk $1))
 466 # LOC2=($(stat -tf $lk $1))
 467 # Uncomment above two lines if system has "stat" command installed.
 468 LOC=(${LOC1[@]:0:1} ${LOC1[@]:3:11}
 469 ${LOC2[@]:1:2} ${LOC2[@]:4:1})
 470
 471 case "$of" in
 472 0) eval $2=\(\"\$\{LOC\[@\]\}\" \) ;;
 473 1) echo "${LOC[@]}" > "$2" ;;
 474 esac
 475 return 0
 476 # Which yields (if you are lucky, and have "stat" installed)
 477 # -*-*- Location Discriptor -*-*-
 478 # Return code: 0
 479 # Size of array: 15
 480 # Contents of array
 481 # Element 0: /home/mszick 20th Century name
 482 # Element 1: 41e8 Type and Permissions
 483 # Element 2: 500 User
 484 # Element 3: 500 Group
 485 # Element 4: 303 Device
 486 # Element 5: 32385 inode
 487 # Element 6: 22 Link count
 488 # Element 7: 0 Device Major
 489 # Element 8: 0 Device Minor
 490 # Element 9: 1051224608 Last Access
 491 # Element 10: 1051214068 Last Modify
 492 # Element 11: 1051214068 Last Status
 493 # Element 12: 0 UUID (to be)
 494 # Element 13: 0 Volume Label (to be)
 495 # Element 14: ef53 Filesystem type
 496 }
 497
 498
 499
 500 # And then there was some test code
 501
 502 ListArray() # ListArray Name
 503 {
 504 local -a Ta
 505
 506 eval Ta=\(\"\$\{$1\[@\]\}\" \)
 507 echo
 508 echo "-*-*- List of Array -*-*-"
 509 echo "Size of array $1: ${#Ta[*]}"
 510 echo "Contents of array $1:"
 511 for ((i=0 ; i<${#Ta[*]} ; i++))
 512 do
 513 echo -e "\tElement $i: ${Ta[$i]}"
 514 done
 515 return 0
 516 }
 517
 518 declare -a CUR_DIR
 519 # For small arrays
 520 ListDirectory "${PWD}" CUR_DIR
 521 ListArray CUR_DIR
 522
 523 declare -a DIR_DIG
 524 DigestFile CUR_DIR DIR_DIG
 525 echo "The new \"name\" (checksum) for ${CUR_DIR[9]} is ${DIR_DIG[0]}"
 526
 527 declare -a DIR_ENT
 528 # BIG_DIR # For really big arrays - use a temporary file in ramdisk
 529 # BIG-DIR # ListDirectory -of "${CUR_DIR[11]}/*" "/tmpfs/junk2"
 530 ListDirectory "${CUR_DIR[11]}/*" DIR_ENT

 531
 532 declare -a DIR_IDX
 533 # BIG-DIR # IndexList -if "/tmpfs/junk2" DIR_IDX
 534 IndexList DIR_ENT DIR_IDX
 535
 536 declare -a IDX_DIG
 537 # BIG-DIR # DIR_ENT=($(cat /tmpfs/junk2))
 538 # BIG-DIR # DigestFile -if /tmpfs/junk2 IDX_DIG
 539 DigestFile DIR_ENT IDX_DIG
 540 # Small (should) be able to parallize IndexList & DigestFile
 541 # Large (should) be able to parallize IndexList & DigestFile & the assignment
 542 echo "The \"name\" (checksum) for the contents of ${PWD} is ${IDX_DIG[0]}"
 543
 544 declare -a FILE_LOC
 545 LocateFile ${PWD} FILE_LOC
 546 ListArray FILE_LOC
 547
 548 exit 0

Stéphane Chazelas demonstrates object-oriented programming in a Bash script.

Mariusz Gniazdowski contributed a hash library for use in scripts.

Example A-20. Library of hash functions

 1 # Hash:
 2 # Hash function library
 3 # Author: Mariusz Gniazdowski <mariusz.gn-at-gmail.com>
 4 # Date: 2005-04-07
 5
 6 # Functions making emulating hashes in Bash a little less painful.
 7
 8
 9 # Limitations:
 10 # * Only global variables are supported.
 11 # * Each hash instance generates one global variable per value.
 12 # * Variable names collisions are possible
 13 #+ if you define variable like __hash__hashname_key
 14 # * Keys must use chars that can be part of a Bash variable name
 15 #+ (no dashes, periods, etc.).
 16 # * The hash is created as a variable:
 17 # ... hashname_keyname
 18 # So if somone will create hashes like:
 19 # myhash_ + mykey = myhash__mykey
 20 # myhash + _mykey = myhash__mykey
 21 # Then there will be a collision.
 22 # (This should not pose a major problem.)
 23
 24
 25 Hash_config_varname_prefix=__hash__
 26
 27
 28 # Emulates: hash[key]=value
 29 #
 30 # Params:
 31 # 1 - hash
 32 # 2 - key
 33 # 3 - value
 34 function hash_set {
 35 eval "${Hash_config_varname_prefix}${1}_${2}=\"${3}\""
 36 }
 37
 38

 39 # Emulates: value=hash[key]
 40 #
 41 # Params:
 42 # 1 - hash
 43 # 2 - key
 44 # 3 - value (name of global variable to set)
 45 function hash_get_into {
 46 eval "$3=\"\$${Hash_config_varname_prefix}${1}_${2}\""
 47 }
 48
 49
 50 # Emulates: echo hash[key]
 51 #
 52 # Params:
 53 # 1 - hash
 54 # 2 - key
 55 # 3 - echo params (like -n, for example)
 56 function hash_echo {
 57 eval "echo $3 \"\$${Hash_config_varname_prefix}${1}_${2}\""
 58 }
 59
 60
 61 # Emulates: hash1[key1]=hash2[key2]
 62 #
 63 # Params:
 64 # 1 - hash1
 65 # 2 - key1
 66 # 3 - hash2
 67 # 4 - key2
 68 function hash_copy {
 69 eval "${Hash_config_varname_prefix}${1}_${2}\
 70 =\"\$${Hash_config_varname_prefix}${3}_${4}\""
 71 }
 72
 73
 74 # Emulates: hash[keyN-1]=hash[key2]=...hash[key1]
 75 #
 76 # Copies first key to rest of keys.
 77 #
 78 # Params:
 79 # 1 - hash1
 80 # 2 - key1
 81 # 3 - key2
 82 # . . .
 83 # N - keyN
 84 function hash_dup {
 85 local hashName="$1" keyName="$2"
 86 shift 2
 87 until [${#} -le 0]; do
 88 eval "${Hash_config_varname_prefix}${hashName}_${1}\
 89 =\"\$${Hash_config_varname_prefix}${hashName}_${keyName}\""
 90 shift;
 91 done;
 92 }
 93
 94
 95 # Emulates: unset hash[key]
 96 #
 97 # Params:
 98 # 1 - hash
 99 # 2 - key
 100 function hash_unset {
 101 eval "unset ${Hash_config_varname_prefix}${1}_${2}"
 102 }
 103
 104

 105 # Emulates something similar to: ref=&hash[key]
 106 #
 107 # The reference is name of the variable in which value is held.
 108 #
 109 # Params:
 110 # 1 - hash
 111 # 2 - key
 112 # 3 - ref - Name of global variable to set.
 113 function hash_get_ref_into {
 114 eval "$3=\"${Hash_config_varname_prefix}${1}_${2}\""
 115 }
 116
 117
 118 # Emulates something similar to: echo &hash[key]
 119 #
 120 # That reference is name of variable in which value is held.
 121 #
 122 # Params:
 123 # 1 - hash
 124 # 2 - key
 125 # 3 - echo params (like -n for example)
 126 function hash_echo_ref {
 127 eval "echo $3 \"${Hash_config_varname_prefix}${1}_${2}\""
 128 }
 129
 130
 131
 132 # Emulates something similar to: $$hash[key](param1, param2, ...)
 133 #
 134 # Params:
 135 # 1 - hash
 136 # 2 - key
 137 # 3,4, ... - Function parameters
 138 function hash_call {
 139 local hash key
 140 hash=$1
 141 key=$2
 142 shift 2
 143 eval "eval \"\$${Hash_config_varname_prefix}${hash}_${key} \\\"\\\$@\\\"\""
 144 }
 145
 146
 147 # Emulates something similar to: isset(hash[key]) or hash[key]==NULL
 148 #
 149 # Params:
 150 # 1 - hash
 151 # 2 - key
 152 # Returns:
 153 # 0 - there is such key
 154 # 1 - there is no such key
 155 function hash_is_set {
 156 eval "if [[\"\${${Hash_config_varname_prefix}${1}_${2}-a}\" = \"a\" &&
 157 \"\${${Hash_config_varname_prefix}${1}_${2}-b}\" = \"b\"]]
 158 then return 1; else return 0; fi"
 159 }
 160
 161
 162 # Emulates something similar to:
 163 # foreach($hash as $key => $value) { fun($key,$value); }
 164 #
 165 # It is possible to write different variations of this function.
 166 # Here we use a function call to make it as "generic" as possible.
 167 #
 168 # Params:
 169 # 1 - hash
 170 # 2 - function name

 171 function hash_foreach {
 172 local keyname oldIFS="$IFS"
 173 IFS=' '
 174 for i in $(eval "echo \${!${Hash_config_varname_prefix}${1}_*}"); do
 175 keyname=$(eval "echo \${i##${Hash_config_varname_prefix}${1}_}")
 176 eval "$2 $keyname \"\$$i\""
 177 done
 178 IFS="$oldIFS"
 179 }
 180
 181 # NOTE: In lines 103 and 116, ampersand changed.
 182 # But, it doesn't matter, because these are comment lines anyhow.

Here is an example script using the foregoing hash library.

Example A-21. Colorizing text using hash functions

 1 #!/bin/bash
 2 # hash-example.sh: Colorizing text.
 3 # Author: Mariusz Gniazdowski <mariusz.gn-at-gmail.com>
 4
 5 . Hash.lib # Load the library of functions.
 6
 7 hash_set colors red "\033[0;31m"
 8 hash_set colors blue "\033[0;34m"
 9 hash_set colors light_blue "\033[1;34m"
 10 hash_set colors light_red "\033[1;31m"
 11 hash_set colors cyan "\033[0;36m"
 12 hash_set colors light_green "\033[1;32m"
 13 hash_set colors light_gray "\033[0;37m"
 14 hash_set colors green "\033[0;32m"
 15 hash_set colors yellow "\033[1;33m"
 16 hash_set colors light_purple "\033[1;35m"
 17 hash_set colors purple "\033[0;35m"
 18 hash_set colors reset_color "\033[0;00m"
 19
 20
 21 # $1 - keyname
 22 # $2 - value
 23 try_colors() {
 24 echo -en "$2"
 25 echo "This line is $1."
 26 }
 27 hash_foreach colors try_colors
 28 hash_echo colors reset_color -en
 29
 30 echo -e '\nLet us overwrite some colors with yellow.\n'
 31 # It's hard to read yellow text on some terminals.
 32 hash_dup colors yellow red light_green blue green light_gray cyan
 33 hash_foreach colors try_colors
 34 hash_echo colors reset_color -en
 35
 36 echo -e '\nLet us delete them and try colors once more . . .\n'
 37
 38 for i in red light_green blue green light_gray cyan; do
 39 hash_unset colors $i
 40 done
 41 hash_foreach colors try_colors
 42 hash_echo colors reset_color -en
 43
 44 hash_set other txt "Other examples . . ."
 45 hash_echo other txt
 46 hash_get_into other txt text

 47 echo $text
 48
 49 hash_set other my_fun try_colors
 50 hash_call other my_fun purple "`hash_echo colors purple`"
 51 hash_echo colors reset_color -en
 52
 53 echo; echo "Back to normal?"; echo
 54
 55 exit $?
 56
 57 # On some terminals, the "light" colors print in bold,
 58 # and end up looking darker than the normal ones.
 59 # Why is this?
 60

An example illustrating the mechanics of hashing, but from a different point of view.

Example A-22. More on hash functions

 1 #!/bin/bash
 2 # $Id: ha.sh,v 1.2 2005/04/21 23:24:26 oliver Exp $
 3 # Copyright 2005 Oliver Beckstein
 4 # Released under the GNU Public License
 5 # Author of script granted permission for inclusion in ABS Guide.
 6 # (Thank you!)
 7
 8 #--
 9 # pseudo hash based on indirect parameter expansion
 10 # API: access through functions:
 11 #
 12 # create the hash:
 13 #
 14 # newhash Lovers
 15 #
 16 # add entries (note single quotes for spaces)
 17 #
 18 # addhash Lovers Tristan Isolde
 19 # addhash Lovers 'Romeo Montague' 'Juliet Capulet'
 20 #
 21 # access value by key
 22 #
 23 # gethash Lovers Tristan ----> Isolde
 24 #
 25 # show all keys
 26 #
 27 # keyshash Lovers ----> 'Tristan' 'Romeo Montague'
 28 #
 29 #
 30 # Convention: instead of perls' foo{bar} = boing' syntax,
 31 # use
 32 # '_foo_bar=boing' (two underscores, no spaces)
 33 #
 34 # 1) store key in _NAME_keys[]
 35 # 2) store value in _NAME_values[] using the same integer index
 36 # The integer index for the last entry is _NAME_ptr
 37 #
 38 # NOTE: No error or sanity checks, just bare bones.
 39
 40
 41 function _inihash () {
 42 # private function
 43 # call at the beginning of each procedure
 44 # defines: _keys _values _ptr

 45 #
 46 # Usage: _inihash NAME
 47 local name=$1
 48 _keys=_${name}_keys
 49 _values=_${name}_values
 50 _ptr=_${name}_ptr
 51 }
 52
 53 function newhash () {
 54 # Usage: newhash NAME
 55 # NAME should not contain spaces or dots.
 56 # Actually: it must be a legal name for a Bash variable.
 57 # We rely on Bash automatically recognising arrays.
 58 local name=$1
 59 local _keys _values _ptr
 60 _inihash ${name}
 61 eval ${_ptr}=0
 62 }
 63
 64
 65 function addhash () {
 66 # Usage: addhash NAME KEY 'VALUE with spaces'
 67 # arguments with spaces need to be quoted with single quotes ''
 68 local name=$1 k="$2" v="$3"
 69 local _keys _values _ptr
 70 _inihash ${name}
 71
 72 #echo "DEBUG(addhash): ${_ptr}=${!_ptr}"
 73
 74 eval let ${_ptr}=${_ptr}+1
 75 eval "$_keys[${!_ptr}]=\"${k}\""
 76 eval "$_values[${!_ptr}]=\"${v}\""
 77 }
 78
 79 function gethash () {
 80 # Usage: gethash NAME KEY
 81 # Returns boing
 82 # ERR=0 if entry found, 1 otherwise
 83 # That's not a proper hash --
 84 #+ we simply linearly search through the keys.
 85 local name=$1 key="$2"
 86 local _keys _values _ptr
 87 local k v i found h
 88 _inihash ${name}
 89
 90 # _ptr holds the highest index in the hash
 91 found=0
 92
 93 for i in $(seq 1 ${!_ptr}); do
 94 h="\${${_keys}[${i}]}" # Safer to do it in two steps,
 95 eval k=${h} #+ especially when quoting for spaces.
 96 if ["${k}" = "${key}"]; then found=1; break; fi
 97 done;
 98
 99 [${found} = 0] && return 1;
 100 # else: i is the index that matches the key
 101 h="\${${_values}[${i}]}"
 102 eval echo "${h}"
 103 return 0;
 104 }
 105
 106 function keyshash () {
 107 # Usage: keyshash NAME
 108 # Returns list of all keys defined for hash name.
 109 local name=$1 key="$2"
 110 local _keys _values _ptr

 111 local k i h
 112 _inihash ${name}
 113
 114 # _ptr holds the highest index in the hash
 115 for i in $(seq 1 ${!_ptr}); do
 116 h="\${${_keys}[${i}]}" # Safer to do it in two steps,
 117 eval k=${h} #+ especially when quoting for spaces.
 118 echo -n "'${k}' "
 119 done;
 120 }
 121
 122
 123 # ---
 124
 125 # Now, let's test it.
 126 # (Per comments at the beginning of the script.)
 127 newhash Lovers
 128 addhash Lovers Tristan Isolde
 129 addhash Lovers 'Romeo Montague' 'Juliet Capulet'
 130
 131 # Output results.
 132 echo
 133 gethash Lovers Tristan # Isolde
 134 echo
 135 keyshash Lovers # 'Tristan' 'Romeo Montague'
 136 echo; echo
 137
 138
 139 exit 0
 140
 141 # Exercise:
 142 # --------
 143
 144 # Add error checks to the functions.

Now for a script that installs and mounts those cute USB keychain solid-state "hard drives."

Example A-23. Mounting USB keychain storage devices

 1 #!/bin/bash
 2 # ==> usb.sh
 3 # ==> Script for mounting and installing pen/keychain USB storage devices.
 4 # ==> Runs as root at system startup (see below).
 5 # ==>
 6 # ==> Newer Linux distros (2004 or later) autodetect
 7 # ==> and install USB pen drives, and therefore don't need this script.
 8 # ==> But, it's still instructive.
 9
 10 # This code is free software covered by GNU GPL license version 2 or above.
 11 # Please refer to http://www.gnu.org/ for the full license text.
 12 #
 13 # Some code lifted from usb-mount by Michael Hamilton's usb-mount (LGPL)
 14 #+ see http://users.actrix.co.nz/michael/usbmount.html
 15 #
 16 # INSTALL
 17 # -------
 18 # Put this in /etc/hotplug/usb/diskonkey.
 19 # Then look in /etc/hotplug/usb.distmap, and copy all usb-storage entries
 20 #+ into /etc/hotplug/usb.usermap, substituting "usb-storage" for "diskonkey".
 21 # Otherwise this code is only run during the kernel module invocation/removal
 22 #+ (at least in my tests), which defeats the purpose.
 23 #
 24 # TODO

 25 # ----
 26 # Handle more than one diskonkey device at one time (e.g. /dev/diskonkey1
 27 #+ and /mnt/diskonkey1), etc. The biggest problem here is the handling in
 28 #+ devlabel, which I haven't yet tried.
 29 #
 30 # AUTHOR and SUPPORT
 31 # ------------------
 32 # Konstantin Riabitsev, <icon linux duke edu>.
 33 # Send any problem reports to my email address at the moment.
 34 #
 35 # ==> Comments added by ABS Guide author.
 36
 37
 38
 39 SYMLINKDEV=/dev/diskonkey
 40 MOUNTPOINT=/mnt/diskonkey
 41 DEVLABEL=/sbin/devlabel
 42 DEVLABELCONFIG=/etc/sysconfig/devlabel
 43 IAM=$0
 44
 45 ##
 46 # Functions lifted near-verbatim from usb-mount code.
 47 #
 48 function allAttachedScsiUsb {
 49 find /proc/scsi/ -path '/proc/scsi/usb-storage*' -type f |
 50 xargs grep -l 'Attached: Yes'
 51 }
 52 function scsiDevFromScsiUsb {
 53 echo $1 | awk -F"[-/]" '{ n=$(NF-1);
 54 print "/dev/sd" substr("abcdefghijklmnopqrstuvwxyz", n+1, 1) }'
 55 }
 56
 57 if ["${ACTION}" = "add"] && [-f "${DEVICE}"]; then
 58 ##
 59 # lifted from usbcam code.
 60 #
 61 if [-f /var/run/console.lock]; then
 62 CONSOLEOWNER=`cat /var/run/console.lock`
 63 elif [-f /var/lock/console.lock]; then
 64 CONSOLEOWNER=`cat /var/lock/console.lock`
 65 else
 66 CONSOLEOWNER=
 67 fi
 68 for procEntry in $(allAttachedScsiUsb); do
 69 scsiDev=$(scsiDevFromScsiUsb $procEntry)
 70 # Some bug with usb-storage?
 71 # Partitions are not in /proc/partitions until they are accessed
 72 #+ somehow.
 73 /sbin/fdisk -l $scsiDev >/dev/null
 74 ##
 75 # Most devices have partitioning info, so the data would be on
 76 #+ /dev/sd?1. However, some stupider ones don't have any partitioning
 77 #+ and use the entire device for data storage. This tries to
 78 #+ guess semi-intelligently if we have a /dev/sd?1 and if not, then
 79 #+ it uses the entire device and hopes for the better.
 80 #
 81 if grep -q `basename $scsiDev`1 /proc/partitions; then
 82 part="$scsiDev""1"
 83 else
 84 part=$scsiDev
 85 fi
 86 ##
 87 # Change ownership of the partition to the console user so they can
 88 #+ mount it.
 89 #
 90 if [! -z "$CONSOLEOWNER"]; then

 91 chown $CONSOLEOWNER:disk $part
 92 fi
 93 ##
 94 # This checks if we already have this UUID defined with devlabel.
 95 # If not, it then adds the device to the list.
 96 #
 97 prodid=`$DEVLABEL printid -d $part`
 98 if ! grep -q $prodid $DEVLABELCONFIG; then
 99 # cross our fingers and hope it works
 100 $DEVLABEL add -d $part -s $SYMLINKDEV 2>/dev/null
 101 fi
 102 ##
 103 # Check if the mount point exists and create if it doesn't.
 104 #
 105 if [! -e $MOUNTPOINT]; then
 106 mkdir -p $MOUNTPOINT
 107 fi
 108 ##
 109 # Take care of /etc/fstab so mounting is easy.
 110 #
 111 if ! grep -q "^$SYMLINKDEV" /etc/fstab; then
 112 # Add an fstab entry
 113 echo -e \
 114 "$SYMLINKDEV\t\t$MOUNTPOINT\t\tauto\tnoauto,owner,kudzu 0 0" \
 115 >> /etc/fstab
 116 fi
 117 done
 118 if [! -z "$REMOVER"]; then
 119 ##
 120 # Make sure this script is triggered on device removal.
 121 #
 122 mkdir -p `dirname $REMOVER`
 123 ln -s $IAM $REMOVER
 124 fi
 125 elif ["${ACTION}" = "remove"]; then
 126 ##
 127 # If the device is mounted, unmount it cleanly.
 128 #
 129 if grep -q "$MOUNTPOINT" /etc/mtab; then
 130 # unmount cleanly
 131 umount -l $MOUNTPOINT
 132 fi
 133 ##
 134 # Remove it from /etc/fstab if it's there.
 135 #
 136 if grep -q "^$SYMLINKDEV" /etc/fstab; then
 137 grep -v "^$SYMLINKDEV" /etc/fstab > /etc/.fstab.new
 138 mv -f /etc/.fstab.new /etc/fstab
 139 fi
 140 fi
 141
 142 exit 0

Converting a text file to HTML format.

Example A-24. Converting to HTML

 1 #!/bin/bash
 2 # tohtml.sh [v. 0.2.01, reldate: 04/13/12, a teeny bit less buggy]
 3
 4 # Convert a text file to HTML format.
 5 # Author: Mendel Cooper
 6 # License: GPL3

 7 # Usage: sh tohtml.sh < textfile > htmlfile
 8 # Script can easily be modified to accept source and target filenames.
 9
 10 # Assumptions:
 11 # 1) Paragraphs in (target) text file are separated by a blank line.
 12 # 2) Jpeg images (*.jpg) are located in "images" subdirectory.
 13 # In the target file, the image names are enclosed in square brackets,
 14 # for example, [image01.jpg].
 15 # 3) Emphasized (italic) phrases begin with a space+underscore
 16 #+ or the first character on the line is an underscore,
 17 #+ and end with an underscore+space or underscore+end-of-line.
 18
 19
 20 # Settings
 21 FNTSIZE=2 # Small-medium font size
 22 IMGDIR="images" # Image directory
 23 # Headers
 24 HDR01='<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">'
 25 HDR02='<!-- Converted to HTML by ***tohtml.sh*** script -->'
 26 HDR03='<!-- script author: M. Leo Cooper <thegrendel.abs@gmail.com> -->'
 27 HDR10='<html>'
 28 HDR11='<head>'
 29 HDR11a='</head>'
 30 HDR12a='<title>'
 31 HDR12b='</title>'
 32 HDR121='<META NAME="GENERATOR" CONTENT="tohtml.sh script">'
 33 HDR13='<body bgcolor="#dddddd">' # Change background color to suit.
 34 HDR14a='<font size='
 35 HDR14b='>'
 36 # Footers
 37 FTR10='</body>'
 38 FTR11='</html>'
 39 # Tags
 40 BOLD=""
 41 CENTER="<center>"
 42 END_CENTER="</center>"
 43 LF="
"
 44
 45
 46 write_headers ()
 47 {
 48 echo "$HDR01"
 49 echo
 50 echo "$HDR02"
 51 echo "$HDR03"
 52 echo
 53 echo
 54 echo "$HDR10"
 55 echo "$HDR11"
 56 echo "$HDR121"
 57 echo "$HDR11a"
 58 echo "$HDR13"
 59 echo
 60 echo -n "$HDR14a"
 61 echo -n "$FNTSIZE"
 62 echo "$HDR14b"
 63 echo
 64 echo "$BOLD" # Everything in bold (more easily readable).
 65 }
 66
 67
 68 process_text ()
 69 {
 70 while read line # Read one line at a time.
 71 do
 72 {

 73 if [! "$line"] # Blank line?
 74 then # Then new paragraph must follow.
 75 echo
 76 echo "$LF" # Insert two
 tags.
 77 echo "$LF"
 78 echo
 79 continue # Skip the underscore test.
 80 else # Otherwise . . .
 81
 82 if [["$line" =~ \[*jpg\]]] # Is a graphic?
 83 then # Strip away brackets.
 84 temp=$(echo "$line" | sed -e 's/\[//' -e 's/\]//')
 85 line=""$CENTER" "$END_CENTER" "
 86 # Add image tag.
 87 # And, center it.
 88 fi
 89
 90 fi
 91
 92
 93 echo "$line" | grep -q _
 94 if ["$?" -eq 0] # If line contains underscore ...
 95 then
 96 # ===
 97 # Convert underscored phrase to italics.
 98 temp=$(echo "$line" |
 99 sed -e 's/ _/ <i>/' -e 's/_/<\/i> /' |
 100 sed -e 's/^_/<i>/' -e 's/_/<\/i>/')
 101 # Process only underscores prefixed by space,
 102 #+ or at beginning or end of line.
 103 # Do not convert underscores embedded within a word!
 104 line="$temp"
 105 # Slows script execution. Can be optimized?
 106 # ===
 107 fi
 108
 109
 110
 111 # echo
 112 echo "$line"
 113 # echo
 114 # Don't want extra blank lines in generated text!
 115 } # End while
 116 done
 117 } # End process_text ()
 118
 119
 120 write_footers () # Termination tags.
 121 {
 122 echo "$FTR10"
 123 echo "$FTR11"
 124 }
 125
 126
 127 # main () {
 128 # =========
 129 write_headers
 130 process_text
 131 write_footers
 132 # =========
 133 # }
 134
 135 exit $?
 136
 137 # Exercises:
 138 # ---------

 139 # 1) Fixup: Check for closing underscore before a comma or period.
 140 # 2) Add a test for the presence of a closing underscore
 141 #+ in phrases to be italicized.

Here is something to warm the hearts of webmasters and mistresses: a script that saves weblogs.

Example A-25. Preserving weblogs

 1 #!/bin/bash
 2 # archiveweblogs.sh v1.0
 3
 4 # Troy Engel <tengel@fluid.com>
 5 # Slightly modified by document author.
 6 # Used with permission.
 7 #
 8 # This script will preserve the normally rotated and
 9 #+ thrown away weblogs from a default RedHat/Apache installation.
 10 # It will save the files with a date/time stamp in the filename,
 11 #+ bzipped, to a given directory.
 12 #
 13 # Run this from crontab nightly at an off hour,
 14 #+ as bzip2 can suck up some serious CPU on huge logs:
 15 # 0 2 * * * /opt/sbin/archiveweblogs.sh
 16
 17
 18 PROBLEM=66
 19
 20 # Set this to your backup dir.
 21 BKP_DIR=/opt/backups/weblogs
 22
 23 # Default Apache/RedHat stuff
 24 LOG_DAYS="4 3 2 1"
 25 LOG_DIR=/var/log/httpd
 26 LOG_FILES="access_log error_log"
 27
 28 # Default RedHat program locations
 29 LS=/bin/ls
 30 MV=/bin/mv
 31 ID=/usr/bin/id
 32 CUT=/bin/cut
 33 COL=/usr/bin/column
 34 BZ2=/usr/bin/bzip2
 35
 36 # Are we root?
 37 USER=`$ID -u`
 38 if ["X$USER" != "X0"]; then
 39 echo "PANIC: Only root can run this script!"
 40 exit $PROBLEM
 41 fi
 42
 43 # Backup dir exists/writable?
 44 if [! -x $BKP_DIR]; then
 45 echo "PANIC: $BKP_DIR doesn't exist or isn't writable!"
 46 exit $PROBLEM
 47 fi
 48
 49 # Move, rename and bzip2 the logs
 50 for logday in $LOG_DAYS; do
 51 for logfile in $LOG_FILES; do
 52 MYFILE="$LOG_DIR/$logfile.$logday"
 53 if [-w $MYFILE]; then
 54 DTS=`$LS -lgo --time-style=+%Y%m%d $MYFILE | $COL -t | $CUT -d ' ' -f7`
 55 $MV $MYFILE $BKP_DIR/$logfile.$DTS

 56 $BZ2 $BKP_DIR/$logfile.$DTS
 57 else
 58 # Only spew an error if the file exits (ergo non-writable).
 59 if [-f $MYFILE]; then
 60 echo "ERROR: $MYFILE not writable. Skipping."
 61 fi
 62 fi
 63 done
 64 done
 65
 66 exit 0

How to keep the shell from expanding and reinterpreting text strings.

Example A-26. Protecting literal strings

 1 #! /bin/bash
 2 # protect_literal.sh
 3
 4 # set -vx
 5
 6 :<<-'_Protect_Literal_String_Doc'
 7
 8 Copyright (c) Michael S. Zick, 2003; All Rights Reserved
 9 License: Unrestricted reuse in any form, for any purpose.
 10 Warranty: None
 11 Revision: ID
 12
 13 Documentation redirected to the Bash no-operation.
 14 Bash will '/dev/null' this block when the script is first read.
 15 (Uncomment the above set command to see this action.)
 16
 17 Remove the first (Sha-Bang) line when sourcing this as a library
 18 procedure. Also comment out the example use code in the two
 19 places where shown.
 20
 21
 22 Usage:
 23 _protect_literal_str 'Whatever string meets your ${fancy}'
 24 Just echos the argument to standard out, hard quotes
 25 restored.
 26
 27 $(_protect_literal_str 'Whatever string meets your ${fancy}')
 28 as the right-hand-side of an assignment statement.
 29
 30 Does:
 31 As the right-hand-side of an assignment, preserves the
 32 hard quotes protecting the contents of the literal during
 33 assignment.
 34
 35 Notes:
 36 The strange names (_*) are used to avoid trampling on
 37 the user's chosen names when this is sourced as a
 38 library.
 39
 40 _Protect_Literal_String_Doc
 41
 42 # The 'for illustration' function form
 43
 44 _protect_literal_str() {
 45
 46 # Pick an un-used, non-printing character as local IFS.
 47 # Not required, but shows that we are ignoring it.

 48 local IFS=$'\x1B' # \ESC character
 49
 50 # Enclose the All-Elements-Of in hard quotes during assignment.
 51 local tmp=$'\x27'$@$'\x27'
 52 # local tmp=$'\''$@$'\'' # Even uglier.
 53
 54 local len=${#tmp} # Info only.
 55 echo $tmp is $len long. # Output AND information.
 56 }
 57
 58 # This is the short-named version.
 59 _pls() {
 60 local IFS=$'x1B' # \ESC character (not required)
 61 echo $'\x27'$@$'\x27' # Hard quoted parameter glob
 62 }
 63
 64 # :<<-'_Protect_Literal_String_Test'
 65 # # # Remove the above "# " to disable this code. # # #
 66
 67 # See how that looks when printed.
 68 echo
 69 echo "- - Test One - -"
 70 _protect_literal_str 'Hello $user'
 71 _protect_literal_str 'Hello "${username}"'
 72 echo
 73
 74 # Which yields:
 75 # - - Test One - -
 76 # 'Hello $user' is 13 long.
 77 # 'Hello "${username}"' is 21 long.
 78
 79 # Looks as expected, but why all of the trouble?
 80 # The difference is hidden inside the Bash internal order
 81 #+ of operations.
 82 # Which shows when you use it on the RHS of an assignment.
 83
 84 # Declare an array for test values.
 85 declare -a arrayZ
 86
 87 # Assign elements with various types of quotes and escapes.
 88 arrayZ=(zero "$(_pls 'Hello ${Me}')" 'Hello ${You}' "\'Pass: ${pw}\'")
 89
 90 # Now list that array and see what is there.
 91 echo "- - Test Two - -"
 92 for ((i=0 ; i<${#arrayZ[*]} ; i++))
 93 do
 94 echo Element $i: ${arrayZ[$i]} is: ${#arrayZ[$i]} long.
 95 done
 96 echo
 97
 98 # Which yields:
 99 # - - Test Two - -
 100 # Element 0: zero is: 4 long. # Our marker element
 101 # Element 1: 'Hello ${Me}' is: 13 long. # Our "$(_pls '...')"
 102 # Element 2: Hello ${You} is: 12 long. # Quotes are missing
 103 # Element 3: \'Pass: \' is: 10 long. # ${pw} expanded to nothing
 104
 105 # Now make an assignment with that result.
 106 declare -a array2=(${arrayZ[@]})
 107
 108 # And print what happened.
 109 echo "- - Test Three - -"
 110 for ((i=0 ; i<${#array2[*]} ; i++))
 111 do
 112 echo Element $i: ${array2[$i]} is: ${#array2[$i]} long.
 113 done

 114 echo
 115
 116 # Which yields:
 117 # - - Test Three - -
 118 # Element 0: zero is: 4 long. # Our marker element.
 119 # Element 1: Hello ${Me} is: 11 long. # Intended result.
 120 # Element 2: Hello is: 5 long. # ${You} expanded to nothing.
 121 # Element 3: 'Pass: is: 6 long. # Split on the whitespace.
 122 # Element 4: ' is: 1 long. # The end quote is here now.
 123
 124 # Our Element 1 has had its leading and trailing hard quotes stripped.
 125 # Although not shown, leading and trailing whitespace is also stripped.
 126 # Now that the string contents are set, Bash will always, internally,
 127 #+ hard quote the contents as required during its operations.
 128
 129 # Why?
 130 # Considering our "$(_pls 'Hello ${Me}')" construction:
 131 # " ... " -> Expansion required, strip the quotes.
 132 # $(...) -> Replace with the result of..., strip this.
 133 # _pls ' ... ' -> called with literal arguments, strip the quotes.
 134 # The result returned includes hard quotes; BUT the above processing
 135 #+ has already been done, so they become part of the value assigned.
 136 #
 137 # Similarly, during further usage of the string variable, the ${Me}
 138 #+ is part of the contents (result) and survives any operations
 139 # (Until explicitly told to evaluate the string).
 140
 141 # Hint: See what happens when the hard quotes ($'\x27') are replaced
 142 #+ with soft quotes ($'\x22') in the above procedures.
 143 # Interesting also is to remove the addition of any quoting.
 144
 145 # _Protect_Literal_String_Test
 146 # # # Remove the above "# " to disable this code. # # #
 147
 148 exit 0

But, what if you want the shell to expand and reinterpret strings?

Example A-27. Unprotecting literal strings

 1 #! /bin/bash
 2 # unprotect_literal.sh
 3
 4 # set -vx
 5
 6 :<<-'_UnProtect_Literal_String_Doc'
 7
 8 Copyright (c) Michael S. Zick, 2003; All Rights Reserved
 9 License: Unrestricted reuse in any form, for any purpose.
 10 Warranty: None
 11 Revision: ID
 12
 13 Documentation redirected to the Bash no-operation. Bash will
 14 '/dev/null' this block when the script is first read.
 15 (Uncomment the above set command to see this action.)
 16
 17 Remove the first (Sha-Bang) line when sourcing this as a library
 18 procedure. Also comment out the example use code in the two
 19 places where shown.
 20
 21
 22 Usage:
 23 Complement of the "$(_pls 'Literal String')" function.

 24 (See the protect_literal.sh example.)
 25
 26 StringVar=$(_upls ProtectedSringVariable)
 27
 28 Does:
 29 When used on the right-hand-side of an assignment statement;
 30 makes the substitions embedded in the protected string.
 31
 32 Notes:
 33 The strange names (_*) are used to avoid trampling on
 34 the user's chosen names when this is sourced as a
 35 library.
 36
 37
 38 _UnProtect_Literal_String_Doc
 39
 40 _upls() {
 41 local IFS=$'x1B' # \ESC character (not required)
 42 eval echo $@ # Substitution on the glob.
 43 }
 44
 45 # :<<-'_UnProtect_Literal_String_Test'
 46 # # # Remove the above "# " to disable this code. # # #
 47
 48
 49 _pls() {
 50 local IFS=$'x1B' # \ESC character (not required)
 51 echo $'\x27'$@$'\x27' # Hard quoted parameter glob
 52 }
 53
 54 # Declare an array for test values.
 55 declare -a arrayZ
 56
 57 # Assign elements with various types of quotes and escapes.
 58 arrayZ=(zero "$(_pls 'Hello ${Me}')" 'Hello ${You}' "\'Pass: ${pw}\'")
 59
 60 # Now make an assignment with that result.
 61 declare -a array2=(${arrayZ[@]})
 62
 63 # Which yielded:
 64 # - - Test Three - -
 65 # Element 0: zero is: 4 long # Our marker element.
 66 # Element 1: Hello ${Me} is: 11 long # Intended result.
 67 # Element 2: Hello is: 5 long # ${You} expanded to nothing.
 68 # Element 3: 'Pass: is: 6 long # Split on the whitespace.
 69 # Element 4: ' is: 1 long # The end quote is here now.
 70
 71 # set -vx
 72
 73 # Initialize 'Me' to something for the embedded ${Me} substitution.
 74 # This needs to be done ONLY just prior to evaluating the
 75 #+ protected string.
 76 # (This is why it was protected to begin with.)
 77
 78 Me="to the array guy."
 79
 80 # Set a string variable destination to the result.
 81 newVar=$(_upls ${array2[1]})
 82
 83 # Show what the contents are.
 84 echo $newVar
 85
 86 # Do we really need a function to do this?
 87 newerVar=$(eval echo ${array2[1]})
 88 echo $newerVar
 89

 90 # I guess not, but the _upls function gives us a place to hang
 91 #+ the documentation on.
 92 # This helps when we forget what a # construction like:
 93 #+ $(eval echo ...) means.
 94
 95 # What if Me isn't set when the protected string is evaluated?
 96 unset Me
 97 newestVar=$(_upls ${array2[1]})
 98 echo $newestVar
 99
 100 # Just gone, no hints, no runs, no errors.
 101
 102 # Why in the world?
 103 # Setting the contents of a string variable containing character
 104 #+ sequences that have a meaning in Bash is a general problem in
 105 #+ script programming.
 106 #
 107 # This problem is now solved in eight lines of code
 108 #+ (and four pages of description).
 109
 110 # Where is all this going?
 111 # Dynamic content Web pages as an array of Bash strings.
 112 # Content set per request by a Bash 'eval' command
 113 #+ on the stored page template.
 114 # Not intended to replace PHP, just an interesting thing to do.
 115 ###
 116 # Don't have a webserver application?
 117 # No problem, check the example directory of the Bash source;
 118 #+ there is a Bash script for that also.
 119
 120 # _UnProtect_Literal_String_Test
 121 # # # Remove the above "# " to disable this code. # # #
 122
 123 exit 0

This interesting script helps hunt down spammers.

Example A-28. Spammer Identification

 1 #!/bin/bash
 2
 3 # $Id: is_spammer.bash,v 1.12.2.11 2004/10/01 21:42:33 mszick Exp $
 4 # Above line is RCS info.
 5
 6 # The latest version of this script is available from http://www.morethan.org.
 7 #
 8 # Spammer-identification
 9 # by Michael S. Zick
 10 # Used in the ABS Guide with permission.
 11
 12
 13
 14 ###
 15 # Documentation
 16 # See also "Quickstart" at end of script.
 17 ###
 18
 19 :<<-'__is_spammer_Doc_'
 20
 21 Copyright (c) Michael S. Zick, 2004
 22 License: Unrestricted reuse in any form, for any purpose.
 23 Warranty: None -{Its a script; the user is on their own.}-

 24
 25 Impatient?
 26 Application code: goto "# # # Hunt the Spammer' program code # # #"
 27 Example output: ":<<-'_is_spammer_outputs_'"
 28 How to use: Enter script name without arguments.
 29 Or goto "Quickstart" at end of script.
 30
 31 Provides
 32 Given a domain name or IP(v4) address as input:
 33
 34 Does an exhaustive set of queries to find the associated
 35 network resources (short of recursing into TLDs).
 36
 37 Checks the IP(v4) addresses found against Blacklist
 38 nameservers.
 39
 40 If found to be a blacklisted IP(v4) address,
 41 reports the blacklist text records.
 42 (Usually hyper-links to the specific report.)
 43
 44 Requires
 45 A working Internet connection.
 46 (Exercise: Add check and/or abort if not on-line when running script.)
 47 Bash with arrays (2.05b+).
 48
 49 The external program 'dig' --
 50 a utility program provided with the 'bind' set of programs.
 51 Specifically, the version which is part of Bind series 9.x
 52 See: http://www.isc.org
 53
 54 All usages of 'dig' are limited to wrapper functions,
 55 which may be rewritten as required.
 56 See: dig_wrappers.bash for details.
 57 ("Additional documentation" -- below)
 58
 59 Usage
 60 Script requires a single argument, which may be:
 61 1) A domain name;
 62 2) An IP(v4) address;
 63 3) A filename, with one name or address per line.
 64
 65 Script accepts an optional second argument, which may be:
 66 1) A Blacklist server name;
 67 2) A filename, with one Blacklist server name per line.
 68
 69 If the second argument is not provided, the script uses
 70 a built-in set of (free) Blacklist servers.
 71
 72 See also, the Quickstart at the end of this script (after 'exit').
 73
 74 Return Codes
 75 0 - All OK
 76 1 - Script failure
 77 2 - Something is Blacklisted
 78
 79 Optional environment variables
 80 SPAMMER_TRACE
 81 If set to a writable file,
 82 script will log an execution flow trace.
 83
 84 SPAMMER_DATA
 85 If set to a writable file, script will dump its
 86 discovered data in the form of GraphViz file.
 87 See: http://www.research.att.com/sw/tools/graphviz
 88
 89 SPAMMER_LIMIT

 90 Limits the depth of resource tracing.
 91
 92 Default is 2 levels.
 93
 94 A setting of 0 (zero) means 'unlimited' . . .
 95 Caution: script might recurse the whole Internet!
 96
 97 A limit of 1 or 2 is most useful when processing
 98 a file of domain names and addresses.
 99 A higher limit can be useful when hunting spam gangs.
 100
 101
 102 Additional documentation
 103 Download the archived set of scripts
 104 explaining and illustrating the function contained within this script.
 105 http://bash.deta.in/mszick_clf.tar.bz2
 106
 107
 108 Study notes
 109 This script uses a large number of functions.
 110 Nearly all general functions have their own example script.
 111 Each of the example scripts have tutorial level comments.
 112
 113 Scripting project
 114 Add support for IP(v6) addresses.
 115 IP(v6) addresses are recognized but not processed.
 116
 117 Advanced project
 118 Add the reverse lookup detail to the discovered information.
 119
 120 Report the delegation chain and abuse contacts.
 121
 122 Modify the GraphViz file output to include the
 123 newly discovered information.
 124
 125 __is_spammer_Doc_
 126
 127 ###
 128
 129
 130
 131
 132 #### Special IFS settings used for string parsing. ####
 133
 134 # Whitespace == :Space:Tab:Line Feed:Carriage Return:
 135 WSP_IFS=$'\x20'$'\x09'$'\x0A'$'\x0D'
 136
 137 # No Whitespace == Line Feed:Carriage Return
 138 NO_WSP=$'\x0A'$'\x0D'
 139
 140 # Field separator for dotted decimal IP addresses
 141 ADR_IFS=${NO_WSP}'.'
 142
 143 # Array to dotted string conversions
 144 DOT_IFS='.'${WSP_IFS}
 145
 146 # # # Pending operations stack machine # # #
 147 # This set of functions described in func_stack.bash.
 148 # (See "Additional documentation" above.)
 149 # # #
 150
 151 # Global stack of pending operations.
 152 declare -f -a _pending_
 153 # Global sentinel for stack runners
 154 declare -i _p_ctrl_
 155 # Global holder for currently executing function

 156 declare -f _pend_current_
 157
 158 # # # Debug version only - remove for regular use # # #
 159 #
 160 # The function stored in _pend_hook_ is called
 161 # immediately before each pending function is
 162 # evaluated. Stack clean, _pend_current_ set.
 163 #
 164 # This thingy demonstrated in pend_hook.bash.
 165 declare -f _pend_hook_
 166 # # #
 167
 168 # The do nothing function
 169 pend_dummy() { : ; }
 170
 171 # Clear and initialize the function stack.
 172 pend_init() {
 173 unset _pending_[@]
 174 pend_func pend_stop_mark
 175 _pend_hook_='pend_dummy' # Debug only.
 176 }
 177
 178 # Discard the top function on the stack.
 179 pend_pop() {
 180 if [${#_pending_[@]} -gt 0]
 181 then
 182 local -i _top_
 183 _top_=${#_pending_[@]}-1
 184 unset _pending_[$_top_]
 185 fi
 186 }
 187
 188 # pend_func function_name [$(printf '%q\n' arguments)]
 189 pend_func() {
 190 local IFS=${NO_WSP}
 191 set -f
 192 _pending_[${#_pending_[@]}]=$@
 193 set +f
 194 }
 195
 196 # The function which stops the release:
 197 pend_stop_mark() {
 198 _p_ctrl_=0
 199 }
 200
 201 pend_mark() {
 202 pend_func pend_stop_mark
 203 }
 204
 205 # Execute functions until 'pend_stop_mark' . . .
 206 pend_release() {
 207 local -i _top_ # Declare _top_ as integer.
 208 _p_ctrl_=${#_pending_[@]}
 209 while [${_p_ctrl_} -gt 0]
 210 do
 211 _top_=${#_pending_[@]}-1
 212 _pend_current_=${_pending_[$_top_]}
 213 unset _pending_[$_top_]
 214 $_pend_hook_ # Debug only.
 215 eval $_pend_current_
 216 done
 217 }
 218
 219 # Drop functions until 'pend_stop_mark' . . .
 220 pend_drop() {
 221 local -i _top_

 222 local _pd_ctrl_=${#_pending_[@]}
 223 while [${_pd_ctrl_} -gt 0]
 224 do
 225 _top_=$_pd_ctrl_-1
 226 if ["${_pending_[$_top_]}" == 'pend_stop_mark']
 227 then
 228 unset _pending_[$_top_]
 229 break
 230 else
 231 unset _pending_[$_top_]
 232 _pd_ctrl_=$_top_
 233 fi
 234 done
 235 if [${#_pending_[@]} -eq 0]
 236 then
 237 pend_func pend_stop_mark
 238 fi
 239 }
 240
 241 #### Array editors ####
 242
 243 # This function described in edit_exact.bash.
 244 # (See "Additional documentation," above.)
 245 # edit_exact <excludes_array_name> <target_array_name>
 246 edit_exact() {
 247 [$# -eq 2] ||
 248 [$# -eq 3] || return 1
 249 local -a _ee_Excludes
 250 local -a _ee_Target
 251 local _ee_x
 252 local _ee_t
 253 local IFS=${NO_WSP}
 254 set -f
 255 eval _ee_Excludes=\(\$\{$1\[@\]\} \)
 256 eval _ee_Target=\(\$\{$2\[@\]\} \)
 257 local _ee_len=${#_ee_Target[@]} # Original length.
 258 local _ee_cnt=${#_ee_Excludes[@]} # Exclude list length.
 259 [${_ee_len} -ne 0] || return 0 # Can't edit zero length.
 260 [${_ee_cnt} -ne 0] || return 0 # Can't edit zero length.
 261 for ((x = 0; x < ${_ee_cnt} ; x++))
 262 do
 263 _ee_x=${_ee_Excludes[$x]}
 264 for ((n = 0 ; n < ${_ee_len} ; n++))
 265 do
 266 _ee_t=${_ee_Target[$n]}
 267 if [x"${_ee_t}" == x"${_ee_x}"]
 268 then
 269 unset _ee_Target[$n] # Discard match.
 270 [$# -eq 2] && break # If 2 arguments, then done.
 271 fi
 272 done
 273 done
 274 eval $2=\(\$\{_ee_Target\[@\]\} \)
 275 set +f
 276 return 0
 277 }
 278
 279 # This function described in edit_by_glob.bash.
 280 # edit_by_glob <excludes_array_name> <target_array_name>
 281 edit_by_glob() {
 282 [$# -eq 2] ||
 283 [$# -eq 3] || return 1
 284 local -a _ebg_Excludes
 285 local -a _ebg_Target
 286 local _ebg_x
 287 local _ebg_t

 288 local IFS=${NO_WSP}
 289 set -f
 290 eval _ebg_Excludes=\(\$\{$1\[@\]\} \)
 291 eval _ebg_Target=\(\$\{$2\[@\]\} \)
 292 local _ebg_len=${#_ebg_Target[@]}
 293 local _ebg_cnt=${#_ebg_Excludes[@]}
 294 [${_ebg_len} -ne 0] || return 0
 295 [${_ebg_cnt} -ne 0] || return 0
 296 for ((x = 0; x < ${_ebg_cnt} ; x++))
 297 do
 298 _ebg_x=${_ebg_Excludes[$x]}
 299 for ((n = 0 ; n < ${_ebg_len} ; n++))
 300 do
 301 [$# -eq 3] && _ebg_x=${_ebg_x}'*' # Do prefix edit
 302 if [${_ebg_Target[$n]:=}] #+ if defined & set.
 303 then
 304 _ebg_t=${_ebg_Target[$n]/#${_ebg_x}/}
 305 [${#_ebg_t} -eq 0] && unset _ebg_Target[$n]
 306 fi
 307 done
 308 done
 309 eval $2=\(\$\{_ebg_Target\[@\]\} \)
 310 set +f
 311 return 0
 312 }
 313
 314 # This function described in unique_lines.bash.
 315 # unique_lines <in_name> <out_name>
 316 unique_lines() {
 317 [$# -eq 2] || return 1
 318 local -a _ul_in
 319 local -a _ul_out
 320 local -i _ul_cnt
 321 local -i _ul_pos
 322 local _ul_tmp
 323 local IFS=${NO_WSP}
 324 set -f
 325 eval _ul_in=\(\$\{$1\[@\]\} \)
 326 _ul_cnt=${#_ul_in[@]}
 327 for ((_ul_pos = 0 ; _ul_pos < ${_ul_cnt} ; _ul_pos++))
 328 do
 329 if [${_ul_in[${_ul_pos}]:=}] # If defined & not empty
 330 then
 331 _ul_tmp=${_ul_in[${_ul_pos}]}
 332 _ul_out[${#_ul_out[@]}]=${_ul_tmp}
 333 for ((zap = _ul_pos ; zap < ${_ul_cnt} ; zap++))
 334 do
 335 [${_ul_in[${zap}]:=}] &&
 336 ['x'${_ul_in[${zap}]} == 'x'${_ul_tmp}] &&
 337 unset _ul_in[${zap}]
 338 done
 339 fi
 340 done
 341 eval $2=\(\$\{_ul_out\[@\]\} \)
 342 set +f
 343 return 0
 344 }
 345
 346 # This function described in char_convert.bash.
 347 # to_lower <string>
 348 to_lower() {
 349 [$# -eq 1] || return 1
 350 local _tl_out
 351 _tl_out=${1//A/a}
 352 _tl_out=${_tl_out//B/b}
 353 _tl_out=${_tl_out//C/c}

 354 _tl_out=${_tl_out//D/d}
 355 _tl_out=${_tl_out//E/e}
 356 _tl_out=${_tl_out//F/f}
 357 _tl_out=${_tl_out//G/g}
 358 _tl_out=${_tl_out//H/h}
 359 _tl_out=${_tl_out//I/i}
 360 _tl_out=${_tl_out//J/j}
 361 _tl_out=${_tl_out//K/k}
 362 _tl_out=${_tl_out//L/l}
 363 _tl_out=${_tl_out//M/m}
 364 _tl_out=${_tl_out//N/n}
 365 _tl_out=${_tl_out//O/o}
 366 _tl_out=${_tl_out//P/p}
 367 _tl_out=${_tl_out//Q/q}
 368 _tl_out=${_tl_out//R/r}
 369 _tl_out=${_tl_out//S/s}
 370 _tl_out=${_tl_out//T/t}
 371 _tl_out=${_tl_out//U/u}
 372 _tl_out=${_tl_out//V/v}
 373 _tl_out=${_tl_out//W/w}
 374 _tl_out=${_tl_out//X/x}
 375 _tl_out=${_tl_out//Y/y}
 376 _tl_out=${_tl_out//Z/z}
 377 echo ${_tl_out}
 378 return 0
 379 }
 380
 381 #### Application helper functions ####
 382
 383 # Not everybody uses dots as separators (APNIC, for example).
 384 # This function described in to_dot.bash
 385 # to_dot <string>
 386 to_dot() {
 387 [$# -eq 1] || return 1
 388 echo ${1//[#|@|%]/.}
 389 return 0
 390 }
 391
 392 # This function described in is_number.bash.
 393 # is_number <input>
 394 is_number() {
 395 ["$#" -eq 1] || return 1 # is blank?
 396 [x"$1" == 'x0'] && return 0 # is zero?
 397 local -i tst
 398 let tst=$1 2>/dev/null # else is numeric!
 399 return $?
 400 }
 401
 402 # This function described in is_address.bash.
 403 # is_address <input>
 404 is_address() {
 405 [$# -eq 1] || return 1 # Blank ==> false
 406 local -a _ia_input
 407 local IFS=${ADR_IFS}
 408 _ia_input=($1)
 409 if [${#_ia_input[@]} -eq 4] &&
 410 is_number ${_ia_input[0]} &&
 411 is_number ${_ia_input[1]} &&
 412 is_number ${_ia_input[2]} &&
 413 is_number ${_ia_input[3]} &&
 414 [${_ia_input[0]} -lt 256] &&
 415 [${_ia_input[1]} -lt 256] &&
 416 [${_ia_input[2]} -lt 256] &&
 417 [${_ia_input[3]} -lt 256]
 418 then
 419 return 0

 420 else
 421 return 1
 422 fi
 423 }
 424
 425 # This function described in split_ip.bash.
 426 # split_ip <IP_address>
 427 #+ <array_name_norm> [<array_name_rev>]
 428 split_ip() {
 429 [$# -eq 3] || # Either three
 430 [$# -eq 2] || return 1 #+ or two arguments
 431 local -a _si_input
 432 local IFS=${ADR_IFS}
 433 _si_input=($1)
 434 IFS=${WSP_IFS}
 435 eval $2=\(\ \$\{_si_input\[@\]\}\ \)
 436 if [$# -eq 3]
 437 then
 438 # Build query order array.
 439 local -a _dns_ip
 440 _dns_ip[0]=${_si_input[3]}
 441 _dns_ip[1]=${_si_input[2]}
 442 _dns_ip[2]=${_si_input[1]}
 443 _dns_ip[3]=${_si_input[0]}
 444 eval $3=\(\ \$\{_dns_ip\[@\]\}\ \)
 445 fi
 446 return 0
 447 }
 448
 449 # This function described in dot_array.bash.
 450 # dot_array <array_name>
 451 dot_array() {
 452 [$# -eq 1] || return 1 # Single argument required.
 453 local -a _da_input
 454 eval _da_input=\(\ \$\{$1\[@\]\}\ \)
 455 local IFS=${DOT_IFS}
 456 local _da_output=${_da_input[@]}
 457 IFS=${WSP_IFS}
 458 echo ${_da_output}
 459 return 0
 460 }
 461
 462 # This function described in file_to_array.bash
 463 # file_to_array <file_name> <line_array_name>
 464 file_to_array() {
 465 [$# -eq 2] || return 1 # Two arguments required.
 466 local IFS=${NO_WSP}
 467 local -a _fta_tmp_
 468 _fta_tmp_=($(cat $1))
 469 eval $2=\(\$\{_fta_tmp_\[@\]\} \)
 470 return 0
 471 }
 472
 473 # Columnized print of an array of multi-field strings.
 474 # col_print <array_name> <min_space> <
 475 #+ tab_stop [tab_stops]>
 476 col_print() {
 477 [$# -gt 2] || return 0
 478 local -a _cp_inp
 479 local -a _cp_spc
 480 local -a _cp_line
 481 local _cp_min
 482 local _cp_mcnt
 483 local _cp_pos
 484 local _cp_cnt
 485 local _cp_tab

 486 local -i _cp
 487 local -i _cpf
 488 local _cp_fld
 489 # WARNING: FOLLOWING LINE NOT BLANK -- IT IS QUOTED SPACES.
 490 local _cp_max=' '
 491 set -f
 492 local IFS=${NO_WSP}
 493 eval _cp_inp=\(\ \$\{$1\[@\]\}\ \)
 494 [${#_cp_inp[@]} -gt 0] || return 0 # Empty is easy.
 495 _cp_mcnt=$2
 496 _cp_min=${_cp_max:1:${_cp_mcnt}}
 497 shift
 498 shift
 499 _cp_cnt=$#
 500 for ((_cp = 0 ; _cp < _cp_cnt ; _cp++))
 501 do
 502 _cp_spc[${#_cp_spc[@]}]="${_cp_max:2:$1}" #"
 503 shift
 504 done
 505 _cp_cnt=${#_cp_inp[@]}
 506 for ((_cp = 0 ; _cp < _cp_cnt ; _cp++))
 507 do
 508 _cp_pos=1
 509 IFS=${NO_WSP}$'\x20'
 510 _cp_line=(${_cp_inp[${_cp}]})
 511 IFS=${NO_WSP}
 512 for ((_cpf = 0 ; _cpf < ${#_cp_line[@]} ; _cpf++))
 513 do
 514 _cp_tab=${_cp_spc[${_cpf}]:${_cp_pos}}
 515 if [${#_cp_tab} -lt ${_cp_mcnt}]
 516 then
 517 _cp_tab="${_cp_min}"
 518 fi
 519 echo -n "${_cp_tab}"
 520 ((_cp_pos = ${_cp_pos} + ${#_cp_tab}))
 521 _cp_fld="${_cp_line[${_cpf}]}"
 522 echo -n ${_cp_fld}
 523 ((_cp_pos = ${_cp_pos} + ${#_cp_fld}))
 524 done
 525 echo
 526 done
 527 set +f
 528 return 0
 529 }
 530
 531 # # # # 'Hunt the Spammer' data flow # # # #
 532
 533 # Application return code
 534 declare -i _hs_RC
 535
 536 # Original input, from which IP addresses are removed
 537 # After which, domain names to check
 538 declare -a uc_name
 539
 540 # Original input IP addresses are moved here
 541 # After which, IP addresses to check
 542 declare -a uc_address
 543
 544 # Names against which address expansion run
 545 # Ready for name detail lookup
 546 declare -a chk_name
 547
 548 # Addresses against which name expansion run
 549 # Ready for address detail lookup
 550 declare -a chk_address
 551

 552 # Recursion is depth-first-by-name.
 553 # The expand_input_address maintains this list
 554 #+ to prohibit looking up addresses twice during
 555 #+ domain name recursion.
 556 declare -a been_there_addr
 557 been_there_addr=('127.0.0.1') # Whitelist localhost
 558
 559 # Names which we have checked (or given up on)
 560 declare -a known_name
 561
 562 # Addresses which we have checked (or given up on)
 563 declare -a known_address
 564
 565 # List of zero or more Blacklist servers to check.
 566 # Each 'known_address' will be checked against each server,
 567 #+ with negative replies and failures suppressed.
 568 declare -a list_server
 569
 570 # Indirection limit - set to zero == no limit
 571 indirect=${SPAMMER_LIMIT:=2}
 572
 573 # # # # 'Hunt the Spammer' information output data # # # #
 574
 575 # Any domain name may have multiple IP addresses.
 576 # Any IP address may have multiple domain names.
 577 # Therefore, track unique address-name pairs.
 578 declare -a known_pair
 579 declare -a reverse_pair
 580
 581 # In addition to the data flow variables; known_address
 582 #+ known_name and list_server, the following are output to the
 583 #+ external graphics interface file.
 584
 585 # Authority chain, parent -> SOA fields.
 586 declare -a auth_chain
 587
 588 # Reference chain, parent name -> child name
 589 declare -a ref_chain
 590
 591 # DNS chain - domain name -> address
 592 declare -a name_address
 593
 594 # Name and service pairs - domain name -> service
 595 declare -a name_srvc
 596
 597 # Name and resource pairs - domain name -> Resource Record
 598 declare -a name_resource
 599
 600 # Parent and Child pairs - parent name -> child name
 601 # This MAY NOT be the same as the ref_chain followed!
 602 declare -a parent_child
 603
 604 # Address and Blacklist hit pairs - address->server
 605 declare -a address_hits
 606
 607 # Dump interface file data
 608 declare -f _dot_dump
 609 _dot_dump=pend_dummy # Initially a no-op
 610
 611 # Data dump is enabled by setting the environment variable SPAMMER_DATA
 612 #+ to the name of a writable file.
 613 declare _dot_file
 614
 615 # Helper function for the dump-to-dot-file function
 616 # dump_to_dot <array_name> <prefix>
 617 dump_to_dot() {

 618 local -a _dda_tmp
 619 local -i _dda_cnt
 620 local _dda_form=' '${2}'%04u %s\n'
 621 local IFS=${NO_WSP}
 622 eval _dda_tmp=\(\ \$\{$1\[@\]\}\ \)
 623 _dda_cnt=${#_dda_tmp[@]}
 624 if [${_dda_cnt} -gt 0]
 625 then
 626 for ((_dda = 0 ; _dda < _dda_cnt ; _dda++))
 627 do
 628 printf "${_dda_form}" \
 629 "${_dda}" "${_dda_tmp[${_dda}]}" >>${_dot_file}
 630 done
 631 fi
 632 }
 633
 634 # Which will also set _dot_dump to this function . . .
 635 dump_dot() {
 636 local -i _dd_cnt
 637 echo '# Data vintage: '$(date -R) >${_dot_file}
 638 echo '# ABS Guide: is_spammer.bash; v2, 2004-msz' >>${_dot_file}
 639 echo >>${_dot_file}
 640 echo 'digraph G {' >>${_dot_file}
 641
 642 if [${#known_name[@]} -gt 0]
 643 then
 644 echo >>${_dot_file}
 645 echo '# Known domain name nodes' >>${_dot_file}
 646 _dd_cnt=${#known_name[@]}
 647 for ((_dd = 0 ; _dd < _dd_cnt ; _dd++))
 648 do
 649 printf ' N%04u [label="%s"] ;\n' \
 650 "${_dd}" "${known_name[${_dd}]}" >>${_dot_file}
 651 done
 652 fi
 653
 654 if [${#known_address[@]} -gt 0]
 655 then
 656 echo >>${_dot_file}
 657 echo '# Known address nodes' >>${_dot_file}
 658 _dd_cnt=${#known_address[@]}
 659 for ((_dd = 0 ; _dd < _dd_cnt ; _dd++))
 660 do
 661 printf ' A%04u [label="%s"] ;\n' \
 662 "${_dd}" "${known_address[${_dd}]}" >>${_dot_file}
 663 done
 664 fi
 665
 666 echo >>${_dot_file}
 667 echo '/*' >>${_dot_file}
 668 echo ' * Known relationships :: User conversion to' >>${_dot_file}
 669 echo ' * graphic form by hand or program required.' >>${_dot_file}
 670 echo ' *' >>${_dot_file}
 671
 672 if [${#auth_chain[@]} -gt 0]
 673 then
 674 echo >>${_dot_file}
 675 echo '# Authority ref. edges followed & field source.' >>${_dot_file}
 676 dump_to_dot auth_chain AC
 677 fi
 678
 679 if [${#ref_chain[@]} -gt 0]
 680 then
 681 echo >>${_dot_file}
 682 echo '# Name ref. edges followed and field source.' >>${_dot_file}
 683 dump_to_dot ref_chain RC

 684 fi
 685
 686 if [${#name_address[@]} -gt 0]
 687 then
 688 echo >>${_dot_file}
 689 echo '# Known name->address edges' >>${_dot_file}
 690 dump_to_dot name_address NA
 691 fi
 692
 693 if [${#name_srvc[@]} -gt 0]
 694 then
 695 echo >>${_dot_file}
 696 echo '# Known name->service edges' >>${_dot_file}
 697 dump_to_dot name_srvc NS
 698 fi
 699
 700 if [${#name_resource[@]} -gt 0]
 701 then
 702 echo >>${_dot_file}
 703 echo '# Known name->resource edges' >>${_dot_file}
 704 dump_to_dot name_resource NR
 705 fi
 706
 707 if [${#parent_child[@]} -gt 0]
 708 then
 709 echo >>${_dot_file}
 710 echo '# Known parent->child edges' >>${_dot_file}
 711 dump_to_dot parent_child PC
 712 fi
 713
 714 if [${#list_server[@]} -gt 0]
 715 then
 716 echo >>${_dot_file}
 717 echo '# Known Blacklist nodes' >>${_dot_file}
 718 _dd_cnt=${#list_server[@]}
 719 for ((_dd = 0 ; _dd < _dd_cnt ; _dd++))
 720 do
 721 printf ' LS%04u [label="%s"] ;\n' \
 722 "${_dd}" "${list_server[${_dd}]}" >>${_dot_file}
 723 done
 724 fi
 725
 726 unique_lines address_hits address_hits
 727 if [${#address_hits[@]} -gt 0]
 728 then
 729 echo >>${_dot_file}
 730 echo '# Known address->Blacklist_hit edges' >>${_dot_file}
 731 echo '# CAUTION: dig warnings can trigger false hits.' >>${_dot_file}
 732 dump_to_dot address_hits AH
 733 fi
 734 echo >>${_dot_file}
 735 echo ' *' >>${_dot_file}
 736 echo ' * That is a lot of relationships. Happy graphing.' >>${_dot_file}
 737 echo ' */' >>${_dot_file}
 738 echo '}' >>${_dot_file}
 739 return 0
 740 }
 741
 742 # # # # 'Hunt the Spammer' execution flow # # # #
 743
 744 # Execution trace is enabled by setting the
 745 #+ environment variable SPAMMER_TRACE to the name of a writable file.
 746 declare -a _trace_log
 747 declare _log_file
 748
 749 # Function to fill the trace log

 750 trace_logger() {
 751 _trace_log[${#_trace_log[@]}]=${_pend_current_}
 752 }
 753
 754 # Dump trace log to file function variable.
 755 declare -f _log_dump
 756 _log_dump=pend_dummy # Initially a no-op.
 757
 758 # Dump the trace log to a file.
 759 dump_log() {
 760 local -i _dl_cnt
 761 _dl_cnt=${#_trace_log[@]}
 762 for ((_dl = 0 ; _dl < _dl_cnt ; _dl++))
 763 do
 764 echo ${_trace_log[${_dl}]} >> ${_log_file}
 765 done
 766 _dl_cnt=${#_pending_[@]}
 767 if [${_dl_cnt} -gt 0]
 768 then
 769 _dl_cnt=${_dl_cnt}-1
 770 echo '# # # Operations stack not empty # # #' >> ${_log_file}
 771 for ((_dl = ${_dl_cnt} ; _dl >= 0 ; _dl--))
 772 do
 773 echo ${_pending_[${_dl}]} >> ${_log_file}
 774 done
 775 fi
 776 }
 777
 778 # # # Utility program 'dig' wrappers # # #
 779 #
 780 # These wrappers are derived from the
 781 #+ examples shown in dig_wrappers.bash.
 782 #
 783 # The major difference is these return
 784 #+ their results as a list in an array.
 785 #
 786 # See dig_wrappers.bash for details and
 787 #+ use that script to develop any changes.
 788 #
 789 # # #
 790
 791 # Short form answer: 'dig' parses answer.
 792
 793 # Forward lookup :: Name -> Address
 794 # short_fwd <domain_name> <array_name>
 795 short_fwd() {
 796 local -a _sf_reply
 797 local -i _sf_rc
 798 local -i _sf_cnt
 799 IFS=${NO_WSP}
 800 echo -n '.'
 801 # echo 'sfwd: '${1}
 802 _sf_reply=($(dig +short ${1} -c in -t a 2>/dev/null))
 803 _sf_rc=$?
 804 if [${_sf_rc} -ne 0]
 805 then
 806 _trace_log[${#_trace_log[@]}]='## Lookup error '${_sf_rc}' on '${1}' ##'
 807 # [${_sf_rc} -ne 9] && pend_drop
 808 return ${_sf_rc}
 809 else
 810 # Some versions of 'dig' return warnings on stdout.
 811 _sf_cnt=${#_sf_reply[@]}
 812 for ((_sf = 0 ; _sf < ${_sf_cnt} ; _sf++))
 813 do
 814 ['x'${_sf_reply[${_sf}]:0:2} == 'x;;'] &&
 815 unset _sf_reply[${_sf}]

 816 done
 817 eval $2=\(\$\{_sf_reply\[@\]\} \)
 818 fi
 819 return 0
 820 }
 821
 822 # Reverse lookup :: Address -> Name
 823 # short_rev <ip_address> <array_name>
 824 short_rev() {
 825 local -a _sr_reply
 826 local -i _sr_rc
 827 local -i _sr_cnt
 828 IFS=${NO_WSP}
 829 echo -n '.'
 830 # echo 'srev: '${1}
 831 _sr_reply=($(dig +short -x ${1} 2>/dev/null))
 832 _sr_rc=$?
 833 if [${_sr_rc} -ne 0]
 834 then
 835 _trace_log[${#_trace_log[@]}]='## Lookup error '${_sr_rc}' on '${1}' ##'
 836 # [${_sr_rc} -ne 9] && pend_drop
 837 return ${_sr_rc}
 838 else
 839 # Some versions of 'dig' return warnings on stdout.
 840 _sr_cnt=${#_sr_reply[@]}
 841 for ((_sr = 0 ; _sr < ${_sr_cnt} ; _sr++))
 842 do
 843 ['x'${_sr_reply[${_sr}]:0:2} == 'x;;'] &&
 844 unset _sr_reply[${_sr}]
 845 done
 846 eval $2=\(\$\{_sr_reply\[@\]\} \)
 847 fi
 848 return 0
 849 }
 850
 851 # Special format lookup used to query blacklist servers.
 852 # short_text <ip_address> <array_name>
 853 short_text() {
 854 local -a _st_reply
 855 local -i _st_rc
 856 local -i _st_cnt
 857 IFS=${NO_WSP}
 858 # echo 'stxt: '${1}
 859 _st_reply=($(dig +short ${1} -c in -t txt 2>/dev/null))
 860 _st_rc=$?
 861 if [${_st_rc} -ne 0]
 862 then
 863 _trace_log[${#_trace_log[@]}]='##Text lookup error '${_st_rc}' on '${1}'##'
 864 # [${_st_rc} -ne 9] && pend_drop
 865 return ${_st_rc}
 866 else
 867 # Some versions of 'dig' return warnings on stdout.
 868 _st_cnt=${#_st_reply[@]}
 869 for ((_st = 0 ; _st < ${#_st_cnt} ; _st++))
 870 do
 871 ['x'${_st_reply[${_st}]:0:2} == 'x;;'] &&
 872 unset _st_reply[${_st}]
 873 done
 874 eval $2=\(\$\{_st_reply\[@\]\} \)
 875 fi
 876 return 0
 877 }
 878
 879 # The long forms, a.k.a., the parse it yourself versions
 880
 881 # RFC 2782 Service lookups

 882 # dig +noall +nofail +answer _ldap._tcp.openldap.org -t srv
 883 # _<service>._<protocol>.<domain_name>
 884 # _ldap._tcp.openldap.org. 3600 IN SRV 0 0 389 ldap.openldap.org.
 885 # domain TTL Class SRV Priority Weight Port Target
 886
 887 # Forward lookup :: Name -> poor man's zone transfer
 888 # long_fwd <domain_name> <array_name>
 889 long_fwd() {
 890 local -a _lf_reply
 891 local -i _lf_rc
 892 local -i _lf_cnt
 893 IFS=${NO_WSP}
 894 echo -n ':'
 895 # echo 'lfwd: '${1}
 896 _lf_reply=($(
 897 dig +noall +nofail +answer +authority +additional \
 898 ${1} -t soa ${1} -t mx ${1} -t any 2>/dev/null))
 899 _lf_rc=$?
 900 if [${_lf_rc} -ne 0]
 901 then
 902 _trace_log[${#_trace_log[@]}]='# Zone lookup err '${_lf_rc}' on '${1}' #'
 903 # [${_lf_rc} -ne 9] && pend_drop
 904 return ${_lf_rc}
 905 else
 906 # Some versions of 'dig' return warnings on stdout.
 907 _lf_cnt=${#_lf_reply[@]}
 908 for ((_lf = 0 ; _lf < ${_lf_cnt} ; _lf++))
 909 do
 910 ['x'${_lf_reply[${_lf}]:0:2} == 'x;;'] &&
 911 unset _lf_reply[${_lf}]
 912 done
 913 eval $2=\(\$\{_lf_reply\[@\]\} \)
 914 fi
 915 return 0
 916 }
 917 # The reverse lookup domain name corresponding to the IPv6 address:
 918 # 4321:0:1:2:3:4:567:89ab
 919 # would be (nibble, I.E: Hexdigit) reversed:
 920 # b.a.9.8.7.6.5.0.4.0.0.0.3.0.0.0.2.0.0.0.1.0.0.0.0.0.0.0.1.2.3.4.IP6.ARPA.
 921
 922 # Reverse lookup :: Address -> poor man's delegation chain
 923 # long_rev <rev_ip_address> <array_name>
 924 long_rev() {
 925 local -a _lr_reply
 926 local -i _lr_rc
 927 local -i _lr_cnt
 928 local _lr_dns
 929 _lr_dns=${1}'.in-addr.arpa.'
 930 IFS=${NO_WSP}
 931 echo -n ':'
 932 # echo 'lrev: '${1}
 933 _lr_reply=($(
 934 dig +noall +nofail +answer +authority +additional \
 935 ${_lr_dns} -t soa ${_lr_dns} -t any 2>/dev/null))
 936 _lr_rc=$?
 937 if [${_lr_rc} -ne 0]
 938 then
 939 _trace_log[${#_trace_log[@]}]='# Deleg lkp error '${_lr_rc}' on '${1}' #'
 940 # [${_lr_rc} -ne 9] && pend_drop
 941 return ${_lr_rc}
 942 else
 943 # Some versions of 'dig' return warnings on stdout.
 944 _lr_cnt=${#_lr_reply[@]}
 945 for ((_lr = 0 ; _lr < ${_lr_cnt} ; _lr++))
 946 do
 947 ['x'${_lr_reply[${_lr}]:0:2} == 'x;;'] &&

 948 unset _lr_reply[${_lr}]
 949 done
 950 eval $2=\(\$\{_lr_reply\[@\]\} \)
 951 fi
 952 return 0
 953 }
 954
 955 # # # Application specific functions # # #
 956
 957 # Mung a possible name; suppresses root and TLDs.
 958 # name_fixup <string>
 959 name_fixup(){
 960 local -a _nf_tmp
 961 local -i _nf_end
 962 local _nf_str
 963 local IFS
 964 _nf_str=$(to_lower ${1})
 965 _nf_str=$(to_dot ${_nf_str})
 966 _nf_end=${#_nf_str}-1
 967 [${_nf_str:${_nf_end}} != '.'] &&
 968 _nf_str=${_nf_str}'.'
 969 IFS=${ADR_IFS}
 970 _nf_tmp=(${_nf_str})
 971 IFS=${WSP_IFS}
 972 _nf_end=${#_nf_tmp[@]}
 973 case ${_nf_end} in
 974 0) # No dots, only dots.
 975 echo
 976 return 1
 977 ;;
 978 1) # Only a TLD.
 979 echo
 980 return 1
 981 ;;
 982 2) # Maybe okay.
 983 echo ${_nf_str}
 984 return 0
 985 # Needs a lookup table?
 986 if [${#_nf_tmp[1]} -eq 2]
 987 then # Country coded TLD.
 988 echo
 989 return 1
 990 else
 991 echo ${_nf_str}
 992 return 0
 993 fi
 994 ;;
 995 esac
 996 echo ${_nf_str}
 997 return 0
 998 }
 999
 1000 # Grope and mung original input(s).
 1001 split_input() {
 1002 [${#uc_name[@]} -gt 0] || return 0
 1003 local -i _si_cnt
 1004 local -i _si_len
 1005 local _si_str
 1006 unique_lines uc_name uc_name
 1007 _si_cnt=${#uc_name[@]}
 1008 for ((_si = 0 ; _si < _si_cnt ; _si++))
 1009 do
 1010 _si_str=${uc_name[$_si]}
 1011 if is_address ${_si_str}
 1012 then
 1013 uc_address[${#uc_address[@]}]=${_si_str}

 1014 unset uc_name[$_si]
 1015 else
 1016 if ! uc_name[$_si]=$(name_fixup ${_si_str})
 1017 then
 1018 unset ucname[$_si]
 1019 fi
 1020 fi
 1021 done
 1022 uc_name=(${uc_name[@]})
 1023 _si_cnt=${#uc_name[@]}
 1024 _trace_log[${#_trace_log[@]}]='#Input '${_si_cnt}' unchkd name input(s).#'
 1025 _si_cnt=${#uc_address[@]}
 1026 _trace_log[${#_trace_log[@]}]='#Input '${_si_cnt}' unchkd addr input(s).#'
 1027 return 0
 1028 }
 1029
 1030 # # # Discovery functions -- recursively interlocked by external data # # #
 1031 # # # The leading 'if list is empty; return 0' in each is required. # # #
 1032
 1033 # Recursion limiter
 1034 # limit_chk() <next_level>
 1035 limit_chk() {
 1036 local -i _lc_lmt
 1037 # Check indirection limit.
 1038 if [${indirect} -eq 0] || [$# -eq 0]
 1039 then
 1040 # The 'do-forever' choice
 1041 echo 1 # Any value will do.
 1042 return 0 # OK to continue.
 1043 else
 1044 # Limiting is in effect.
 1045 if [${indirect} -lt ${1}]
 1046 then
 1047 echo ${1} # Whatever.
 1048 return 1 # Stop here.
 1049 else
 1050 _lc_lmt=${1}+1 # Bump the given limit.
 1051 echo ${_lc_lmt} # Echo it.
 1052 return 0 # OK to continue.
 1053 fi
 1054 fi
 1055 }
 1056
 1057 # For each name in uc_name:
 1058 # Move name to chk_name.
 1059 # Add addresses to uc_address.
 1060 # Pend expand_input_address.
 1061 # Repeat until nothing new found.
 1062 # expand_input_name <indirection_limit>
 1063 expand_input_name() {
 1064 [${#uc_name[@]} -gt 0] || return 0
 1065 local -a _ein_addr
 1066 local -a _ein_new
 1067 local -i _ucn_cnt
 1068 local -i _ein_cnt
 1069 local _ein_tst
 1070 _ucn_cnt=${#uc_name[@]}
 1071
 1072 if ! _ein_cnt=$(limit_chk ${1})
 1073 then
 1074 return 0
 1075 fi
 1076
 1077 for ((_ein = 0 ; _ein < _ucn_cnt ; _ein++))
 1078 do
 1079 if short_fwd ${uc_name[${_ein}]} _ein_new

 1080 then
 1081 for ((_ein_cnt = 0 ; _ein_cnt < ${#_ein_new[@]}; _ein_cnt++))
 1082 do
 1083 _ein_tst=${_ein_new[${_ein_cnt}]}
 1084 if is_address ${_ein_tst}
 1085 then
 1086 _ein_addr[${#_ein_addr[@]}]=${_ein_tst}
 1087 fi
 1088 done
 1089 fi
 1090 done
 1091 unique_lines _ein_addr _ein_addr # Scrub duplicates.
 1092 edit_exact chk_address _ein_addr # Scrub pending detail.
 1093 edit_exact known_address _ein_addr # Scrub already detailed.
 1094 if [${#_ein_addr[@]} -gt 0] # Anything new?
 1095 then
 1096 uc_address=(${uc_address[@]} ${_ein_addr[@]})
 1097 pend_func expand_input_address ${1}
 1098 _trace_log[${#_trace_log[@]}]='#Add '${#_ein_addr[@]}' unchkd addr inp.#'
 1099 fi
 1100 edit_exact chk_name uc_name # Scrub pending detail.
 1101 edit_exact known_name uc_name # Scrub already detailed.
 1102 if [${#uc_name[@]} -gt 0]
 1103 then
 1104 chk_name=(${chk_name[@]} ${uc_name[@]})
 1105 pend_func detail_each_name ${1}
 1106 fi
 1107 unset uc_name[@]
 1108 return 0
 1109 }
 1110
 1111 # For each address in uc_address:
 1112 # Move address to chk_address.
 1113 # Add names to uc_name.
 1114 # Pend expand_input_name.
 1115 # Repeat until nothing new found.
 1116 # expand_input_address <indirection_limit>
 1117 expand_input_address() {
 1118 [${#uc_address[@]} -gt 0] || return 0
 1119 local -a _eia_addr
 1120 local -a _eia_name
 1121 local -a _eia_new
 1122 local -i _uca_cnt
 1123 local -i _eia_cnt
 1124 local _eia_tst
 1125 unique_lines uc_address _eia_addr
 1126 unset uc_address[@]
 1127 edit_exact been_there_addr _eia_addr
 1128 _uca_cnt=${#_eia_addr[@]}
 1129 [${_uca_cnt} -gt 0] &&
 1130 been_there_addr=(${been_there_addr[@]} ${_eia_addr[@]})
 1131
 1132 for ((_eia = 0 ; _eia < _uca_cnt ; _eia++))
 1133 do
 1134 if short_rev ${_eia_addr[${_eia}]} _eia_new
 1135 then
 1136 for ((_eia_cnt = 0 ; _eia_cnt < ${#_eia_new[@]} ; _eia_cnt++))
 1137 do
 1138 _eia_tst=${_eia_new[${_eia_cnt}]}
 1139 if _eia_tst=$(name_fixup ${_eia_tst})
 1140 then
 1141 _eia_name[${#_eia_name[@]}]=${_eia_tst}
 1142 fi
 1143 done
 1144 fi
 1145 done

 1146 unique_lines _eia_name _eia_name # Scrub duplicates.
 1147 edit_exact chk_name _eia_name # Scrub pending detail.
 1148 edit_exact known_name _eia_name # Scrub already detailed.
 1149 if [${#_eia_name[@]} -gt 0] # Anything new?
 1150 then
 1151 uc_name=(${uc_name[@]} ${_eia_name[@]})
 1152 pend_func expand_input_name ${1}
 1153 _trace_log[${#_trace_log[@]}]='#Add '${#_eia_name[@]}' unchkd name inp.#'
 1154 fi
 1155 edit_exact chk_address _eia_addr # Scrub pending detail.
 1156 edit_exact known_address _eia_addr # Scrub already detailed.
 1157 if [${#_eia_addr[@]} -gt 0] # Anything new?
 1158 then
 1159 chk_address=(${chk_address[@]} ${_eia_addr[@]})
 1160 pend_func detail_each_address ${1}
 1161 fi
 1162 return 0
 1163 }
 1164
 1165 # The parse-it-yourself zone reply.
 1166 # The input is the chk_name list.
 1167 # detail_each_name <indirection_limit>
 1168 detail_each_name() {
 1169 [${#chk_name[@]} -gt 0] || return 0
 1170 local -a _den_chk # Names to check
 1171 local -a _den_name # Names found here
 1172 local -a _den_address # Addresses found here
 1173 local -a _den_pair # Pairs found here
 1174 local -a _den_rev # Reverse pairs found here
 1175 local -a _den_tmp # Line being parsed
 1176 local -a _den_auth # SOA contact being parsed
 1177 local -a _den_new # The zone reply
 1178 local -a _den_pc # Parent-Child gets big fast
 1179 local -a _den_ref # So does reference chain
 1180 local -a _den_nr # Name-Resource can be big
 1181 local -a _den_na # Name-Address
 1182 local -a _den_ns # Name-Service
 1183 local -a _den_achn # Chain of Authority
 1184 local -i _den_cnt # Count of names to detail
 1185 local -i _den_lmt # Indirection limit
 1186 local _den_who # Named being processed
 1187 local _den_rec # Record type being processed
 1188 local _den_cont # Contact domain
 1189 local _den_str # Fixed up name string
 1190 local _den_str2 # Fixed up reverse
 1191 local IFS=${WSP_IFS}
 1192
 1193 # Local, unique copy of names to check
 1194 unique_lines chk_name _den_chk
 1195 unset chk_name[@] # Done with globals.
 1196
 1197 # Less any names already known
 1198 edit_exact known_name _den_chk
 1199 _den_cnt=${#_den_chk[@]}
 1200
 1201 # If anything left, add to known_name.
 1202 [${_den_cnt} -gt 0] &&
 1203 known_name=(${known_name[@]} ${_den_chk[@]})
 1204
 1205 # for the list of (previously) unknown names . . .
 1206 for ((_den = 0 ; _den < _den_cnt ; _den++))
 1207 do
 1208 _den_who=${_den_chk[${_den}]}
 1209 if long_fwd ${_den_who} _den_new
 1210 then
 1211 unique_lines _den_new _den_new

 1212 if [${#_den_new[@]} -eq 0]
 1213 then
 1214 _den_pair[${#_den_pair[@]}]='0.0.0.0 '${_den_who}
 1215 fi
 1216
 1217 # Parse each line in the reply.
 1218 for ((_line = 0 ; _line < ${#_den_new[@]} ; _line++))
 1219 do
 1220 IFS=${NO_WSP}$'\x09'$'\x20'
 1221 _den_tmp=(${_den_new[${_line}]})
 1222 IFS=${WSP_IFS}
 1223 # If usable record and not a warning message . . .
 1224 if [${#_den_tmp[@]} -gt 4] && ['x'${_den_tmp[0]} != 'x;;']
 1225 then
 1226 _den_rec=${_den_tmp[3]}
 1227 _den_nr[${#_den_nr[@]}]=${_den_who}' '${_den_rec}
 1228 # Begin at RFC1033 (+++)
 1229 case ${_den_rec} in
 1230
 1231 #<name> [<ttl>] [<class>] SOA <origin> <person>
 1232 SOA) # Start Of Authority
 1233 if _den_str=$(name_fixup ${_den_tmp[0]})
 1234 then
 1235 _den_name[${#_den_name[@]}]=${_den_str}
 1236 _den_achn[${#_den_achn[@]}]=${_den_who}' '${_den_str}' SOA'
 1237 # SOA origin -- domain name of master zone record
 1238 if _den_str2=$(name_fixup ${_den_tmp[4]})
 1239 then
 1240 _den_name[${#_den_name[@]}]=${_den_str2}
 1241 _den_achn[${#_den_achn[@]}]=${_den_who}' '${_den_str2}' SOA.O'
 1242 fi
 1243 # Responsible party e-mail address (possibly bogus).
 1244 # Possibility of first.last@domain.name ignored.
 1245 set -f
 1246 if _den_str2=$(name_fixup ${_den_tmp[5]})
 1247 then
 1248 IFS=${ADR_IFS}
 1249 _den_auth=(${_den_str2})
 1250 IFS=${WSP_IFS}
 1251 if [${#_den_auth[@]} -gt 2]
 1252 then
 1253 _den_cont=${_den_auth[1]}
 1254 for ((_auth = 2 ; _auth < ${#_den_auth[@]} ; _auth++))
 1255 do
 1256 _den_cont=${_den_cont}'.'${_den_auth[${_auth}]}
 1257 done
 1258 _den_name[${#_den_name[@]}]=${_den_cont}'.'
 1259 _den_achn[${#_den_achn[@]}]=${_den_who}' '${_den_cont}'. SOA.C'
 1260 fi
 1261 fi
 1262 set +f
 1263 fi
 1264 ;;
 1265
 1266
 1267 A) # IP(v4) Address Record
 1268 if _den_str=$(name_fixup ${_den_tmp[0]})
 1269 then
 1270 _den_name[${#_den_name[@]}]=${_den_str}
 1271 _den_pair[${#_den_pair[@]}]=${_den_tmp[4]}' '${_den_str}
 1272 _den_na[${#_den_na[@]}]=${_den_str}' '${_den_tmp[4]}
 1273 _den_ref[${#_den_ref[@]}]=${_den_who}' '${_den_str}' A'
 1274 else
 1275 _den_pair[${#_den_pair[@]}]=${_den_tmp[4]}' unknown.domain'
 1276 _den_na[${#_den_na[@]}]='unknown.domain '${_den_tmp[4]}
 1277 _den_ref[${#_den_ref[@]}]=${_den_who}' unknown.domain A'

 1278 fi
 1279 _den_address[${#_den_address[@]}]=${_den_tmp[4]}
 1280 _den_pc[${#_den_pc[@]}]=${_den_who}' '${_den_tmp[4]}
 1281 ;;
 1282
 1283 NS) # Name Server Record
 1284 # Domain name being serviced (may be other than current)
 1285 if _den_str=$(name_fixup ${_den_tmp[0]})
 1286 then
 1287 _den_name[${#_den_name[@]}]=${_den_str}
 1288 _den_ref[${#_den_ref[@]}]=${_den_who}' '${_den_str}' NS'
 1289
 1290 # Domain name of service provider
 1291 if _den_str2=$(name_fixup ${_den_tmp[4]})
 1292 then
 1293 _den_name[${#_den_name[@]}]=${_den_str2}
 1294 _den_ref[${#_den_ref[@]}]=${_den_who}' '${_den_str2}' NSH'
 1295 _den_ns[${#_den_ns[@]}]=${_den_str2}' NS'
 1296 _den_pc[${#_den_pc[@]}]=${_den_str}' '${_den_str2}
 1297 fi
 1298 fi
 1299 ;;
 1300
 1301 MX) # Mail Server Record
 1302 # Domain name being serviced (wildcards not handled here)
 1303 if _den_str=$(name_fixup ${_den_tmp[0]})
 1304 then
 1305 _den_name[${#_den_name[@]}]=${_den_str}
 1306 _den_ref[${#_den_ref[@]}]=${_den_who}' '${_den_str}' MX'
 1307 fi
 1308 # Domain name of service provider
 1309 if _den_str=$(name_fixup ${_den_tmp[5]})
 1310 then
 1311 _den_name[${#_den_name[@]}]=${_den_str}
 1312 _den_ref[${#_den_ref[@]}]=${_den_who}' '${_den_str}' MXH'
 1313 _den_ns[${#_den_ns[@]}]=${_den_str}' MX'
 1314 _den_pc[${#_den_pc[@]}]=${_den_who}' '${_den_str}
 1315 fi
 1316 ;;
 1317
 1318 PTR) # Reverse address record
 1319 # Special name
 1320 if _den_str=$(name_fixup ${_den_tmp[0]})
 1321 then
 1322 _den_ref[${#_den_ref[@]}]=${_den_who}' '${_den_str}' PTR'
 1323 # Host name (not a CNAME)
 1324 if _den_str2=$(name_fixup ${_den_tmp[4]})
 1325 then
 1326 _den_rev[${#_den_rev[@]}]=${_den_str}' '${_den_str2}
 1327 _den_ref[${#_den_ref[@]}]=${_den_who}' '${_den_str2}' PTRH'
 1328 _den_pc[${#_den_pc[@]}]=${_den_who}' '${_den_str}
 1329 fi
 1330 fi
 1331 ;;
 1332
 1333 AAAA) # IP(v6) Address Record
 1334 if _den_str=$(name_fixup ${_den_tmp[0]})
 1335 then
 1336 _den_name[${#_den_name[@]}]=${_den_str}
 1337 _den_pair[${#_den_pair[@]}]=${_den_tmp[4]}' '${_den_str}
 1338 _den_na[${#_den_na[@]}]=${_den_str}' '${_den_tmp[4]}
 1339 _den_ref[${#_den_ref[@]}]=${_den_who}' '${_den_str}' AAAA'
 1340 else
 1341 _den_pair[${#_den_pair[@]}]=${_den_tmp[4]}' unknown.domain'
 1342 _den_na[${#_den_na[@]}]='unknown.domain '${_den_tmp[4]}
 1343 _den_ref[${#_den_ref[@]}]=${_den_who}' unknown.domain'

 1344 fi
 1345 # No processing for IPv6 addresses
 1346 _den_pc[${#_den_pc[@]}]=${_den_who}' '${_den_tmp[4]}
 1347 ;;
 1348
 1349 CNAME) # Alias name record
 1350 # Nickname
 1351 if _den_str=$(name_fixup ${_den_tmp[0]})
 1352 then
 1353 _den_name[${#_den_name[@]}]=${_den_str}
 1354 _den_ref[${#_den_ref[@]}]=${_den_who}' '${_den_str}' CNAME'
 1355 _den_pc[${#_den_pc[@]}]=${_den_who}' '${_den_str}
 1356 fi
 1357 # Hostname
 1358 if _den_str=$(name_fixup ${_den_tmp[4]})
 1359 then
 1360 _den_name[${#_den_name[@]}]=${_den_str}
 1361 _den_ref[${#_den_ref[@]}]=${_den_who}' '${_den_str}' CHOST'
 1362 _den_pc[${#_den_pc[@]}]=${_den_who}' '${_den_str}
 1363 fi
 1364 ;;
 1365 # TXT)
 1366 # ;;
 1367 esac
 1368 fi
 1369 done
 1370 else # Lookup error == 'A' record 'unknown address'
 1371 _den_pair[${#_den_pair[@]}]='0.0.0.0 '${_den_who}
 1372 fi
 1373 done
 1374
 1375 # Control dot array growth.
 1376 unique_lines _den_achn _den_achn # Works best, all the same.
 1377 edit_exact auth_chain _den_achn # Works best, unique items.
 1378 if [${#_den_achn[@]} -gt 0]
 1379 then
 1380 IFS=${NO_WSP}
 1381 auth_chain=(${auth_chain[@]} ${_den_achn[@]})
 1382 IFS=${WSP_IFS}
 1383 fi
 1384
 1385 unique_lines _den_ref _den_ref # Works best, all the same.
 1386 edit_exact ref_chain _den_ref # Works best, unique items.
 1387 if [${#_den_ref[@]} -gt 0]
 1388 then
 1389 IFS=${NO_WSP}
 1390 ref_chain=(${ref_chain[@]} ${_den_ref[@]})
 1391 IFS=${WSP_IFS}
 1392 fi
 1393
 1394 unique_lines _den_na _den_na
 1395 edit_exact name_address _den_na
 1396 if [${#_den_na[@]} -gt 0]
 1397 then
 1398 IFS=${NO_WSP}
 1399 name_address=(${name_address[@]} ${_den_na[@]})
 1400 IFS=${WSP_IFS}
 1401 fi
 1402
 1403 unique_lines _den_ns _den_ns
 1404 edit_exact name_srvc _den_ns
 1405 if [${#_den_ns[@]} -gt 0]
 1406 then
 1407 IFS=${NO_WSP}
 1408 name_srvc=(${name_srvc[@]} ${_den_ns[@]})
 1409 IFS=${WSP_IFS}

 1410 fi
 1411
 1412 unique_lines _den_nr _den_nr
 1413 edit_exact name_resource _den_nr
 1414 if [${#_den_nr[@]} -gt 0]
 1415 then
 1416 IFS=${NO_WSP}
 1417 name_resource=(${name_resource[@]} ${_den_nr[@]})
 1418 IFS=${WSP_IFS}
 1419 fi
 1420
 1421 unique_lines _den_pc _den_pc
 1422 edit_exact parent_child _den_pc
 1423 if [${#_den_pc[@]} -gt 0]
 1424 then
 1425 IFS=${NO_WSP}
 1426 parent_child=(${parent_child[@]} ${_den_pc[@]})
 1427 IFS=${WSP_IFS}
 1428 fi
 1429
 1430 # Update list known_pair (Address and Name).
 1431 unique_lines _den_pair _den_pair
 1432 edit_exact known_pair _den_pair
 1433 if [${#_den_pair[@]} -gt 0] # Anything new?
 1434 then
 1435 IFS=${NO_WSP}
 1436 known_pair=(${known_pair[@]} ${_den_pair[@]})
 1437 IFS=${WSP_IFS}
 1438 fi
 1439
 1440 # Update list of reverse pairs.
 1441 unique_lines _den_rev _den_rev
 1442 edit_exact reverse_pair _den_rev
 1443 if [${#_den_rev[@]} -gt 0] # Anything new?
 1444 then
 1445 IFS=${NO_WSP}
 1446 reverse_pair=(${reverse_pair[@]} ${_den_rev[@]})
 1447 IFS=${WSP_IFS}
 1448 fi
 1449
 1450 # Check indirection limit -- give up if reached.
 1451 if ! _den_lmt=$(limit_chk ${1})
 1452 then
 1453 return 0
 1454 fi
 1455
 1456 # Execution engine is LIFO. Order of pend operations is important.
 1457 # Did we define any new addresses?
 1458 unique_lines _den_address _den_address # Scrub duplicates.
 1459 edit_exact known_address _den_address # Scrub already processed.
 1460 edit_exact un_address _den_address # Scrub already waiting.
 1461 if [${#_den_address[@]} -gt 0] # Anything new?
 1462 then
 1463 uc_address=(${uc_address[@]} ${_den_address[@]})
 1464 pend_func expand_input_address ${_den_lmt}
 1465 _trace_log[${#_trace_log[@]}]='# Add '${#_den_address[@]}' unchkd addr. #'
 1466 fi
 1467
 1468 # Did we find any new names?
 1469 unique_lines _den_name _den_name # Scrub duplicates.
 1470 edit_exact known_name _den_name # Scrub already processed.
 1471 edit_exact uc_name _den_name # Scrub already waiting.
 1472 if [${#_den_name[@]} -gt 0] # Anything new?
 1473 then
 1474 uc_name=(${uc_name[@]} ${_den_name[@]})
 1475 pend_func expand_input_name ${_den_lmt}

 1476 _trace_log[${#_trace_log[@]}]='#Added '${#_den_name[@]}' unchkd name#'
 1477 fi
 1478 return 0
 1479 }
 1480
 1481 # The parse-it-yourself delegation reply
 1482 # Input is the chk_address list.
 1483 # detail_each_address <indirection_limit>
 1484 detail_each_address() {
 1485 [${#chk_address[@]} -gt 0] || return 0
 1486 unique_lines chk_address chk_address
 1487 edit_exact known_address chk_address
 1488 if [${#chk_address[@]} -gt 0]
 1489 then
 1490 known_address=(${known_address[@]} ${chk_address[@]})
 1491 unset chk_address[@]
 1492 fi
 1493 return 0
 1494 }
 1495
 1496 # # # Application specific output functions # # #
 1497
 1498 # Pretty print the known pairs.
 1499 report_pairs() {
 1500 echo
 1501 echo 'Known network pairs.'
 1502 col_print known_pair 2 5 30
 1503
 1504 if [${#auth_chain[@]} -gt 0]
 1505 then
 1506 echo
 1507 echo 'Known chain of authority.'
 1508 col_print auth_chain 2 5 30 55
 1509 fi
 1510
 1511 if [${#reverse_pair[@]} -gt 0]
 1512 then
 1513 echo
 1514 echo 'Known reverse pairs.'
 1515 col_print reverse_pair 2 5 55
 1516 fi
 1517 return 0
 1518 }
 1519
 1520 # Check an address against the list of blacklist servers.
 1521 # A good place to capture for GraphViz: address->status(server(reports))
 1522 # check_lists <ip_address>
 1523 check_lists() {
 1524 [$# -eq 1] || return 1
 1525 local -a _cl_fwd_addr
 1526 local -a _cl_rev_addr
 1527 local -a _cl_reply
 1528 local -i _cl_rc
 1529 local -i _ls_cnt
 1530 local _cl_dns_addr
 1531 local _cl_lkup
 1532
 1533 split_ip ${1} _cl_fwd_addr _cl_rev_addr
 1534 _cl_dns_addr=$(dot_array _cl_rev_addr)'.'
 1535 _ls_cnt=${#list_server[@]}
 1536 echo ' Checking address '${1}
 1537 for ((_cl = 0 ; _cl < _ls_cnt ; _cl++))
 1538 do
 1539 _cl_lkup=${_cl_dns_addr}${list_server[${_cl}]}
 1540 if short_text ${_cl_lkup} _cl_reply
 1541 then

 1542 if [${#_cl_reply[@]} -gt 0]
 1543 then
 1544 echo ' Records from '${list_server[${_cl}]}
 1545 address_hits[${#address_hits[@]}]=${1}' '${list_server[${_cl}]}
 1546 _hs_RC=2
 1547 for ((_clr = 0 ; _clr < ${#_cl_reply[@]} ; _clr++))
 1548 do
 1549 echo ' '${_cl_reply[${_clr}]}
 1550 done
 1551 fi
 1552 fi
 1553 done
 1554 return 0
 1555 }
 1556
 1557 # # # The usual application glue # # #
 1558
 1559 # Who did it?
 1560 credits() {
 1561 echo
 1562 echo 'Advanced Bash Scripting Guide: is_spammer.bash, v2, 2004-msz'
 1563 }
 1564
 1565 # How to use it?
 1566 # (See also, "Quickstart" at end of script.)
 1567 usage() {
 1568 cat <<-'_usage_statement_'
 1569 The script is_spammer.bash requires either one or two arguments.
 1570
 1571 arg 1) May be one of:
 1572 a) A domain name
 1573 b) An IPv4 address
 1574 c) The name of a file with any mix of names
 1575 and addresses, one per line.
 1576
 1577 arg 2) May be one of:
 1578 a) A Blacklist server domain name
 1579 b) The name of a file with Blacklist server
 1580 domain names, one per line.
 1581 c) If not present, a default list of (free)
 1582 Blacklist servers is used.
 1583 d) If a filename of an empty, readable, file
 1584 is given,
 1585 Blacklist server lookup is disabled.
 1586
 1587 All script output is written to stdout.
 1588
 1589 Return codes: 0 -> All OK, 1 -> Script failure,
 1590 2 -> Something is Blacklisted.
 1591
 1592 Requires the external program 'dig' from the 'bind-9'
 1593 set of DNS programs. See: http://www.isc.org
 1594
 1595 The domain name lookup depth limit defaults to 2 levels.
 1596 Set the environment variable SPAMMER_LIMIT to change.
 1597 SPAMMER_LIMIT=0 means 'unlimited'
 1598
 1599 Limit may also be set on the command-line.
 1600 If arg#1 is an integer, the limit is set to that value
 1601 and then the above argument rules are applied.
 1602
 1603 Setting the environment variable 'SPAMMER_DATA' to a filename
 1604 will cause the script to write a GraphViz graphic file.
 1605
 1606 For the development version;
 1607 Setting the environment variable 'SPAMMER_TRACE' to a filename

 1608 will cause the execution engine to log a function call trace.
 1609
 1610 _usage_statement_
 1611 }
 1612
 1613 # The default list of Blacklist servers:
 1614 # Many choices, see: http://www.spews.org/lists.html
 1615
 1616 declare -a default_servers
 1617 # See: http://www.spamhaus.org (Conservative, well maintained)
 1618 default_servers[0]='sbl-xbl.spamhaus.org'
 1619 # See: http://ordb.org (Open mail relays)
 1620 default_servers[1]='relays.ordb.org'
 1621 # See: http://www.spamcop.net/ (You can report spammers here)
 1622 default_servers[2]='bl.spamcop.net'
 1623 # See: http://www.spews.org (An 'early detect' system)
 1624 default_servers[3]='l2.spews.dnsbl.sorbs.net'
 1625 # See: http://www.dnsbl.us.sorbs.net/using.shtml
 1626 default_servers[4]='dnsbl.sorbs.net'
 1627 # See: http://dsbl.org/usage (Various mail relay lists)
 1628 default_servers[5]='list.dsbl.org'
 1629 default_servers[6]='multihop.dsbl.org'
 1630 default_servers[7]='unconfirmed.dsbl.org'
 1631
 1632 # User input argument #1
 1633 setup_input() {
 1634 if [-e ${1}] && [-r ${1}] # Name of readable file
 1635 then
 1636 file_to_array ${1} uc_name
 1637 echo 'Using filename >'${1}'< as input.'
 1638 else
 1639 if is_address ${1} # IP address?
 1640 then
 1641 uc_address=(${1})
 1642 echo 'Starting with address >'${1}'<'
 1643 else # Must be a name.
 1644 uc_name=(${1})
 1645 echo 'Starting with domain name >'${1}'<'
 1646 fi
 1647 fi
 1648 return 0
 1649 }
 1650
 1651 # User input argument #2
 1652 setup_servers() {
 1653 if [-e ${1}] && [-r ${1}] # Name of a readable file
 1654 then
 1655 file_to_array ${1} list_server
 1656 echo 'Using filename >'${1}'< as blacklist server list.'
 1657 else
 1658 list_server=(${1})
 1659 echo 'Using blacklist server >'${1}'<'
 1660 fi
 1661 return 0
 1662 }
 1663
 1664 # User environment variable SPAMMER_TRACE
 1665 live_log_die() {
 1666 if [${SPAMMER_TRACE:=}] # Wants trace log?
 1667 then
 1668 if [! -e ${SPAMMER_TRACE}]
 1669 then
 1670 if ! touch ${SPAMMER_TRACE} 2>/dev/null
 1671 then
 1672 pend_func echo $(printf '%q\n' \
 1673 'Unable to create log file >'${SPAMMER_TRACE}'<')

 1674 pend_release
 1675 exit 1
 1676 fi
 1677 _log_file=${SPAMMER_TRACE}
 1678 _pend_hook_=trace_logger
 1679 _log_dump=dump_log
 1680 else
 1681 if [! -w ${SPAMMER_TRACE}]
 1682 then
 1683 pend_func echo $(printf '%q\n' \
 1684 'Unable to write log file >'${SPAMMER_TRACE}'<')
 1685 pend_release
 1686 exit 1
 1687 fi
 1688 _log_file=${SPAMMER_TRACE}
 1689 echo '' > ${_log_file}
 1690 _pend_hook_=trace_logger
 1691 _log_dump=dump_log
 1692 fi
 1693 fi
 1694 return 0
 1695 }
 1696
 1697 # User environment variable SPAMMER_DATA
 1698 data_capture() {
 1699 if [${SPAMMER_DATA:=}] # Wants a data dump?
 1700 then
 1701 if [! -e ${SPAMMER_DATA}]
 1702 then
 1703 if ! touch ${SPAMMER_DATA} 2>/dev/null
 1704 then
 1705 pend_func echo $(printf '%q]n' \
 1706 'Unable to create data output file >'${SPAMMER_DATA}'<')
 1707 pend_release
 1708 exit 1
 1709 fi
 1710 _dot_file=${SPAMMER_DATA}
 1711 _dot_dump=dump_dot
 1712 else
 1713 if [! -w ${SPAMMER_DATA}]
 1714 then
 1715 pend_func echo $(printf '%q\n' \
 1716 'Unable to write data output file >'${SPAMMER_DATA}'<')
 1717 pend_release
 1718 exit 1
 1719 fi
 1720 _dot_file=${SPAMMER_DATA}
 1721 _dot_dump=dump_dot
 1722 fi
 1723 fi
 1724 return 0
 1725 }
 1726
 1727 # Grope user specified arguments.
 1728 do_user_args() {
 1729 if [$# -gt 0] && is_number $1
 1730 then
 1731 indirect=$1
 1732 shift
 1733 fi
 1734
 1735 case $# in # Did user treat us well?
 1736 1)
 1737 if ! setup_input $1 # Needs error checking.
 1738 then
 1739 pend_release

 1740 $_log_dump
 1741 exit 1
 1742 fi
 1743 list_server=(${default_servers[@]})
 1744 _list_cnt=${#list_server[@]}
 1745 echo 'Using default blacklist server list.'
 1746 echo 'Search depth limit: '${indirect}
 1747 ;;
 1748 2)
 1749 if ! setup_input $1 # Needs error checking.
 1750 then
 1751 pend_release
 1752 $_log_dump
 1753 exit 1
 1754 fi
 1755 if ! setup_servers $2 # Needs error checking.
 1756 then
 1757 pend_release
 1758 $_log_dump
 1759 exit 1
 1760 fi
 1761 echo 'Search depth limit: '${indirect}
 1762 ;;
 1763 *)
 1764 pend_func usage
 1765 pend_release
 1766 $_log_dump
 1767 exit 1
 1768 ;;
 1769 esac
 1770 return 0
 1771 }
 1772
 1773 # A general purpose debug tool.
 1774 # list_array <array_name>
 1775 list_array() {
 1776 [$# -eq 1] || return 1 # One argument required.
 1777
 1778 local -a _la_lines
 1779 set -f
 1780 local IFS=${NO_WSP}
 1781 eval _la_lines=\(\ \$\{$1\[@\]\}\ \)
 1782 echo
 1783 echo "Element count "${#_la_lines[@]}" array "${1}
 1784 local _ln_cnt=${#_la_lines[@]}
 1785
 1786 for ((_i = 0; _i < ${_ln_cnt}; _i++))
 1787 do
 1788 echo 'Element '$_i' >'${_la_lines[$_i]}'<'
 1789 done
 1790 set +f
 1791 return 0
 1792 }
 1793
 1794 # # # 'Hunt the Spammer' program code # # #
 1795 pend_init # Ready stack engine.
 1796 pend_func credits # Last thing to print.
 1797
 1798 # # # Deal with user # # #
 1799 live_log_die # Setup debug trace log.
 1800 data_capture # Setup data capture file.
 1801 echo
 1802 do_user_args $@
 1803
 1804 # # # Haven't exited yet - There is some hope # # #
 1805 # Discovery group - Execution engine is LIFO - pend

 1806 # in reverse order of execution.
 1807 _hs_RC=0 # Hunt the Spammer return code
 1808 pend_mark
 1809 pend_func report_pairs # Report name-address pairs.
 1810
 1811 # The two detail_* are mutually recursive functions.
 1812 # They also pend expand_* functions as required.
 1813 # These two (the last of ???) exit the recursion.
 1814 pend_func detail_each_address # Get all resources of addresses.
 1815 pend_func detail_each_name # Get all resources of names.
 1816
 1817 # The two expand_* are mutually recursive functions,
 1818 #+ which pend additional detail_* functions as required.
 1819 pend_func expand_input_address 1 # Expand input names by address.
 1820 pend_func expand_input_name 1 # #xpand input addresses by name.
 1821
 1822 # Start with a unique set of names and addresses.
 1823 pend_func unique_lines uc_address uc_address
 1824 pend_func unique_lines uc_name uc_name
 1825
 1826 # Separate mixed input of names and addresses.
 1827 pend_func split_input
 1828 pend_release
 1829
 1830 # # # Pairs reported -- Unique list of IP addresses found
 1831 echo
 1832 _ip_cnt=${#known_address[@]}
 1833 if [${#list_server[@]} -eq 0]
 1834 then
 1835 echo 'Blacklist server list empty, none checked.'
 1836 else
 1837 if [${_ip_cnt} -eq 0]
 1838 then
 1839 echo 'Known address list empty, none checked.'
 1840 else
 1841 _ip_cnt=${_ip_cnt}-1 # Start at top.
 1842 echo 'Checking Blacklist servers.'
 1843 for ((_ip = _ip_cnt ; _ip >= 0 ; _ip--))
 1844 do
 1845 pend_func check_lists $(printf '%q\n' ${known_address[$_ip]})
 1846 done
 1847 fi
 1848 fi
 1849 pend_release
 1850 $_dot_dump # Graphics file dump
 1851 $_log_dump # Execution trace
 1852 echo
 1853
 1854
 1855 ##############################
 1856 # Example output from script #
 1857 ##############################
 1858 :<<-'_is_spammer_outputs_'
 1859
 1860 ./is_spammer.bash 0 web4.alojamentos7.com
 1861
 1862 Starting with domain name >web4.alojamentos7.com<
 1863 Using default blacklist server list.
 1864 Search depth limit: 0
 1865 .:....::::...:::...:::.......::..::...:::.......::
 1866 Known network pairs.
 1867 66.98.208.97 web4.alojamentos7.com.
 1868 66.98.208.97 ns1.alojamentos7.com.
 1869 69.56.202.147 ns2.alojamentos.ws.
 1870 66.98.208.97 alojamentos7.com.
 1871 66.98.208.97 web.alojamentos7.com.

 1872 69.56.202.146 ns1.alojamentos.ws.
 1873 69.56.202.146 alojamentos.ws.
 1874 66.235.180.113 ns1.alojamentos.org.
 1875 66.235.181.192 ns2.alojamentos.org.
 1876 66.235.180.113 alojamentos.org.
 1877 66.235.180.113 web6.alojamentos.org.
 1878 216.234.234.30 ns1.theplanet.com.
 1879 12.96.160.115 ns2.theplanet.com.
 1880 216.185.111.52 mail1.theplanet.com.
 1881 69.56.141.4 spooling.theplanet.com.
 1882 216.185.111.40 theplanet.com.
 1883 216.185.111.40 www.theplanet.com.
 1884 216.185.111.52 mail.theplanet.com.
 1885
 1886 Checking Blacklist servers.
 1887 Checking address 66.98.208.97
 1888 Records from dnsbl.sorbs.net
 1889 "Spam Received See: http://www.dnsbl.sorbs.net/lookup.shtml?66.98.208.97"
 1890 Checking address 69.56.202.147
 1891 Checking address 69.56.202.146
 1892 Checking address 66.235.180.113
 1893 Checking address 66.235.181.192
 1894 Checking address 216.185.111.40
 1895 Checking address 216.234.234.30
 1896 Checking address 12.96.160.115
 1897 Checking address 216.185.111.52
 1898 Checking address 69.56.141.4
 1899
 1900 Advanced Bash Scripting Guide: is_spammer.bash, v2, 2004-msz
 1901
 1902 _is_spammer_outputs_
 1903
 1904 exit ${_hs_RC}
 1905
 1906 ##
 1907 # The script ignores everything from here on down #
 1908 #+ because of the 'exit' command, just above. #
 1909 ##
 1910
 1911
 1912
 1913 Quickstart
 1914 ==========
 1915
 1916 Prerequisites
 1917
 1918 Bash version 2.05b or 3.00 (bash --version)
 1919 A version of Bash which supports arrays. Array
 1920 support is included by default Bash configurations.
 1921
 1922 'dig,' version 9.x.x (dig $HOSTNAME, see first line of output)
 1923 A version of dig which supports the +short options.
 1924 See: dig_wrappers.bash for details.
 1925
 1926
 1927 Optional Prerequisites
 1928
 1929 'named,' a local DNS caching program. Any flavor will do.
 1930 Do twice: dig $HOSTNAME
 1931 Check near bottom of output for: SERVER: 127.0.0.1#53
 1932 That means you have one running.
 1933
 1934
 1935 Optional Graphics Support
 1936
 1937 'date,' a standard *nix thing. (date -R)

 1938
 1939 dot Program to convert graphic description file to a
 1940 diagram. (dot -V)
 1941 A part of the Graph-Viz set of programs.
 1942 See: [http://www.research.att.com/sw/tools/graphviz||GraphViz]
 1943
 1944 'dotty,' a visual editor for graphic description files.
 1945 Also a part of the Graph-Viz set of programs.
 1946
 1947
 1948
 1949
 1950 Quick Start
 1951
 1952 In the same directory as the is_spammer.bash script;
 1953 Do: ./is_spammer.bash
 1954
 1955 Usage Details
 1956
 1957 1. Blacklist server choices.
 1958
 1959 (a) To use default, built-in list: Do nothing.
 1960
 1961 (b) To use your own list:
 1962
 1963 i. Create a file with a single Blacklist server
 1964 domain name per line.
 1965
 1966 ii. Provide that filename as the last argument to
 1967 the script.
 1968
 1969 (c) To use a single Blacklist server: Last argument
 1970 to the script.
 1971
 1972 (d) To disable Blacklist lookups:
 1973
 1974 i. Create an empty file (touch spammer.nul)
 1975 Your choice of filename.
 1976
 1977 ii. Provide the filename of that empty file as the
 1978 last argument to the script.
 1979
 1980 2. Search depth limit.
 1981
 1982 (a) To use the default value of 2: Do nothing.
 1983
 1984 (b) To set a different limit:
 1985 A limit of 0 means: no limit.
 1986
 1987 i. export SPAMMER_LIMIT=1
 1988 or whatever limit you want.
 1989
 1990 ii. OR provide the desired limit as the first
 1991 argument to the script.
 1992
 1993 3. Optional execution trace log.
 1994
 1995 (a) To use the default setting of no log output: Do nothing.
 1996
 1997 (b) To write an execution trace log:
 1998 export SPAMMER_TRACE=spammer.log
 1999 or whatever filename you want.
 2000
 2001 4. Optional graphic description file.
 2002
 2003 (a) To use the default setting of no graphic file: Do nothing.

 2004
 2005 (b) To write a Graph-Viz graphic description file:
 2006 export SPAMMER_DATA=spammer.dot
 2007 or whatever filename you want.
 2008
 2009 5. Where to start the search.
 2010
 2011 (a) Starting with a single domain name:
 2012
 2013 i. Without a command-line search limit: First
 2014 argument to script.
 2015
 2016 ii. With a command-line search limit: Second
 2017 argument to script.
 2018
 2019 (b) Starting with a single IP address:
 2020
 2021 i. Without a command-line search limit: First
 2022 argument to script.
 2023
 2024 ii. With a command-line search limit: Second
 2025 argument to script.
 2026
 2027 (c) Starting with (mixed) multiple name(s) and/or address(es):
 2028 Create a file with one name or address per line.
 2029 Your choice of filename.
 2030
 2031 i. Without a command-line search limit: Filename as
 2032 first argument to script.
 2033
 2034 ii. With a command-line search limit: Filename as
 2035 second argument to script.
 2036
 2037 6. What to do with the display output.
 2038
 2039 (a) To view display output on screen: Do nothing.
 2040
 2041 (b) To save display output to a file: Redirect stdout to a filename.
 2042
 2043 (c) To discard display output: Redirect stdout to /dev/null.
 2044
 2045 7. Temporary end of decision making.
 2046 press RETURN
 2047 wait (optionally, watch the dots and colons).
 2048
 2049 8. Optionally check the return code.
 2050
 2051 (a) Return code 0: All OK
 2052
 2053 (b) Return code 1: Script setup failure
 2054
 2055 (c) Return code 2: Something was blacklisted.
 2056
 2057 9. Where is my graph (diagram)?
 2058
 2059 The script does not directly produce a graph (diagram).
 2060 It only produces a graphic description file. You can
 2061 process the graphic descriptor file that was output
 2062 with the 'dot' program.
 2063
 2064 Until you edit that descriptor file, to describe the
 2065 relationships you want shown, all that you will get is
 2066 a bunch of labeled name and address nodes.
 2067
 2068 All of the script's discovered relationships are within
 2069 a comment block in the graphic descriptor file, each

 2070 with a descriptive heading.
 2071
 2072 The editing required to draw a line between a pair of
 2073 nodes from the information in the descriptor file may
 2074 be done with a text editor.
 2075
 2076 Given these lines somewhere in the descriptor file:
 2077
 2078 # Known domain name nodes
 2079
 2080 N0000 [label="guardproof.info."] ;
 2081
 2082 N0002 [label="third.guardproof.info."] ;
 2083
 2084
 2085
 2086 # Known address nodes
 2087
 2088 A0000 [label="61.141.32.197"] ;
 2089
 2090
 2091
 2092 /*
 2093
 2094 # Known name->address edges
 2095
 2096 NA0000 third.guardproof.info. 61.141.32.197
 2097
 2098
 2099
 2100 # Known parent->child edges
 2101
 2102 PC0000 guardproof.info. third.guardproof.info.
 2103
 2104 */
 2105
 2106 Turn that into the following lines by substituting node
 2107 identifiers into the relationships:
 2108
 2109 # Known domain name nodes
 2110
 2111 N0000 [label="guardproof.info."] ;
 2112
 2113 N0002 [label="third.guardproof.info."] ;
 2114
 2115
 2116
 2117 # Known address nodes
 2118
 2119 A0000 [label="61.141.32.197"] ;
 2120
 2121
 2122
 2123 # PC0000 guardproof.info. third.guardproof.info.
 2124
 2125 N0000->N0002 ;
 2126
 2127
 2128
 2129 # NA0000 third.guardproof.info. 61.141.32.197
 2130
 2131 N0002->A0000 ;
 2132
 2133
 2134
 2135 /*

 2136
 2137 # Known name->address edges
 2138
 2139 NA0000 third.guardproof.info. 61.141.32.197
 2140
 2141
 2142
 2143 # Known parent->child edges
 2144
 2145 PC0000 guardproof.info. third.guardproof.info.
 2146
 2147 */
 2148
 2149 Process that with the 'dot' program, and you have your
 2150 first network diagram.
 2151
 2152 In addition to the conventional graphic edges, the
 2153 descriptor file includes similar format pair-data that
 2154 describes services, zone records (sub-graphs?),
 2155 blacklisted addresses, and other things which might be
 2156 interesting to include in your graph. This additional
 2157 information could be displayed as different node
 2158 shapes, colors, line sizes, etc.
 2159
 2160 The descriptor file can also be read and edited by a
 2161 Bash script (of course). You should be able to find
 2162 most of the functions required within the
 2163 "is_spammer.bash" script.
 2164
 2165 # End Quickstart.
 2166
 2167
 2168
 2169 Additional Note
 2170 ========== ====
 2171
 2172 Michael Zick points out that there is a "makeviz.bash" interactive
 2173 Web site at rediris.es. Can't give the full URL, since this is not
 2174 a publically accessible site.

Another anti-spam script.

Example A-29. Spammer Hunt

 1 #!/bin/bash
 2 # whx.sh: "whois" spammer lookup
 3 # Author: Walter Dnes
 4 # Slight revisions (first section) by ABS Guide author.
 5 # Used in ABS Guide with permission.
 6
 7 # Needs version 3.x or greater of Bash to run (because of =~ operator).
 8 # Commented by script author and ABS Guide author.
 9
 10
 11
 12 E_BADARGS=85 # Missing command-line arg.
 13 E_NOHOST=86 # Host not found.
 14 E_TIMEOUT=87 # Host lookup timed out.
 15 E_UNDEF=88 # Some other (undefined) error.
 16
 17 HOSTWAIT=10 # Specify up to 10 seconds for host query reply.
 18 # The actual wait may be a bit longer.

 19 OUTFILE=whois.txt # Output file.
 20 PORT=4321
 21
 22
 23 if [-z "$1"] # Check for (required) command-line arg.
 24 then
 25 echo "Usage: $0 domain name or IP address"
 26 exit $E_BADARGS
 27 fi
 28
 29
 30 if [["$1" =~ [a-zA-Z][a-zA-Z]$]] # Ends in two alpha chars?
 31 then # It's a domain name &&
 32 #+ must do host lookup.
 33 IPADDR=$(host -W $HOSTWAIT $1 | awk '{print $4}')
 34 # Doing host lookup
 35 #+ to get IP address.
 36 # Extract final field.
 37 else
 38 IPADDR="$1" # Command-line arg was IP address.
 39 fi
 40
 41 echo; echo "IP Address is: "$IPADDR""; echo
 42
 43 if [-e "$OUTFILE"]
 44 then
 45 rm -f "$OUTFILE"
 46 echo "Stale output file \"$OUTFILE\" removed."; echo
 47 fi
 48
 49
 50 # Sanity checks.
 51 # (This section needs more work.)
 52 # ===============================
 53 if [-z "$IPADDR"]
 54 # No response.
 55 then
 56 echo "Host not found!"
 57 exit $E_NOHOST # Bail out.
 58 fi
 59
 60 if [["$IPADDR" =~ ^[;;]]]
 61 # ;; Connection timed out; no servers could be reached.
 62 then
 63 echo "Host lookup timed out!"
 64 exit $E_TIMEOUT # Bail out.
 65 fi
 66
 67 if [["$IPADDR" =~ [(NXDOMAIN)]$]]
 68 # Host xxxxxxxxx.xxx not found: 3(NXDOMAIN)
 69 then
 70 echo "Host not found!"
 71 exit $E_NOHOST # Bail out.
 72 fi
 73
 74 if [["$IPADDR" =~ [(SERVFAIL)]$]]
 75 # Host xxxxxxxxx.xxx not found: 2(SERVFAIL)
 76 then
 77 echo "Host not found!"
 78 exit $E_NOHOST # Bail out.
 79 fi
 80
 81
 82
 83
 84 # ======================== Main body of script ========================

 85
 86 AFRINICquery() {
 87 # Define the function that queries AFRINIC. Echo a notification to the
 88 #+ screen, and then run the actual query, redirecting output to $OUTFILE.
 89
 90 echo "Searching for $IPADDR in whois.afrinic.net"
 91 whois -h whois.afrinic.net "$IPADDR" > $OUTFILE
 92
 93 # Check for presence of reference to an rwhois.
 94 # Warn about non-functional rwhois.infosat.net server
 95 #+ and attempt rwhois query.
 96 if grep -e "^remarks: .*rwhois\.[^]\+" "$OUTFILE"
 97 then
 98 echo " " >> $OUTFILE
 99 echo "***" >> $OUTFILE
 100 echo "***" >> $OUTFILE
 101 echo "Warning: rwhois.infosat.net was not working \
 102 as of 2005/02/02" >> $OUTFILE
 103 echo " when this script was written." >> $OUTFILE
 104 echo "***" >> $OUTFILE
 105 echo "***" >> $OUTFILE
 106 echo " " >> $OUTFILE
 107 RWHOIS=`grep "^remarks: .*rwhois\.[^]\+" "$OUTFILE" | tail -n 1 |\
 108 sed "s/\(^.*\)\(rwhois\..*\)\(:4.*\)/\2/"`
 109 whois -h ${RWHOIS}:${PORT} "$IPADDR" >> $OUTFILE
 110 fi
 111 }
 112
 113 APNICquery() {
 114 echo "Searching for $IPADDR in whois.apnic.net"
 115 whois -h whois.apnic.net "$IPADDR" > $OUTFILE
 116
 117 # Just about every country has its own internet registrar.
 118 # I don't normally bother consulting them, because the regional registry
 119 #+ usually supplies sufficient information.
 120 # There are a few exceptions, where the regional registry simply
 121 #+ refers to the national registry for direct data.
 122 # These are Japan and South Korea in APNIC, and Brasil in LACNIC.
 123 # The following if statement checks $OUTFILE (whois.txt) for the presence
 124 #+ of "KR" (South Korea) or "JP" (Japan) in the country field.
 125 # If either is found, the query is re-run against the appropriate
 126 #+ national registry.
 127
 128 if grep -E "^country:[]+KR$" "$OUTFILE"
 129 then
 130 echo "Searching for $IPADDR in whois.krnic.net"
 131 whois -h whois.krnic.net "$IPADDR" >> $OUTFILE
 132 elif grep -E "^country:[]+JP$" "$OUTFILE"
 133 then
 134 echo "Searching for $IPADDR in whois.nic.ad.jp"
 135 whois -h whois.nic.ad.jp "$IPADDR"/e >> $OUTFILE
 136 fi
 137 }
 138
 139 ARINquery() {
 140 echo "Searching for $IPADDR in whois.arin.net"
 141 whois -h whois.arin.net "$IPADDR" > $OUTFILE
 142
 143 # Several large internet providers listed by ARIN have their own
 144 #+ internal whois service, referred to as "rwhois".
 145 # A large block of IP addresses is listed with the provider
 146 #+ under the ARIN registry.
 147 # To get the IP addresses of 2nd-level ISPs or other large customers,
 148 #+ one has to refer to the rwhois server on port 4321.
 149 # I originally started with a bunch of "if" statements checking for
 150 #+ the larger providers.

 151 # This approach is unwieldy, and there's always another rwhois server
 152 #+ that I didn't know about.
 153 # A more elegant approach is to check $OUTFILE for a reference
 154 #+ to a whois server, parse that server name out of the comment section,
 155 #+ and re-run the query against the appropriate rwhois server.
 156 # The parsing looks a bit ugly, with a long continued line inside
 157 #+ backticks.
 158 # But it only has to be done once, and will work as new servers are added.
 159 #@ ABS Guide author comment: it isn't all that ugly, and is, in fact,
 160 #@+ an instructive use of Regular Expressions.
 161
 162 if grep -E "^Comment: .*rwhois.[^]+" "$OUTFILE"
 163 then
 164 RWHOIS=`grep -e "^Comment:.*rwhois\.[^]\+" "$OUTFILE" | tail -n 1 |\
 165 sed "s/^\(.*\)\(rwhois\.[^]\+\)\(.*$\)/\2/"`
 166 echo "Searching for $IPADDR in ${RWHOIS}"
 167 whois -h ${RWHOIS}:${PORT} "$IPADDR" >> $OUTFILE
 168 fi
 169 }
 170
 171 LACNICquery() {
 172 echo "Searching for $IPADDR in whois.lacnic.net"
 173 whois -h whois.lacnic.net "$IPADDR" > $OUTFILE
 174
 175 # The following if statement checks $OUTFILE (whois.txt) for
 176 #+ the presence of "BR" (Brasil) in the country field.
 177 # If it is found, the query is re-run against whois.registro.br.
 178
 179 if grep -E "^country:[]+BR$" "$OUTFILE"
 180 then
 181 echo "Searching for $IPADDR in whois.registro.br"
 182 whois -h whois.registro.br "$IPADDR" >> $OUTFILE
 183 fi
 184 }
 185
 186 RIPEquery() {
 187 echo "Searching for $IPADDR in whois.ripe.net"
 188 whois -h whois.ripe.net "$IPADDR" > $OUTFILE
 189 }
 190
 191 # Initialize a few variables.
 192 # * slash8 is the most significant octet
 193 # * slash16 consists of the two most significant octets
 194 # * octet2 is the second most significant octet
 195
 196
 197
 198
 199 slash8=`echo $IPADDR | cut -d. -f 1`
 200 if [-z "$slash8"] # Yet another sanity check.
 201 then
 202 echo "Undefined error!"
 203 exit $E_UNDEF
 204 fi
 205 slash16=`echo $IPADDR | cut -d. -f 1-2`
 206 # ^ Period specified as 'cut" delimiter.
 207 if [-z "$slash16"]
 208 then
 209 echo "Undefined error!"
 210 exit $E_UNDEF
 211 fi
 212 octet2=`echo $slash16 | cut -d. -f 2`
 213 if [-z "$octet2"]
 214 then
 215 echo "Undefined error!"
 216 exit $E_UNDEF

 217 fi
 218
 219
 220 # Check for various odds and ends of reserved space.
 221 # There is no point in querying for those addresses.
 222
 223 if [$slash8 == 0]; then
 224 echo $IPADDR is '"This Network"' space\; Not querying
 225 elif [$slash8 == 10]; then
 226 echo $IPADDR is RFC1918 space\; Not querying
 227 elif [$slash8 == 14]; then
 228 echo $IPADDR is '"Public Data Network"' space\; Not querying
 229 elif [$slash8 == 127]; then
 230 echo $IPADDR is loopback space\; Not querying
 231 elif [$slash16 == 169.254]; then
 232 echo $IPADDR is link-local space\; Not querying
 233 elif [$slash8 == 172] && [$octet2 -ge 16] && [$octet2 -le 31];then
 234 echo $IPADDR is RFC1918 space\; Not querying
 235 elif [$slash16 == 192.168]; then
 236 echo $IPADDR is RFC1918 space\; Not querying
 237 elif [$slash8 -ge 224]; then
 238 echo $IPADDR is either Multicast or reserved space\; Not querying
 239 elif [$slash8 -ge 200] && [$slash8 -le 201]; then LACNICquery "$IPADDR"
 240 elif [$slash8 -ge 202] && [$slash8 -le 203]; then APNICquery "$IPADDR"
 241 elif [$slash8 -ge 210] && [$slash8 -le 211]; then APNICquery "$IPADDR"
 242 elif [$slash8 -ge 218] && [$slash8 -le 223]; then APNICquery "$IPADDR"
 243
 244 # If we got this far without making a decision, query ARIN.
 245 # If a reference is found in $OUTFILE to APNIC, AFRINIC, LACNIC, or RIPE,
 246 #+ query the appropriate whois server.
 247
 248 else
 249 ARINquery "$IPADDR"
 250 if grep "whois.afrinic.net" "$OUTFILE"; then
 251 AFRINICquery "$IPADDR"
 252 elif grep -E "^OrgID:[]+RIPE$" "$OUTFILE"; then
 253 RIPEquery "$IPADDR"
 254 elif grep -E "^OrgID:[]+APNIC$" "$OUTFILE"; then
 255 APNICquery "$IPADDR"
 256 elif grep -E "^OrgID:[]+LACNIC$" "$OUTFILE"; then
 257 LACNICquery "$IPADDR"
 258 fi
 259 fi
 260
 261 #@ ---
 262 # Try also:
 263 # wget http://logi.cc/nw/whois.php3?ACTION=doQuery&DOMAIN=$IPADDR
 264 #@ ---
 265
 266 # We've now finished the querying.
 267 # Echo a copy of the final result to the screen.
 268
 269 cat $OUTFILE
 270 # Or "less $OUTFILE" . . .
 271
 272
 273 exit 0
 274
 275 #@ ABS Guide author comments:
 276 #@ Nothing fancy here, but still a very useful tool for hunting spammers.
 277 #@ Sure, the script can be cleaned up some, and it's still a bit buggy,
 278 #@+ (exercise for reader), but all the same, it's a nice piece of coding
 279 #@+ by Walter Dnes.
 280 #@ Thank you!

"Little Monster's" front end to wget.

Example A-30. Making wget easier to use

 1 #!/bin/bash
 2 # wgetter2.bash
 3
 4 # Author: Little Monster [monster@monstruum.co.uk]
 5 # ==> Used in ABS Guide with permission of script author.
 6 # ==> This script still needs debugging and fixups (exercise for reader).
 7 # ==> It could also use some additional editing in the comments.
 8
 9
 10 # This is wgetter2 --
 11 #+ a Bash script to make wget a bit more friendly, and save typing.
 12
 13 # Carefully crafted by Little Monster.
 14 # More or less complete on 02/02/2005.
 15 # If you think this script can be improved,
 16 #+ email me at: monster@monstruum.co.uk
 17 # ==> and cc: to the author of the ABS Guide, please.
 18 # This script is licenced under the GPL.
 19 # You are free to copy, alter and re-use it,
 20 #+ but please don't try to claim you wrote it.
 21 # Log your changes here instead.
 22
 23 # ===
 24 # changelog:
 25
 26 # 07/02/2005. Fixups by Little Monster.
 27 # 02/02/2005. Minor additions by Little Monster.
 28 # (See after # +++++++++++)
 29 # 29/01/2005. Minor stylistic edits and cleanups by author of ABS Guide.
 30 # Added exit error codes.
 31 # 22/11/2004. Finished initial version of second version of wgetter:
 32 # wgetter2 is born.
 33 # 01/12/2004. Changed 'runn' function so it can be run 2 ways --
 34 # either ask for a file name or have one input on the CL.
 35 # 01/12/2004. Made sensible handling of no URL's given.
 36 # 01/12/2004. Made loop of main options, so you don't
 37 # have to keep calling wgetter 2 all the time.
 38 # Runs as a session instead.
 39 # 01/12/2004. Added looping to 'runn' function.
 40 # Simplified and improved.
 41 # 01/12/2004. Added state to recursion setting.
 42 # Enables re-use of previous value.
 43 # 05/12/2004. Modified the file detection routine in the 'runn' function
 44 # so it's not fooled by empty values, and is cleaner.
 45 # 01/02/2004. Added cookie finding routine from later version (which
 46 # isn't ready yet), so as not to have hard-coded paths.
 47 # ===
 48
 49 # Error codes for abnormal exit.
 50 E_USAGE=67 # Usage message, then quit.
 51 E_NO_OPTS=68 # No command-line args entered.
 52 E_NO_URLS=69 # No URLs passed to script.
 53 E_NO_SAVEFILE=70 # No save filename passed to script.
 54 E_USER_EXIT=71 # User decides to quit.
 55
 56
 57 # Basic default wget command we want to use.
 58 # This is the place to change it, if required.
 59 # NB: if using a proxy, set http_proxy = yourproxy in .wgetrc.
 60 # Otherwise delete --proxy=on, below.

 61 # ==
 62 CommandA="wget -nc -c -t 5 --progress=bar --random-wait --proxy=on -r"
 63 # ==
 64
 65
 66
 67 # --
 68 # Set some other variables and explain them.
 69
 70 pattern=" -A .jpg,.JPG,.jpeg,.JPEG,.gif,.GIF,.htm,.html,.shtml,.php"
 71 # wget's option to only get certain types of file.
 72 # comment out if not using
 73 today=`date +%F` # Used for a filename.
 74 home=$HOME # Set HOME to an internal variable.
 75 # In case some other path is used, change it here.
 76 depthDefault=3 # Set a sensible default recursion.
 77 Depth=$depthDefault # Otherwise user feedback doesn't tie in properly.
 78 RefA="" # Set blank referring page.
 79 Flag="" # Default to not saving anything,
 80 #+ or whatever else might be wanted in future.
 81 lister="" # Used for passing a list of urls directly to wget.
 82 Woptions="" # Used for passing wget some options for itself.
 83 inFile="" # Used for the run function.
 84 newFile="" # Used for the run function.
 85 savePath="$home/w-save"
 86 Config="$home/.wgetter2rc"
 87 # This is where some variables can be stored,
 88 #+ if permanently changed from within the script.
 89 Cookie_List="$home/.cookielist"
 90 # So we know where the cookies are kept . . .
 91 cFlag="" # Part of the cookie file selection routine.
 92
 93 # Define the options available. Easy to change letters here if needed.
 94 # These are the optional options; you don't just wait to be asked.
 95
 96 save=s # Save command instead of executing it.
 97 cook=c # Change cookie file for this session.
 98 help=h # Usage guide.
 99 list=l # Pass wget the -i option and URL list.
 100 runn=r # Run saved commands as an argument to the option.
 101 inpu=i # Run saved commands interactively.
 102 wopt=w # Allow to enter options to pass directly to wget.
 103 # --
 104
 105
 106 if [-z "$1"]; then # Make sure we get something for wget to eat.
 107 echo "You must at least enter a URL or option!"
 108 echo "-$help for usage."
 109 exit $E_NO_OPTS
 110 fi
 111
 112
 113
 114 # +++
 115 # added added added added added added added added added added added added
 116
 117 if [! -e "$Config"]; then # See if configuration file exists.
 118 echo "Creating configuration file, $Config"
 119 echo "# This is the configuration file for wgetter2" > "$Config"
 120 echo "# Your customised settings will be saved in this file" >> "$Config"
 121 else
 122 source $Config # Import variables we set outside the script.
 123 fi
 124
 125 if [! -e "$Cookie_List"]; then
 126 # Set up a list of cookie files, if there isn't one.

 127 echo "Hunting for cookies . . ."
 128 find -name cookies.txt >> $Cookie_List # Create the list of cookie files.
 129 fi # Isolate this in its own 'if' statement,
 130 #+ in case we got interrupted while searching.
 131
 132 if [-z "$cFlag"]; then # If we haven't already done this . . .
 133 echo # Make a nice space after the command prompt.
 134 echo "Looks like you haven't set up your source of cookies yet."
 135 n=0 # Make sure the counter
 136 #+ doesn't contain random values.
 137 while read; do
 138 Cookies[$n]=$REPLY # Put the cookie files we found into an array.
 139 echo "$n) ${Cookies[$n]}" # Create a menu.
 140 n=$((n + 1)) # Increment the counter.
 141 done < $Cookie_List # Feed the read statement.
 142 echo "Enter the number of the cookie file you want to use."
 143 echo "If you won't be using cookies, just press RETURN."
 144 echo
 145 echo "I won't be asking this again. Edit $Config"
 146 echo "If you decide to change at a later date"
 147 echo "or use the -${cook} option for per session changes."
 148 read
 149 if [! -z $REPLY]; then # User didn't just press return.
 150 Cookie=" --load-cookies ${Cookies[$REPLY]}"
 151 # Set the variable here as well as in the config file.
 152
 153 echo "Cookie=\" --load-cookies ${Cookies[$REPLY]}\"" >> $Config
 154 fi
 155 echo "cFlag=1" >> $Config # So we know not to ask again.
 156 fi
 157
 158 # end added section end added section end added section end added section
 159 # +++
 160
 161
 162
 163 # Another variable.
 164 # This one may or may not be subject to variation.
 165 # A bit like the small print.
 166 CookiesON=$Cookie
 167 # echo "cookie file is $CookiesON" # For debugging.
 168 # echo "home is ${home}" # For debugging.
 169 # Got caught with this one!
 170
 171
 172 wopts()
 173 {
 174 echo "Enter options to pass to wget."
 175 echo "It is assumed you know what you're doing."
 176 echo
 177 echo "You can pass their arguments here too."
 178 # That is to say, everything passed here is passed to wget.
 179
 180 read Wopts
 181 # Read in the options to be passed to wget.
 182
 183 Woptions=" $Wopts"
 184 # ^ Why the leading space?
 185 # Assign to another variable.
 186 # Just for fun, or something . . .
 187
 188 echo "passing options ${Wopts} to wget"
 189 # Mainly for debugging.
 190 # Is cute.
 191
 192 return

 193 }
 194
 195
 196 save_func()
 197 {
 198 echo "Settings will be saved."
 199 if [! -d $savePath]; then # See if directory exists.
 200 mkdir $savePath # Create the directory to save things in
 201 #+ if it isn't already there.
 202 fi
 203
 204 Flag=S
 205 # Tell the final bit of code what to do.
 206 # Set a flag since stuff is done in main.
 207
 208 return
 209 }
 210
 211
 212 usage() # Tell them how it works.
 213 {
 214 echo "Welcome to wgetter. This is a front end to wget."
 215 echo "It will always run wget with these options:"
 216 echo "$CommandA"
 217 echo "and the pattern to match: $pattern \
 218 (which you can change at the top of this script)."
 219 echo "It will also ask you for recursion depth, \
 220 and if you want to use a referring page."
 221 echo "Wgetter accepts the following options:"
 222 echo ""
 223 echo "-$help : Display this help."
 224 echo "-$save : Save the command to a file $savePath/wget-($today) \
 225 instead of running it."
 226 echo "-$runn : Run saved wget commands instead of starting a new one -"
 227 echo "Enter filename as argument to this option."
 228 echo "-$inpu : Run saved wget commands interactively --"
 229 echo "The script will ask you for the filename."
 230 echo "-$cook : Change the cookies file for this session."
 231 echo "-$list : Tell wget to use URL's from a list instead of \
 232 from the command-line."
 233 echo "-$wopt : Pass any other options direct to wget."
 234 echo ""
 235 echo "See the wget man page for additional options \
 236 you can pass to wget."
 237 echo ""
 238
 239 exit $E_USAGE # End here. Don't process anything else.
 240 }
 241
 242
 243
 244 list_func() # Gives the user the option to use the -i option to wget,
 245 #+ and a list of URLs.
 246 {
 247 while [1]; do
 248 echo "Enter the name of the file containing URL's (press q to change
 249 your mind)."
 250 read urlfile
 251 if [! -e "$urlfile"] && ["$urlfile" != q]; then
 252 # Look for a file, or the quit option.
 253 echo "That file does not exist!"
 254 elif ["$urlfile" = q]; then # Check quit option.
 255 echo "Not using a url list."
 256 return
 257 else
 258 echo "using $urlfile."

 259 echo "If you gave url's on the command-line, I'll use those first."
 260 # Report wget standard behaviour to the user.
 261 lister=" -i $urlfile" # This is what we want to pass to wget.
 262 return
 263 fi
 264 done
 265 }
 266
 267
 268 cookie_func() # Give the user the option to use a different cookie file.
 269 {
 270 while [1]; do
 271 echo "Change the cookies file. Press return if you don't want to change
 272 it."
 273 read Cookies
 274 # NB: this is not the same as Cookie, earlier.
 275 # There is an 's' on the end.
 276 # Bit like chocolate chips.
 277 if [-z "$Cookies"]; then # Escape clause for wusses.
 278 return
 279 elif [! -e "$Cookies"]; then
 280 echo "File does not exist. Try again." # Keep em going . . .
 281 else
 282 CookiesON=" --load-cookies $Cookies" # File is good -- use it!
 283 return
 284 fi
 285 done
 286 }
 287
 288
 289
 290 run_func()
 291 {
 292 if [-z "$OPTARG"]; then
 293 # Test to see if we used the in-line option or the query one.
 294 if [! -d "$savePath"]; then # If directory doesn't exist . . .
 295 echo "$savePath does not appear to exist."
 296 echo "Please supply path and filename of saved wget commands:"
 297 read newFile
 298 until [-f "$newFile"]; do # Keep going till we get something.
 299 echo "Sorry, that file does not exist. Please try again."
 300 # Try really hard to get something.
 301 read newFile
 302 done
 303
 304
 305 # ---
 306 # if [-z (grep wget ${newfile})]; then
 307 # Assume they haven't got the right file and bail out.
 308 # echo "Sorry, that file does not contain wget commands. Aborting."
 309 # exit
 310 # fi
 311 #
 312 # This is bogus code.
 313 # It doesn't actually work.
 314 # If anyone wants to fix it, feel free!
 315 # ---
 316
 317
 318 filePath="${newFile}"
 319 else
 320 echo "Save path is $savePath"
 321 echo "Please enter name of the file which you want to use."
 322 echo "You have a choice of:"
 323 ls $savePath # Give them a choice.
 324 read inFile

 325 until [-f "$savePath/$inFile"]; do # Keep going till
 326 #+ we get something.
 327 if [! -f "${savePath}/${inFile}"]; then # If file doesn't exist.
 328 echo "Sorry, that file does not exist. Please choose from:"
 329 ls $savePath # If a mistake is made.
 330 read inFile
 331 fi
 332 done
 333 filePath="${savePath}/${inFile}" # Make one variable . . .
 334 fi
 335 else filePath="${savePath}/${OPTARG}" # Which can be many things . . .
 336 fi
 337
 338 if [! -f "$filePath"]; then # If a bogus file got through.
 339 echo "You did not specify a suitable file."
 340 echo "Run this script with the -${save} option first."
 341 echo "Aborting."
 342 exit $E_NO_SAVEFILE
 343 fi
 344 echo "Using: $filePath"
 345 while read; do
 346 eval $REPLY
 347 echo "Completed: $REPLY"
 348 done < $filePath # Feed the actual file we are using into a 'while' loop.
 349
 350 exit
 351 }
 352
 353
 354
 355 # Fish out any options we are using for the script.
 356 # This is based on the demo in "Learning The Bash Shell" (O'Reilly).
 357 while getopts ":$save$cook$help$list$runn:$inpu$wopt" opt
 358 do
 359 case $opt in
 360 $save) save_func;; # Save some wgetter sessions for later.
 361 $cook) cookie_func;; # Change cookie file.
 362 $help) usage;; # Get help.
 363 $list) list_func;; # Allow wget to use a list of URLs.
 364 $runn) run_func;; # Useful if you are calling wgetter from,
 365 #+ for example, a cron script.
 366 $inpu) run_func;; # When you don't know what your files are named.
 367 $wopt) wopts;; # Pass options directly to wget.
 368 \?) echo "Not a valid option."
 369 echo "Use -${wopt} to pass options directly to wget,"
 370 echo "or -${help} for help";; # Catch anything else.
 371 esac
 372 done
 373 shift $((OPTIND - 1)) # Do funky magic stuff with $#.
 374
 375
 376 if [-z "$1"] && [-z "$lister"]; then
 377 # We should be left with at least one URL
 378 #+ on the command-line, unless a list is
 379 #+ being used -- catch empty CL's.
 380 echo "No URL's given! You must enter them on the same line as wgetter2."
 381 echo "E.g., wgetter2 http://somesite http://anothersite."
 382 echo "Use $help option for more information."
 383 exit $E_NO_URLS # Bail out, with appropriate error code.
 384 fi
 385
 386 URLS=" $@"
 387 # Use this so that URL list can be changed if we stay in the option loop.
 388
 389 while [1]; do
 390 # This is where we ask for the most used options.

 391 # (Mostly unchanged from version 1 of wgetter)
 392 if [-z $curDepth]; then
 393 Current=""
 394 else Current=" Current value is $curDepth"
 395 fi
 396 echo "How deep should I go? \
 397 (integer: Default is $depthDefault.$Current)"
 398 read Depth # Recursion -- how far should we go?
 399 inputB="" # Reset this to blank on each pass of the loop.
 400 echo "Enter the name of the referring page (default is none)."
 401 read inputB # Need this for some sites.
 402
 403 echo "Do you want to have the output logged to the terminal"
 404 echo "(y/n, default is yes)?"
 405 read noHide # Otherwise wget will just log it to a file.
 406
 407 case $noHide in # Now you see me, now you don't.
 408 y|Y) hide="";;
 409 n|N) hide=" -b";;
 410 *) hide="";;
 411 esac
 412
 413 if [-z ${Depth}]; then
 414 # User accepted either default or current depth,
 415 #+ in which case Depth is now empty.
 416 if [-z ${curDepth}]; then
 417 # See if a depth was set on a previous iteration.
 418 Depth="$depthDefault"
 419 # Set the default recursion depth if nothing
 420 #+ else to use.
 421 else Depth="$curDepth" # Otherwise, set the one we used before.
 422 fi
 423 fi
 424 Recurse=" -l $Depth" # Set how deep we want to go.
 425 curDepth=$Depth # Remember setting for next time.
 426
 427 if [! -z $inputB]; then
 428 RefA=" --referer=$inputB" # Option to use referring page.
 429 fi
 430
 431 WGETTER="${CommandA}${pattern}${hide}${RefA}${Recurse}\
 432 ${CookiesON}${lister}${Woptions}${URLS}"
 433 # Just string the whole lot together . . .
 434 # NB: no embedded spaces.
 435 # They are in the individual elements so that if any are empty,
 436 #+ we don't get an extra space.
 437
 438 if [-z "${CookiesON}"] && ["$cFlag" = "1"] ; then
 439 echo "Warning -- can't find cookie file"
 440 # This should be changed,
 441 #+ in case the user has opted to not use cookies.
 442 fi
 443
 444 if ["$Flag" = "S"]; then
 445 echo "$WGETTER" >> $savePath/wget-${today}
 446 # Create a unique filename for today, or append to it if it exists.
 447 echo "$inputB" >> $savePath/site-list-${today}
 448 # Make a list, so it's easy to refer back to,
 449 #+ since the whole command is a bit confusing to look at.
 450 echo "Command saved to the file $savePath/wget-${today}"
 451 # Tell the user.
 452 echo "Referring page URL saved to the file$ \
 453 savePath/site-list-${today}"
 454 # Tell the user.
 455 Saver=" with save option"
 456 # Stick this somewhere, so it appears in the loop if set.

 457 else
 458 echo "*****************"
 459 echo "*****Getting*****"
 460 echo "*****************"
 461 echo ""
 462 echo "$WGETTER"
 463 echo ""
 464 echo "*****************"
 465 eval "$WGETTER"
 466 fi
 467
 468 echo ""
 469 echo "Starting over$Saver."
 470 echo "If you want to stop, press q."
 471 echo "Otherwise, enter some URL's:"
 472 # Let them go again. Tell about save option being set.
 473
 474 read
 475 case $REPLY in
 476 # Need to change this to a 'trap' clause.
 477 q|Q) exit $E_USER_EXIT;; # Exercise for the reader?
 478 *) URLS=" $REPLY";;
 479 esac
 480
 481 echo ""
 482 done
 483
 484
 485 exit 0

Example A-31. A podcasting script

 1 #!/bin/bash
 2
 3 # bashpodder.sh:
 4 # By Linc 10/1/2004
 5 # Find the latest script at
 6 #+ http://linc.homeunix.org:8080/scripts/bashpodder
 7 # Last revision 12/14/2004 - Many Contributors!
 8 # If you use this and have made improvements or have comments
 9 #+ drop me an email at linc dot fessenden at gmail dot com
 10 # I'd appreciate it!
 11
 12 # ==> ABS Guide extra comments.
 13
 14 # ==> Author of this script has kindly granted permission
 15 # ==>+ for inclusion in ABS Guide.
 16
 17
 18 # ==> ##
 19 #
 20 # ==> What is "podcasting"?
 21
 22 # ==> It's broadcasting "radio shows" over the Internet.
 23 # ==> These shows can be played on iPods and other music file players.
 24
 25 # ==> This script makes it possible.
 26 # ==> See documentation at the script author's site, above.
 27
 28 # ==> ##
 29
 30

 31 # Make script crontab friendly:
 32 cd $(dirname $0)
 33 # ==> Change to directory where this script lives.
 34
 35 # datadir is the directory you want podcasts saved to:
 36 datadir=$(date +%Y-%m-%d)
 37 # ==> Will create a date-labeled directory, named: YYYY-MM-DD
 38
 39 # Check for and create datadir if necessary:
 40 if test ! -d $datadir
 41 then
 42 mkdir $datadir
 43 fi
 44
 45 # Delete any temp file:
 46 rm -f temp.log
 47
 48 # Read the bp.conf file and wget any url not already
 49 #+ in the podcast.log file:
 50 while read podcast
 51 do # ==> Main action follows.
 52 file=$(wget -q $podcast -O - | tr '\r' '\n' | tr \' \" | \
 53 sed -n 's/.*url="\([^"]*\)".*/\1/p')
 54 for url in $file
 55 do
 56 echo $url >> temp.log
 57 if ! grep "$url" podcast.log > /dev/null
 58 then
 59 wget -q -P $datadir "$url"
 60 fi
 61 done
 62 done < bp.conf
 63
 64 # Move dynamically created log file to permanent log file:
 65 cat podcast.log >> temp.log
 66 sort temp.log | uniq > podcast.log
 67 rm temp.log
 68 # Create an m3u playlist:
 69 ls $datadir | grep -v m3u > $datadir/podcast.m3u
 70
 71
 72 exit 0
 73
 74 ###
 75 For a different scripting approach to Podcasting,
 76 see Phil Salkie's article,
 77 "Internet Radio to Podcast with Shell Tools"
 78 in the September, 2005 issue of LINUX JOURNAL,
 79 http://www.linuxjournal.com/article/8171
 80 ###

Example A-32. Nightly backup to a firewire HD

 1 #!/bin/bash
 2 # nightly-backup.sh
 3 # http://www.richardneill.org/source.php#nightly-backup-rsync
 4 # Copyright (c) 2005 Richard Neill <backup@richardneill.org>.
 5 # This is Free Software licensed under the GNU GPL.
 6 # ==> Included in ABS Guide with script author's kind permission.
 7 # ==> (Thanks!)
 8
 9 # This does a backup from the host computer to a locally connected

 10 #+ firewire HDD using rsync and ssh.
 11 # (Script should work with USB-connected device (see lines 40-43).
 12 # It then rotates the backups.
 13 # Run it via cron every night at 5am.
 14 # This only backs up the home directory.
 15 # If ownerships (other than the user's) should be preserved,
 16 #+ then run the rsync process as root (and re-instate the -o).
 17 # We save every day for 7 days, then every week for 4 weeks,
 18 #+ then every month for 3 months.
 19
 20 # See: http://www.mikerubel.org/computers/rsync_snapshots/
 21 #+ for more explanation of the theory.
 22 # Save as: $HOME/bin/nightly-backup_firewire-hdd.sh
 23
 24 # Known bugs:
 25 # ----------
 26 # i) Ideally, we want to exclude ~/.tmp and the browser caches.
 27
 28 # ii) If the user is sitting at the computer at 5am,
 29 #+ and files are modified while the rsync is occurring,
 30 #+ then the BACKUP_JUSTINCASE branch gets triggered.
 31 # To some extent, this is a
 32 #+ feature, but it also causes a "disk-space leak".
 33
 34
 35
 36
 37
 38 ##### BEGIN CONFIGURATION SECTION ##
 39 LOCAL_USER=rjn # User whose home directory should be backed up.
 40 MOUNT_POINT=/backup # Mountpoint of backup drive.
 41 # NO trailing slash!
 42 # This must be unique (eg using a udev symlink)
 43 # MOUNT_POINT=/media/disk # For USB-connected device.
 44 SOURCE_DIR=/home/$LOCAL_USER # NO trailing slash - it DOES matter to rsync.
 45 BACKUP_DEST_DIR=$MOUNT_POINT/backup/`hostname -s`.${LOCAL_USER}.nightly_backup
 46 DRY_RUN=false #If true, invoke rsync with -n, to do a dry run.
 47 # Comment out or set to false for normal use.
 48 VERBOSE=false # If true, make rsync verbose.
 49 # Comment out or set to false otherwise.
 50 COMPRESS=false # If true, compress.
 51 # Good for internet, bad on LAN.
 52 # Comment out or set to false otherwise.
 53
 54 ### Exit Codes ###
 55 E_VARS_NOT_SET=64
 56 E_COMMANDLINE=65
 57 E_MOUNT_FAIL=70
 58 E_NOSOURCEDIR=71
 59 E_UNMOUNTED=72
 60 E_BACKUP=73
 61 ##### END CONFIGURATION SECTION ##
 62
 63
 64 # Check that all the important variables have been set:
 65 if [-z "$LOCAL_USER"] ||
 66 [-z "$SOURCE_DIR"] ||
 67 [-z "$MOUNT_POINT"] ||
 68 [-z "$BACKUP_DEST_DIR"]
 69 then
 70 echo 'One of the variables is not set! Edit the file: $0. BACKUP FAILED.'
 71 exit $E_VARS_NOT_SET
 72 fi
 73
 74 if ["$#" != 0] # If command-line param(s) . . .
 75 then # Here document(ation).

 76 cat <<-ENDOFTEXT
 77 Automatic Nightly backup run from cron.
 78 Read the source for more details: $0
 79 The backup directory is $BACKUP_DEST_DIR .
 80 It will be created if necessary; initialisation is no longer required.
 81
 82 WARNING: Contents of $BACKUP_DEST_DIR are rotated.
 83 Directories named 'backup.\$i' will eventually be DELETED.
 84 We keep backups from every day for 7 days (1-8),
 85 then every week for 4 weeks (9-12),
 86 then every month for 3 months (13-15).
 87
 88 You may wish to add this to your crontab using 'crontab -e'
 89 # Back up files: $SOURCE_DIR to $BACKUP_DEST_DIR
 90 #+ every night at 3:15 am
 91 15 03 * * * /home/$LOCAL_USER/bin/nightly-backup_firewire-hdd.sh
 92
 93 Don't forget to verify the backups are working,
 94 especially if you don't read cron's mail!"
 95 ENDOFTEXT
 96 exit $E_COMMANDLINE
 97 fi
 98
 99
 100 # Parse the options.
 101 # ==================
 102
 103 if ["$DRY_RUN" == "true"]; then
 104 DRY_RUN="-n"
 105 echo "WARNING:"
 106 echo "THIS IS A 'DRY RUN'!"
 107 echo "No data will actually be transferred!"
 108 else
 109 DRY_RUN=""
 110 fi
 111
 112 if ["$VERBOSE" == "true"]; then
 113 VERBOSE="-v"
 114 else
 115 VERBOSE=""
 116 fi
 117
 118 if ["$COMPRESS" == "true"]; then
 119 COMPRESS="-z"
 120 else
 121 COMPRESS=""
 122 fi
 123
 124
 125 # Every week (actually of 8 days) and every month,
 126 #+ extra backups are preserved.
 127 DAY_OF_MONTH=`date +%d` # Day of month (01..31).
 128 if [$DAY_OF_MONTH = 01]; then # First of month.
 129 MONTHSTART=true
 130 elif [$DAY_OF_MONTH = 08 \
 131 -o $DAY_OF_MONTH = 16 \
 132 -o $DAY_OF_MONTH = 24]; then
 133 # Day 8,16,24 (use 8, not 7 to better handle 31-day months)
 134 WEEKSTART=true
 135 fi
 136
 137
 138
 139 # Check that the HDD is mounted.
 140 # At least, check that *something* is mounted here!
 141 # We can use something unique to the device, rather than just guessing

 142 #+ the scsi-id by having an appropriate udev rule in
 143 #+ /etc/udev/rules.d/10-rules.local
 144 #+ and by putting a relevant entry in /etc/fstab.
 145 # Eg: this udev rule:
 146 # BUS="scsi", KERNEL="sd*", SYSFS{vendor}="WDC WD16",
 147 # SYSFS{model}="00JB-00GVA0 ", NAME="%k", SYMLINK="lacie_1394d%n"
 148
 149 if mount | grep $MOUNT_POINT >/dev/null; then
 150 echo "Mount point $MOUNT_POINT is indeed mounted. OK"
 151 else
 152 echo -n "Attempting to mount $MOUNT_POINT..."
 153 # If it isn't mounted, try to mount it.
 154 sudo mount $MOUNT_POINT 2>/dev/null
 155
 156 if mount | grep $MOUNT_POINT >/dev/null; then
 157 UNMOUNT_LATER=TRUE
 158 echo "OK"
 159 # Note: Ensure that this is also unmounted
 160 #+ if we exit prematurely with failure.
 161 else
 162 echo "FAILED"
 163 echo -e "Nothing is mounted at $MOUNT_POINT. BACKUP FAILED!"
 164 exit $E_MOUNT_FAIL
 165 fi
 166 fi
 167
 168
 169 # Check that source dir exists and is readable.
 170 if [! -r $SOURCE_DIR] ; then
 171 echo "$SOURCE_DIR does not exist, or cannot be read. BACKUP FAILED."
 172 exit $E_NOSOURCEDIR
 173 fi
 174
 175
 176 # Check that the backup directory structure is as it should be.
 177 # If not, create it.
 178 # Create the subdirectories.
 179 # Note that backup.0 will be created as needed by rsync.
 180
 181 for ((i=1;i<=15;i++)); do
 182 if [! -d $BACKUP_DEST_DIR/backup.$i]; then
 183 if /bin/mkdir -p $BACKUP_DEST_DIR/backup.$i ; then
 184 # ^^ No [] test brackets. Why?
 185 echo "Warning: directory $BACKUP_DEST_DIR/backup.$i is missing,"
 186 echo "or was not initialised. (Re-)creating it."
 187 else
 188 echo "ERROR: directory $BACKUP_DEST_DIR/backup.$i"
 189 echo "is missing and could not be created."
 190 if ["$UNMOUNT_LATER" == "TRUE"]; then
 191 # Before we exit, unmount the mount point if necessary.
 192 cd
 193 sudo umount $MOUNT_POINT &&
 194 echo "Unmounted $MOUNT_POINT again. Giving up."
 195 fi
 196 exit $E_UNMOUNTED
 197 fi
 198 fi
 199 done
 200
 201
 202 # Set the permission to 700 for security
 203 #+ on an otherwise permissive multi-user system.
 204 if ! /bin/chmod 700 $BACKUP_DEST_DIR ; then
 205 echo "ERROR: Could not set permissions on $BACKUP_DEST_DIR to 700."
 206
 207 if ["$UNMOUNT_LATER" == "TRUE"]; then

 208 # Before we exit, unmount the mount point if necessary.
 209 cd ; sudo umount $MOUNT_POINT \
 210 && echo "Unmounted $MOUNT_POINT again. Giving up."
 211 fi
 212
 213 exit $E_UNMOUNTED
 214 fi
 215
 216 # Create the symlink: current -> backup.1 if required.
 217 # A failure here is not critical.
 218 cd $BACKUP_DEST_DIR
 219 if [! -h current] ; then
 220 if ! /bin/ln -s backup.1 current ; then
 221 echo "WARNING: could not create symlink current -> backup.1"
 222 fi
 223 fi
 224
 225
 226 # Now, do the rsync.
 227 echo "Now doing backup with rsync..."
 228 echo "Source dir: $SOURCE_DIR"
 229 echo -e "Backup destination dir: $BACKUP_DEST_DIR\n"
 230
 231
 232 /usr/bin/rsync $DRY_RUN $VERBOSE -a -S --delete --modify-window=60 \
 233 --link-dest=../backup.1 $SOURCE_DIR $BACKUP_DEST_DIR/backup.0/
 234
 235 # Only warn, rather than exit if the rsync failed,
 236 #+ since it may only be a minor problem.
 237 # E.g., if one file is not readable, rsync will fail.
 238 # This shouldn't prevent the rotation.
 239 # Not using, e.g., `date +%a` since these directories
 240 #+ are just full of links and don't consume *that much* space.
 241
 242 if [$? != 0]; then
 243 BACKUP_JUSTINCASE=backup.`date +%F_%T`.justincase
 244 echo "WARNING: the rsync process did not entirely succeed."
 245 echo "Something might be wrong."
 246 echo "Saving an extra copy at: $BACKUP_JUSTINCASE"
 247 echo "WARNING: if this occurs regularly, a LOT of space will be consumed,"
 248 echo "even though these are just hard-links!"
 249 fi
 250
 251 # Save a readme in the backup parent directory.
 252 # Save another one in the recent subdirectory.
 253 echo "Backup of $SOURCE_DIR on `hostname` was last run on \
 254 `date`" > $BACKUP_DEST_DIR/README.txt
 255 echo "This backup of $SOURCE_DIR on `hostname` was created on \
 256 `date`" > $BACKUP_DEST_DIR/backup.0/README.txt
 257
 258 # If we are not in a dry run, rotate the backups.
 259 [-z "$DRY_RUN"] &&
 260
 261 # Check how full the backup disk is.
 262 # Warn if 90%. if 98% or more, we'll probably fail, so give up.
 263 # (Note: df can output to more than one line.)
 264 # We test this here, rather than before
 265 #+ so that rsync may possibly have a chance.
 266 DISK_FULL_PERCENT=`/bin/df $BACKUP_DEST_DIR |
 267 tr "\n" ' ' | awk '{print $12}' | grep -oE [0-9]+ `
 268 echo "Disk space check on backup partition \
 269 $MOUNT_POINT $DISK_FULL_PERCENT% full."
 270 if [$DISK_FULL_PERCENT -gt 90]; then
 271 echo "Warning: Disk is greater than 90% full."
 272 fi
 273 if [$DISK_FULL_PERCENT -gt 98]; then

 274 echo "Error: Disk is full! Giving up."
 275 if ["$UNMOUNT_LATER" == "TRUE"]; then
 276 # Before we exit, unmount the mount point if necessary.
 277 cd; sudo umount $MOUNT_POINT &&
 278 echo "Unmounted $MOUNT_POINT again. Giving up."
 279 fi
 280 exit $E_UNMOUNTED
 281 fi
 282
 283
 284 # Create an extra backup.
 285 # If this copy fails, give up.
 286 if [-n "$BACKUP_JUSTINCASE"]; then
 287 if ! /bin/cp -al $BACKUP_DEST_DIR/backup.0 \
 288 $BACKUP_DEST_DIR/$BACKUP_JUSTINCASE
 289 then
 290 echo "ERROR: Failed to create extra copy \
 291 $BACKUP_DEST_DIR/$BACKUP_JUSTINCASE"
 292 if ["$UNMOUNT_LATER" == "TRUE"]; then
 293 # Before we exit, unmount the mount point if necessary.
 294 cd ;sudo umount $MOUNT_POINT &&
 295 echo "Unmounted $MOUNT_POINT again. Giving up."
 296 fi
 297 exit $E_UNMOUNTED
 298 fi
 299 fi
 300
 301
 302 # At start of month, rotate the oldest 8.
 303 if ["$MONTHSTART" == "true"]; then
 304 echo -e "\nStart of month. \
 305 Removing oldest backup: $BACKUP_DEST_DIR/backup.15" &&
 306 /bin/rm -rf $BACKUP_DEST_DIR/backup.15 &&
 307 echo "Rotating monthly,weekly backups: \
 308 $BACKUP_DEST_DIR/backup.[8-14] -> $BACKUP_DEST_DIR/backup.[9-15]" &&
 309 /bin/mv $BACKUP_DEST_DIR/backup.14 $BACKUP_DEST_DIR/backup.15 &&
 310 /bin/mv $BACKUP_DEST_DIR/backup.13 $BACKUP_DEST_DIR/backup.14 &&
 311 /bin/mv $BACKUP_DEST_DIR/backup.12 $BACKUP_DEST_DIR/backup.13 &&
 312 /bin/mv $BACKUP_DEST_DIR/backup.11 $BACKUP_DEST_DIR/backup.12 &&
 313 /bin/mv $BACKUP_DEST_DIR/backup.10 $BACKUP_DEST_DIR/backup.11 &&
 314 /bin/mv $BACKUP_DEST_DIR/backup.9 $BACKUP_DEST_DIR/backup.10 &&
 315 /bin/mv $BACKUP_DEST_DIR/backup.8 $BACKUP_DEST_DIR/backup.9
 316
 317 # At start of week, rotate the second-oldest 4.
 318 elif ["$WEEKSTART" == "true"]; then
 319 echo -e "\nStart of week. \
 320 Removing oldest weekly backup: $BACKUP_DEST_DIR/backup.12" &&
 321 /bin/rm -rf $BACKUP_DEST_DIR/backup.12 &&
 322
 323 echo "Rotating weekly backups: \
 324 $BACKUP_DEST_DIR/backup.[8-11] -> $BACKUP_DEST_DIR/backup.[9-12]" &&
 325 /bin/mv $BACKUP_DEST_DIR/backup.11 $BACKUP_DEST_DIR/backup.12 &&
 326 /bin/mv $BACKUP_DEST_DIR/backup.10 $BACKUP_DEST_DIR/backup.11 &&
 327 /bin/mv $BACKUP_DEST_DIR/backup.9 $BACKUP_DEST_DIR/backup.10 &&
 328 /bin/mv $BACKUP_DEST_DIR/backup.8 $BACKUP_DEST_DIR/backup.9
 329
 330 else
 331 echo -e "\nRemoving oldest daily backup: $BACKUP_DEST_DIR/backup.8" &&
 332 /bin/rm -rf $BACKUP_DEST_DIR/backup.8
 333
 334 fi &&
 335
 336 # Every day, rotate the newest 8.
 337 echo "Rotating daily backups: \
 338 $BACKUP_DEST_DIR/backup.[1-7] -> $BACKUP_DEST_DIR/backup.[2-8]" &&
 339 /bin/mv $BACKUP_DEST_DIR/backup.7 $BACKUP_DEST_DIR/backup.8 &&

 340 /bin/mv $BACKUP_DEST_DIR/backup.6 $BACKUP_DEST_DIR/backup.7 &&
 341 /bin/mv $BACKUP_DEST_DIR/backup.5 $BACKUP_DEST_DIR/backup.6 &&
 342 /bin/mv $BACKUP_DEST_DIR/backup.4 $BACKUP_DEST_DIR/backup.5 &&
 343 /bin/mv $BACKUP_DEST_DIR/backup.3 $BACKUP_DEST_DIR/backup.4 &&
 344 /bin/mv $BACKUP_DEST_DIR/backup.2 $BACKUP_DEST_DIR/backup.3 &&
 345 /bin/mv $BACKUP_DEST_DIR/backup.1 $BACKUP_DEST_DIR/backup.2 &&
 346 /bin/mv $BACKUP_DEST_DIR/backup.0 $BACKUP_DEST_DIR/backup.1 &&
 347
 348 SUCCESS=true
 349
 350
 351 if ["$UNMOUNT_LATER" == "TRUE"]; then
 352 # Unmount the mount point if it wasn't mounted to begin with.
 353 cd ; sudo umount $MOUNT_POINT && echo "Unmounted $MOUNT_POINT again."
 354 fi
 355
 356
 357 if ["$SUCCESS" == "true"]; then
 358 echo 'SUCCESS!'
 359 exit 0
 360 fi
 361
 362 # Should have already exited if backup worked.
 363 echo 'BACKUP FAILED! Is this just a dry run? Is the disk full?) '
 364 exit $E_BACKUP

Example A-33. An expanded cd command

 1 ###
 2 #
 3 # cdll
 4 # by Phil Braham
 5 #
 6 # ##
 7 # Latest version of this script available from
 8 # http://freshmeat.net/projects/cd/
 9 # ##
 10 #
 11 # .cd_new
 12 #
 13 # An enhancement of the Unix cd command
 14 #
 15 # There are unlimited stack entries and special entries. The stack
 16 # entries keep the last cd_maxhistory
 17 # directories that have been used. The special entries can be
 18 # assigned to commonly used directories.
 19 #
 20 # The special entries may be pre-assigned by setting the environment
 21 # variables CDSn or by using the -u or -U command.
 22 #
 23 # The following is a suggestion for the .profile file:
 24 #
 25 # . cdll # Set up the cd command
 26 # alias cd='cd_new' # Replace the cd command
 27 # cd -U # Upload pre-assigned entries for
 28 # #+ the stack and special entries
 29 # cd -D # Set non-default mode
 30 # alias @="cd_new @" # Allow @ to be used to get history
 31 #
 32 # For help type:
 33 #
 34 # cd -h or

 35 # cd -H
 36 #
 37 #
 38 ###
 39 #
 40 # Version 1.2.1
 41 #
 42 # Written by Phil Braham - Realtime Software Pty Ltd
 43 # (realtime@mpx.com.au)
 44 # Please send any suggestions or enhancements to the author (also at
 45 # phil@braham.net)
 46 #
 47 ##
 48
 49 cd_hm ()
 50 {
 51 ${PRINTF} "%s" "cd [dir] [0-9] [@[s|h] [-g [<dir>]] [-d] \
 52 [-D] [-r<n>] [dir|0-9] [-R<n>] [<dir>|0-9]
 53 [-s<n>] [-S<n>] [-u] [-U] [-f] [-F] [-h] [-H] [-v]
 54 <dir> Go to directory
 55 0-n Go to previous directory (0 is previous, 1 is last but 1 etc)
 56 n is up to max history (default is 50)
 57 @ List history and special entries
 58 @h List history entries
 59 @s List special entries
 60 -g [<dir>] Go to literal name (bypass special names)
 61 This is to allow access to dirs called '0','1','-h' etc
 62 -d Change default action - verbose. (See note)
 63 -D Change default action - silent. (See note)
 64 -s<n> Go to the special entry <n>*
 65 -S<n> Go to the special entry <n>
 66 and replace it with the current dir*
 67 -r<n> [<dir>] Go to directory <dir>
 68 and then put it on special entry <n>*
 69 -R<n> [<dir>] Go to directory <dir>
 70 and put current dir on special entry <n>*
 71 -a<n> Alternative suggested directory. See note below.
 72 -f [<file>] File entries to <file>.
 73 -u [<file>] Update entries from <file>.
 74 If no filename supplied then default file
 75 (${CDPath}${2:-"$CDFile"}) is used
 76 -F and -U are silent versions
 77 -v Print version number
 78 -h Help
 79 -H Detailed help
 80
 81 *The special entries (0 - 9) are held until log off, replaced by another
 82 entry or updated with the -u command
 83
 84 Alternative suggested directories:
 85 If a directory is not found then CD will suggest any
 86 possibilities. These are directories starting with the same letters
 87 and if any are found they are listed prefixed with -a<n>
 88 where <n> is a number.
 89 It's possible to go to the directory by entering cd -a<n>
 90 on the command line.
 91
 92 The directory for -r<n> or -R<n> may be a number.
 93 For example:
 94 $ cd -r3 4 Go to history entry 4 and put it on special entry 3
 95 $ cd -R3 4 Put current dir on the special entry 3
 96 and go to history entry 4
 97 $ cd -s3 Go to special entry 3
 98
 99 Note that commands R,r,S and s may be used without a number
 100 and refer to 0:

 101 $ cd -s Go to special entry 0
 102 $ cd -S Go to special entry 0 and make special
 103 entry 0 current dir
 104 $ cd -r 1 Go to history entry 1 and put it on special entry 0
 105 $ cd -r Go to history entry 0 and put it on special entry 0
 106 "
 107 if ${TEST} "$CD_MODE" = "PREV"
 108 then
 109 ${PRINTF} "$cd_mnset"
 110 else
 111 ${PRINTF} "$cd_mset"
 112 fi
 113 }
 114
 115 cd_Hm ()
 116 {
 117 cd_hm
 118 ${PRINTF} "%s" "
 119 The previous directories (0-$cd_maxhistory) are stored in the
 120 environment variables CD[0] - CD[$cd_maxhistory]
 121 Similarly the special directories S0 - $cd_maxspecial are in
 122 the environment variable CDS[0] - CDS[$cd_maxspecial]
 123 and may be accessed from the command line
 124
 125 The default pathname for the -f and -u commands is $CDPath
 126 The default filename for the -f and -u commands is $CDFile
 127
 128 Set the following environment variables:
 129 CDL_PROMPTLEN - Set to the length of prompt you require.
 130 Prompt string is set to the right characters of the
 131 current directory.
 132 If not set then prompt is left unchanged
 133 CDL_PROMPT_PRE - Set to the string to prefix the prompt.
 134 Default is:
 135 non-root: \"\\[\\e[01;34m\\]\" (sets colour to blue).
 136 root: \"\\[\\e[01;31m\\]\" (sets colour to red).
 137 CDL_PROMPT_POST - Set to the string to suffix the prompt.
 138 Default is:
 139 non-root: \"\\[\\e[00m\\]$\"
 140 (resets colour and displays $).
 141 root: \"\\[\\e[00m\\]#\"
 142 (resets colour and displays #).
 143 CDPath - Set the default path for the -f & -u options.
 144 Default is home directory
 145 CDFile - Set the default filename for the -f & -u options.
 146 Default is cdfile
 147
 148 "
 149 cd_version
 150
 151 }
 152
 153 cd_version ()
 154 {
 155 printf "Version: ${VERSION_MAJOR}.${VERSION_MINOR} Date: ${VERSION_DATE}\n"
 156 }
 157
 158 #
 159 # Truncate right.
 160 #
 161 # params:
 162 # p1 - string
 163 # p2 - length to truncate to
 164 #
 165 # returns string in tcd
 166 #

 167 cd_right_trunc ()
 168 {
 169 local tlen=${2}
 170 local plen=${#1}
 171 local str="${1}"
 172 local diff
 173 local filler="<--"
 174 if ${TEST} ${plen} -le ${tlen}
 175 then
 176 tcd="${str}"
 177 else
 178 let diff=${plen}-${tlen}
 179 elen=3
 180 if ${TEST} ${diff} -le 2
 181 then
 182 let elen=${diff}
 183 fi
 184 tlen=-${tlen}
 185 let tlen=${tlen}+${elen}
 186 tcd=${filler:0:elen}${str:tlen}
 187 fi
 188 }
 189
 190 #
 191 # Three versions of do history:
 192 # cd_dohistory - packs history and specials side by side
 193 # cd_dohistoryH - Shows only hstory
 194 # cd_dohistoryS - Shows only specials
 195 #
 196 cd_dohistory ()
 197 {
 198 cd_getrc
 199 ${PRINTF} "History:\n"
 200 local -i count=${cd_histcount}
 201 while ${TEST} ${count} -ge 0
 202 do
 203 cd_right_trunc "${CD[count]}" ${cd_lchar}
 204 ${PRINTF} "%2d %-${cd_lchar}.${cd_lchar}s " ${count} "${tcd}"
 205
 206 cd_right_trunc "${CDS[count]}" ${cd_rchar}
 207 ${PRINTF} "S%d %-${cd_rchar}.${cd_rchar}s\n" ${count} "${tcd}"
 208 count=${count}-1
 209 done
 210 }
 211
 212 cd_dohistoryH ()
 213 {
 214 cd_getrc
 215 ${PRINTF} "History:\n"
 216 local -i count=${cd_maxhistory}
 217 while ${TEST} ${count} -ge 0
 218 do
 219 ${PRINTF} "${count} %-${cd_flchar}.${cd_flchar}s\n" ${CD[$count]}
 220 count=${count}-1
 221 done
 222 }
 223
 224 cd_dohistoryS ()
 225 {
 226 cd_getrc
 227 ${PRINTF} "Specials:\n"
 228 local -i count=${cd_maxspecial}
 229 while ${TEST} ${count} -ge 0
 230 do
 231 ${PRINTF} "S${count} %-${cd_flchar}.${cd_flchar}s\n" ${CDS[$count]}
 232 count=${count}-1

 233 done
 234 }
 235
 236 cd_getrc ()
 237 {
 238 cd_flchar=$(stty -a | awk -F \;
 239 '/rows/ { print $2 $3 }' | awk -F \ '{ print $4 }')
 240 if ${TEST} ${cd_flchar} -ne 0
 241 then
 242 cd_lchar=${cd_flchar}/2-5
 243 cd_rchar=${cd_flchar}/2-5
 244 cd_flchar=${cd_flchar}-5
 245 else
 246 cd_flchar=${FLCHAR:=75}
 247 # cd_flchar is used for for the @s & @h history
 248 cd_lchar=${LCHAR:=35}
 249 cd_rchar=${RCHAR:=35}
 250 fi
 251 }
 252
 253 cd_doselection ()
 254 {
 255 local -i nm=0
 256 cd_doflag="TRUE"
 257 if ${TEST} "${CD_MODE}" = "PREV"
 258 then
 259 if ${TEST} -z "$cd_npwd"
 260 then
 261 cd_npwd=0
 262 fi
 263 fi
 264 tm=$(echo "${cd_npwd}" | cut -b 1)
 265 if ${TEST} "${tm}" = "-"
 266 then
 267 pm=$(echo "${cd_npwd}" | cut -b 2)
 268 nm=$(echo "${cd_npwd}" | cut -d $pm -f2)
 269 case "${pm}" in
 270 a) cd_npwd=${cd_sugg[$nm]} ;;
 271 s) cd_npwd="${CDS[$nm]}" ;;
 272 S) cd_npwd="${CDS[$nm]}" ; CDS[$nm]=`pwd` ;;
 273 r) cd_npwd="$2" ; cd_specDir=$nm ; cd_doselection "$1" "$2";;
 274 R) cd_npwd="$2" ; CDS[$nm]=`pwd` ; cd_doselection "$1" "$2";;
 275 esac
 276 fi
 277
 278 if ${TEST} "${cd_npwd}" != "." -a "${cd_npwd}" \
 279 != ".." -a "${cd_npwd}" -le ${cd_maxhistory} >>/dev/null 2>&1
 280 then
 281 cd_npwd=${CD[$cd_npwd]}
 282 else
 283 case "$cd_npwd" in
 284 @) cd_dohistory ; cd_doflag="FALSE" ;;
 285 @h) cd_dohistoryH ; cd_doflag="FALSE" ;;
 286 @s) cd_dohistoryS ; cd_doflag="FALSE" ;;
 287 -h) cd_hm ; cd_doflag="FALSE" ;;
 288 -H) cd_Hm ; cd_doflag="FALSE" ;;
 289 -f) cd_fsave "SHOW" $2 ; cd_doflag="FALSE" ;;
 290 -u) cd_upload "SHOW" $2 ; cd_doflag="FALSE" ;;
 291 -F) cd_fsave "NOSHOW" $2 ; cd_doflag="FALSE" ;;
 292 -U) cd_upload "NOSHOW" $2 ; cd_doflag="FALSE" ;;
 293 -g) cd_npwd="$2" ;;
 294 -d) cd_chdefm 1; cd_doflag="FALSE" ;;
 295 -D) cd_chdefm 0; cd_doflag="FALSE" ;;
 296 -r) cd_npwd="$2" ; cd_specDir=0 ; cd_doselection "$1" "$2";;
 297 -R) cd_npwd="$2" ; CDS[0]=`pwd` ; cd_doselection "$1" "$2";;
 298 -s) cd_npwd="${CDS[0]}" ;;

 299 -S) cd_npwd="${CDS[0]}" ; CDS[0]=`pwd` ;;
 300 -v) cd_version ; cd_doflag="FALSE";;
 301 esac
 302 fi
 303 }
 304
 305 cd_chdefm ()
 306 {
 307 if ${TEST} "${CD_MODE}" = "PREV"
 308 then
 309 CD_MODE=""
 310 if ${TEST} $1 -eq 1
 311 then
 312 ${PRINTF} "${cd_mset}"
 313 fi
 314 else
 315 CD_MODE="PREV"
 316 if ${TEST} $1 -eq 1
 317 then
 318 ${PRINTF} "${cd_mnset}"
 319 fi
 320 fi
 321 }
 322
 323 cd_fsave ()
 324 {
 325 local sfile=${CDPath}${2:-"$CDFile"}
 326 if ${TEST} "$1" = "SHOW"
 327 then
 328 ${PRINTF} "Saved to %s\n" $sfile
 329 fi
 330 ${RM} -f ${sfile}
 331 local -i count=0
 332 while ${TEST} ${count} -le ${cd_maxhistory}
 333 do
 334 echo "CD[$count]=\"${CD[$count]}\"" >> ${sfile}
 335 count=${count}+1
 336 done
 337 count=0
 338 while ${TEST} ${count} -le ${cd_maxspecial}
 339 do
 340 echo "CDS[$count]=\"${CDS[$count]}\"" >> ${sfile}
 341 count=${count}+1
 342 done
 343 }
 344
 345 cd_upload ()
 346 {
 347 local sfile=${CDPath}${2:-"$CDFile"}
 348 if ${TEST} "${1}" = "SHOW"
 349 then
 350 ${PRINTF} "Loading from %s\n" ${sfile}
 351 fi
 352 . ${sfile}
 353 }
 354
 355 cd_new ()
 356 {
 357 local -i count
 358 local -i choose=0
 359
 360 cd_npwd="${1}"
 361 cd_specDir=-1
 362 cd_doselection "${1}" "${2}"
 363
 364 if ${TEST} ${cd_doflag} = "TRUE"

 365 then
 366 if ${TEST} "${CD[0]}" != "`pwd`"
 367 then
 368 count=$cd_maxhistory
 369 while ${TEST} $count -gt 0
 370 do
 371 CD[$count]=${CD[$count-1]}
 372 count=${count}-1
 373 done
 374 CD[0]=`pwd`
 375 fi
 376 command cd "${cd_npwd}" 2>/dev/null
 377 if ${TEST} $? -eq 1
 378 then
 379 ${PRINTF} "Unknown dir: %s\n" "${cd_npwd}"
 380 local -i ftflag=0
 381 for i in "${cd_npwd}"*
 382 do
 383 if ${TEST} -d "${i}"
 384 then
 385 if ${TEST} ${ftflag} -eq 0
 386 then
 387 ${PRINTF} "Suggest:\n"
 388 ftflag=1
 389 fi
 390 ${PRINTF} "\t-a${choose} %s\n" "$i"
 391 cd_sugg[$choose]="${i}"
 392 choose=${choose}+1
 393 fi
 394 done
 395 fi
 396 fi
 397
 398 if ${TEST} ${cd_specDir} -ne -1
 399 then
 400 CDS[${cd_specDir}]=`pwd`
 401 fi
 402
 403 if ${TEST} ! -z "${CDL_PROMPTLEN}"
 404 then
 405 cd_right_trunc "${PWD}" ${CDL_PROMPTLEN}
 406 cd_rp=${CDL_PROMPT_PRE}${tcd}${CDL_PROMPT_POST}
 407 export PS1="$(echo -ne ${cd_rp})"
 408 fi
 409 }
 410 ###
 411 # #
 412 # Initialisation here #
 413 # #
 414 ###
 415 #
 416 VERSION_MAJOR="1"
 417 VERSION_MINOR="2.1"
 418 VERSION_DATE="24-MAY-2003"
 419 #
 420 alias cd=cd_new
 421 #
 422 # Set up commands
 423 RM=/bin/rm
 424 TEST=test
 425 PRINTF=printf # Use builtin printf
 426
 427 ###
 428 # #
 429 # Change this to modify the default pre- and post prompt strings. #
 430 # These only come into effect if CDL_PROMPTLEN is set. #

 431 # #
 432 ###
 433 if ${TEST} ${EUID} -eq 0
 434 then
 435 # CDL_PROMPT_PRE=${CDL_PROMPT_PRE:="$HOSTNAME@"}
 436 CDL_PROMPT_PRE=${CDL_PROMPT_PRE:="\\[\\e[01;31m\\]"} # Root is in red
 437 CDL_PROMPT_POST=${CDL_PROMPT_POST:="\\[\\e[00m\\]#"}
 438 else
 439 CDL_PROMPT_PRE=${CDL_PROMPT_PRE:="\\[\\e[01;34m\\]"} # Users in blue
 440 CDL_PROMPT_POST=${CDL_PROMPT_POST:="\\[\\e[00m\\]$"}
 441 fi
 442 ###
 443 #
 444 # cd_maxhistory defines the max number of history entries allowed.
 445 typeset -i cd_maxhistory=50
 446
 447 ###
 448 #
 449 # cd_maxspecial defines the number of special entries.
 450 typeset -i cd_maxspecial=9
 451 #
 452 #
 453 ###
 454 #
 455 # cd_histcount defines the number of entries displayed in
 456 #+ the history command.
 457 typeset -i cd_histcount=9
 458 #
 459 ###
 460 export CDPath=${HOME}/
 461 # Change these to use a different #
 462 #+ default path and filename #
 463 export CDFile=${CDFILE:=cdfile} # for the -u and -f commands #
 464 #
 465 ###
 466 #
 467 typeset -i cd_lchar cd_rchar cd_flchar
 468 # This is the number of chars to allow for the #
 469 cd_flchar=${FLCHAR:=75} #+ cd_flchar is used for for the @s & @h history#
 470
 471 typeset -ax CD CDS
 472 #
 473 cd_mset="\n\tDefault mode is now set - entering cd with no parameters \
 474 has the default action\n\tUse cd -d or -D for cd to go to \
 475 previous directory with no parameters\n"
 476 cd_mnset="\n\tNon-default mode is now set - entering cd with no \
 477 parameters is the same as entering cd 0\n\tUse cd -d or \
 478 -D to change default cd action\n"
 479
 480 # == #
 481
 482
 483
 484 : <<DOCUMENTATION
 485
 486 Written by Phil Braham. Realtime Software Pty Ltd.
 487 Released under GNU license. Free to use. Please pass any modifications
 488 or comments to the author Phil Braham:
 489
 490 realtime@mpx.com.au
 491 ===
 492
 493 cdll is a replacement for cd and incorporates similar functionality to
 494 the bash pushd and popd commands but is independent of them.
 495
 496 This version of cdll has been tested on Linux using Bash. It will work

 497 on most Linux versions but will probably not work on other shells without
 498 modification.
 499
 500 Introduction
 501 ============
 502
 503 cdll allows easy moving about between directories. When changing to a new
 504 directory the current one is automatically put onto a stack. By default
 505 50 entries are kept, but this is configurable. Special directories can be
 506 kept for easy access - by default up to 10, but this is configurable. The
 507 most recent stack entries and the special entries can be easily viewed.
 508
 509 The directory stack and special entries can be saved to, and loaded from,
 510 a file. This allows them to be set up on login, saved before logging out
 511 or changed when moving project to project.
 512
 513 In addition, cdll provides a flexible command prompt facility that allows,
 514 for example, a directory name in colour that is truncated from the left
 515 if it gets too long.
 516
 517
 518 Setting up cdll
 519 ===============
 520
 521 Copy cdll to either your local home directory or a central directory
 522 such as /usr/bin (this will require root access).
 523
 524 Copy the file cdfile to your home directory. It will require read and
 525 write access. This a default file that contains a directory stack and
 526 special entries.
 527
 528 To replace the cd command you must add commands to your login script.
 529 The login script is one or more of:
 530
 531 /etc/profile
 532 ~/.bash_profile
 533 ~/.bash_login
 534 ~/.profile
 535 ~/.bashrc
 536 /etc/bash.bashrc.local
 537
 538 To setup your login, ~/.bashrc is recommended, for global (and root) setup
 539 add the commands to /etc/bash.bashrc.local
 540
 541 To set up on login, add the command:
 542 . <dir>/cdll
 543 For example if cdll is in your local home directory:
 544 . ~/cdll
 545 If in /usr/bin then:
 546 . /usr/bin/cdll
 547
 548 If you want to use this instead of the buitin cd command then add:
 549 alias cd='cd_new'
 550 We would also recommend the following commands:
 551 alias @='cd_new @'
 552 cd -U
 553 cd -D
 554
 555 If you want to use cdll's prompt facilty then add the following:
 556 CDL_PROMPTLEN=nn
 557 Where nn is a number described below. Initially 99 would be suitable
 558 number.
 559
 560 Thus the script looks something like this:
 561
 562 ##

 563 # CD Setup
 564 ##
 565 CDL_PROMPTLEN=21 # Allow a prompt length of up to 21 characters
 566 . /usr/bin/cdll # Initialise cdll
 567 alias cd='cd_new' # Replace the built in cd command
 568 alias @='cd_new @' # Allow @ at the prompt to display history
 569 cd -U # Upload directories
 570 cd -D # Set default action to non-posix
 571 ##
 572
 573 The full meaning of these commands will become clear later.
 574
 575 There are a couple of caveats. If another program changes the directory
 576 without calling cdll, then the directory won't be put on the stack and
 577 also if the prompt facility is used then this will not be updated. Two
 578 programs that can do this are pushd and popd. To update the prompt and
 579 stack simply enter:
 580
 581 cd .
 582
 583 Note that if the previous entry on the stack is the current directory
 584 then the stack is not updated.
 585
 586 Usage
 587 =====
 588 cd [dir] [0-9] [@[s|h] [-g <dir>] [-d] [-D] [-r<n>]
 589 [dir|0-9] [-R<n>] [<dir>|0-9] [-s<n>] [-S<n>]
 590 [-u] [-U] [-f] [-F] [-h] [-H] [-v]
 591
 592 <dir> Go to directory
 593 0-n Goto previous directory (0 is previous,
 594 1 is last but 1, etc.)
 595 n is up to max history (default is 50)
 596 @ List history and special entries (Usually available as $ @)
 597 @h List history entries
 598 @s List special entries
 599 -g [<dir>] Go to literal name (bypass special names)
 600 This is to allow access to dirs called '0','1','-h' etc
 601 -d Change default action - verbose. (See note)
 602 -D Change default action - silent. (See note)
 603 -s<n> Go to the special entry <n>
 604 -S<n> Go to the special entry <n>
 605 and replace it with the current dir
 606 -r<n> [<dir>] Go to directory <dir>
 607 and then put it on special entry <n>
 608 -R<n> [<dir>] Go to directory <dir>
 609 and put current dir on special entry <n>
 610 -a<n> Alternative suggested directory. See note below.
 611 -f [<file>] File entries to <file>.
 612 -u [<file>] Update entries from <file>.
 613 If no filename supplied then default file (~/cdfile) is used
 614 -F and -U are silent versions
 615 -v Print version number
 616 -h Help
 617 -H Detailed help
 618
 619
 620
 621 Examples
 622 ========
 623
 624 These examples assume non-default mode is set (that is, cd with no
 625 parameters will go to the most recent stack directory), that aliases
 626 have been set up for cd and @ as described above and that cd's prompt
 627 facility is active and the prompt length is 21 characters.
 628

 629 /home/phil$ @
 630 # List the entries with the @
 631 History:
 632 # Output of the @ command
 633
 634 # Skipped these entries for brevity
 635 1 /home/phil/ummdev S1 /home/phil/perl
 636 # Most recent two history entries
 637 0 /home/phil/perl/eg S0 /home/phil/umm/ummdev
 638 # and two special entries are shown
 639
 640 /home/phil$ cd /home/phil/utils/Cdll
 641 # Now change directories
 642 /home/phil/utils/Cdll$ @
 643 # Prompt reflects the directory.
 644 History:
 645 # New history
 646
 647 1 /home/phil/perl/eg S1 /home/phil/perl
 648 # History entry 0 has moved to 1
 649 0 /home/phil S0 /home/phil/umm/ummdev
 650 # and the most recent has entered
 651
 652 To go to a history entry:
 653
 654 /home/phil/utils/Cdll$ cd 1
 655 # Go to history entry 1.
 656 /home/phil/perl/eg$
 657 # Current directory is now what was 1
 658
 659 To go to a special entry:
 660
 661 /home/phil/perl/eg$ cd -s1
 662 # Go to special entry 1
 663 /home/phil/umm/ummdev$
 664 # Current directory is S1
 665
 666 To go to a directory called, for example, 1:
 667
 668 /home/phil$ cd -g 1
 669 # -g ignores the special meaning of 1
 670 /home/phil/1$
 671
 672 To put current directory on the special list as S1:
 673 cd -r1 . # OR
 674 cd -R1 . # These have the same effect if the directory is
 675 #+ . (the current directory)
 676
 677 To go to a directory and add it as a special
 678 The directory for -r<n> or -R<n> may be a number.
 679 For example:
 680 $ cd -r3 4 Go to history entry 4 and put it on special entry 3
 681 $ cd -R3 4 Put current dir on the special entry 3 and go to
 682 history entry 4
 683 $ cd -s3 Go to special entry 3
 684
 685 Note that commands R,r,S and s may be used without a number and
 686 refer to 0:
 687 $ cd -s Go to special entry 0
 688 $ cd -S Go to special entry 0 and make special entry 0
 689 current dir
 690 $ cd -r 1 Go to history entry 1 and put it on special entry 0
 691 $ cd -r Go to history entry 0 and put it on special entry 0
 692
 693
 694 Alternative suggested directories:

 695
 696 If a directory is not found, then CD will suggest any
 697 possibilities. These are directories starting with the same letters
 698 and if any are found they are listed prefixed with -a<n>
 699 where <n> is a number. It's possible to go to the directory
 700 by entering cd -a<n> on the command line.
 701
 702 Use cd -d or -D to change default cd action. cd -H will show
 703 current action.
 704
 705 The history entries (0-n) are stored in the environment variables
 706 CD[0] - CD[n]
 707 Similarly the special directories S0 - 9 are in the environment
 708 variable CDS[0] - CDS[9]
 709 and may be accessed from the command line, for example:
 710
 711 ls -l ${CDS[3]}
 712 cat ${CD[8]}/file.txt
 713
 714 The default pathname for the -f and -u commands is ~
 715 The default filename for the -f and -u commands is cdfile
 716
 717
 718 Configuration
 719 =============
 720
 721 The following environment variables can be set:
 722
 723 CDL_PROMPTLEN - Set to the length of prompt you require.
 724 Prompt string is set to the right characters of the current
 725 directory. If not set, then prompt is left unchanged. Note
 726 that this is the number of characters that the directory is
 727 shortened to, not the total characters in the prompt.
 728
 729 CDL_PROMPT_PRE - Set to the string to prefix the prompt.
 730 Default is:
 731 non-root: "\\[\\e[01;34m\\]" (sets colour to blue).
 732 root: "\\[\\e[01;31m\\]" (sets colour to red).
 733
 734 CDL_PROMPT_POST - Set to the string to suffix the prompt.
 735 Default is:
 736 non-root: "\\[\\e[00m\\]$"
 737 (resets colour and displays $).
 738 root: "\\[\\e[00m\\]#"
 739 (resets colour and displays #).
 740
 741 Note:
 742 CDL_PROMPT_PRE & _POST only t
 743
 744 CDPath - Set the default path for the -f & -u options.
 745 Default is home directory
 746 CDFile - Set the default filename for the -f & -u options.
 747 Default is cdfile
 748
 749
 750 There are three variables defined in the file cdll which control the
 751 number of entries stored or displayed. They are in the section labeled
 752 'Initialisation here' towards the end of the file.
 753
 754 cd_maxhistory - The number of history entries stored.
 755 Default is 50.
 756 cd_maxspecial - The number of special entries allowed.
 757 Default is 9.
 758 cd_histcount - The number of history and special entries
 759 displayed. Default is 9.
 760

 761 Note that cd_maxspecial should be >= cd_histcount to avoid displaying
 762 special entries that can't be set.
 763
 764
 765 Version: 1.2.1 Date: 24-MAY-2003
 766
 767 DOCUMENTATION

Example A-34. A soundcard setup script

 1 #!/bin/bash
 2 # soundcard-on.sh
 3
 4 # Script author: Mkarcher
 5 # http://www.thinkwiki.org/wiki ...
 6 # /Script_for_configuring_the_CS4239_sound_chip_in_PnP_mode
 7 # ABS Guide author made minor changes and added comments.
 8 # Couldn't contact script author to ask for permission to use, but ...
 9 #+ the script was released under the FDL,
 10 #+ so its use here should be both legal and ethical.
 11
 12 # Sound-via-pnp-script for Thinkpad 600E
 13 #+ and possibly other computers with onboard CS4239/CS4610
 14 #+ that do not work with the PCI driver
 15 #+ and are not recognized by the PnP code of snd-cs4236.
 16 # Also for some 770-series Thinkpads, such as the 770x.
 17 # Run as root user, of course.
 18 #
 19 # These are old and very obsolete laptop computers,
 20 #+ but this particular script is very instructive,
 21 #+ as it shows how to set up and hack device files.
 22
 23
 24
 25 # Search for sound card pnp device:
 26
 27 for dev in /sys/bus/pnp/devices/*
 28 do
 29 grep CSC0100 $dev/id > /dev/null && WSSDEV=$dev
 30 grep CSC0110 $dev/id > /dev/null && CTLDEV=$dev
 31 done
 32 # On 770x:
 33 # WSSDEV = /sys/bus/pnp/devices/00:07
 34 # CTLDEV = /sys/bus/pnp/devices/00:06
 35 # These are symbolic links to /sys/devices/pnp0/ ...
 36
 37
 38 # Activate devices:
 39 # Thinkpad boots with devices disabled unless "fast boot" is turned off
 40 #+ (in BIOS).
 41
 42 echo activate > $WSSDEV/resources
 43 echo activate > $CTLDEV/resources
 44
 45
 46 # Parse resource settings.
 47
 48 { read # Discard "state = active" (see below).
 49 read bla port1
 50 read bla port2
 51 read bla port3
 52 read bla irq

 53 read bla dma1
 54 read bla dma2
 55 # The "bla's" are labels in the first field: "io," "state," etc.
 56 # These are discarded.
 57
 58 # Hack: with PnPBIOS: ports are: port1: WSS, port2:
 59 #+ OPL, port3: sb (unneeded)
 60 # with ACPI-PnP:ports are: port1: OPL, port2: sb, port3: WSS
 61 # (ACPI bios seems to be wrong here, the PnP-card-code in snd-cs4236.c
 62 #+ uses the PnPBIOS port order)
 63 # Detect port order using the fixed OPL port as reference.
 64 if [${port2%%-*} = 0x388]
 65 # ^^^^ Strip out everything following hyphen in port address.
 66 # So, if port1 is 0x530-0x537
 67 #+ we're left with 0x530 -- the start address of the port.
 68 then
 69 # PnPBIOS: usual order
 70 port=${port1%%-*}
 71 oplport=${port2%%-*}
 72 else
 73 # ACPI: mixed-up order
 74 port=${port3%%-*}
 75 oplport=${port1%%-*}
 76 fi
 77 } < $WSSDEV/resources
 78 # To see what's going on here:
 79 # ---------------------------
 80 # cat /sys/devices/pnp0/00:07/resources
 81 #
 82 # state = active
 83 # io 0x530-0x537
 84 # io 0x388-0x38b
 85 # io 0x220-0x233
 86 # irq 5
 87 # dma 1
 88 # dma 0
 89 # ^^^ "bla" labels in first field (discarded).
 90
 91
 92 { read # Discard first line, as above.
 93 read bla port1
 94 cport=${port1%%-*}
 95 # ^^^^
 96 # Just want _start_ address of port.
 97 } < $CTLDEV/resources
 98
 99
 100 # Load the module:
 101
 102 modprobe --ignore-install snd-cs4236 port=$port cport=$cport\
 103 fm_port=$oplport irq=$irq dma1=$dma1 dma2=$dma2 isapnp=0 index=0
 104 # See the modprobe manpage.
 105
 106 exit $?

Example A-35. Locating split paragraphs in a text file

 1 #!/bin/bash
 2 # find-splitpara.sh
 3 # Finds split paragraphs in a text file,
 4 #+ and tags the line numbers.
 5

 6
 7 ARGCOUNT=1 # Expect one arg.
 8 OFF=0 # Flag states.
 9 ON=1
 10 E_WRONGARGS=85
 11
 12 file="$1" # Target filename.
 13 lineno=1 # Line number. Start at 1.
 14 Flag=$OFF # Blank line flag.
 15
 16 if [$# -ne "$ARGCOUNT"]
 17 then
 18 echo "Usage: `basename $0` FILENAME"
 19 exit $E_WRONGARGS
 20 fi
 21
 22 file_read () # Scan file for pattern, then print line.
 23 {
 24 while read line
 25 do
 26
 27 if [["$line" =~ ^[a-z] && $Flag -eq $ON]]
 28 then # Line begins with lowercase character, following blank line.
 29 echo -n "$lineno:: "
 30 echo "$line"
 31 fi
 32
 33
 34 if [["$line" =~ ^$]]
 35 then # If blank line,
 36 Flag=$ON #+ set flag.
 37 else
 38 Flag=$OFF
 39 fi
 40
 41 ((lineno++))
 42
 43 done
 44 } < $file # Redirect file into function's stdin.
 45
 46 file_read
 47
 48
 49 exit $?
 50
 51
 52 # --
 53 This is line one of an example paragraph, bla, bla, bla.
 54 This is line two, and line three should follow on next line, but
 55
 56 there is a blank line separating the two parts of the paragraph.
 57 # --
 58
 59 Running this script on a file containing the above paragraph
 60 yields:
 61
 62 4:: there is a blank line separating the two parts of the paragraph.
 63
 64
 65 There will be additional output for all the other split paragraphs
 66 in the target file.

Example A-36. Insertion sort

 1 #!/bin/bash
 2 # insertion-sort.bash: Insertion sort implementation in Bash
 3 # Heavy use of Bash array features:
 4 #+ (string) slicing, merging, etc
 5 # URL: http://www.lugmen.org.ar/~jjo/jjotip/insertion-sort.bash.d
 6 #+ /insertion-sort.bash.sh
 7 #
 8 # Author: JuanJo Ciarlante <jjo@irrigacion.gov.ar>
 9 # Lightly reformatted by ABS Guide author.
 10 # License: GPLv2
 11 # Used in ABS Guide with author's permission (thanks!).
 12 #
 13 # Test with: ./insertion-sort.bash -t
 14 # Or: bash insertion-sort.bash -t
 15 # The following *doesn't* work:
 16 # sh insertion-sort.bash -t
 17 # Why not? Hint: which Bash-specific features are disabled
 18 #+ when running a script by 'sh script.sh'?
 19 #
 20 : ${DEBUG:=0} # Debug, override with: DEBUG=1 ./scriptname . . .
 21 # Parameter substitution -- set DEBUG to 0 if not previously set.
 22
 23 # Global array: "list"
 24 typeset -a list
 25 # Load whitespace-separated numbers from stdin.
 26 if ["$1" = "-t"]; then
 27 DEBUG=1
 28 read -a list < <(od -Ad -w24 -t u2 /dev/urandom) # Random list.
 29 # ^ ^ process substition
 30 else
 31 read -a list
 32 fi
 33 numelem=${#list[*]}
 34
 35 # Shows the list, marking the element whose index is $1
 36 #+ by surrounding it with the two chars passed as $2.
 37 # Whole line prefixed with $3.
 38 showlist()
 39 {
 40 echo "$3"${list[@]:0:$1} ${2:0:1}${list[$1]}${2:1:1} ${list[@]:$1+1};
 41 }
 42
 43 # Loop _pivot_ -- from second element to end of list.
 44 for((i=1; i<numelem; i++)) do
 45 ((DEBUG))&&showlist i "[]" " "
 46 # From current _pivot_, back to first element.
 47 for((j=i; j; j--)) do
 48 # Search for the 1st elem. less than current "pivot" . . .
 49 [["${list[j-1]}" -le "${list[i]}"]] && break
 50 done
 51 ((i==j)) && continue ## No insertion was needed for this element.
 52 # . . . Move list[i] (pivot) to the left of list[j]:
 53 list=(${list[@]:0:j} ${list[i]} ${list[j]}\
 54 # {0,j-1} {i} {j}
 55 ${list[@]:j+1:i-(j+1)} ${list[@]:i+1})
 56 # {j+1,i-1} {i+1,last}
 57 ((DEBUG))&&showlist j "<>" "*"
 58 done
 59
 60
 61 echo
 62 echo "------"
 63 echo $'Result:\n'${list[@]}
 64
 65 exit $?

Example A-37. Standard Deviation

 1 #!/bin/bash
 2 # sd.sh: Standard Deviation
 3
 4 # The Standard Deviation indicates how consistent a set of data is.
 5 # It shows to what extent the individual data points deviate from the
 6 #+ arithmetic mean, i.e., how much they "bounce around" (or cluster).
 7 # It is essentially the average deviation-distance of the
 8 #+ data points from the mean.
 9
 10 # === #
 11 # To calculate the Standard Deviation:
 12 #
 13 # 1 Find the arithmetic mean (average) of all the data points.
 14 # 2 Subtract each data point from the arithmetic mean,
 15 # and square that difference.
 16 # 3 Add all of the individual difference-squares in # 2.
 17 # 4 Divide the sum in # 3 by the number of data points.
 18 # This is known as the "variance."
 19 # 5 The square root of # 4 gives the Standard Deviation.
 20 # === #
 21
 22 count=0 # Number of data points; global.
 23 SC=9 # Scale to be used by bc. Nine decimal places.
 24 E_DATAFILE=90 # Data file error.
 25
 26 # ----------------- Set data file ---------------------
 27 if [! -z "$1"] # Specify filename as cmd-line arg?
 28 then
 29 datafile="$1" # ASCII text file,
 30 else #+ one (numerical) data point per line!
 31 datafile=sample.dat
 32 fi # See example data file, below.
 33
 34 if [! -e "$datafile"]
 35 then
 36 echo "\""$datafile"\" does not exist!"
 37 exit $E_DATAFILE
 38 fi
 39 # ---
 40
 41
 42 arith_mean ()
 43 {
 44 local rt=0 # Running total.
 45 local am=0 # Arithmetic mean.
 46 local ct=0 # Number of data points.
 47
 48 while read value # Read one data point at a time.
 49 do
 50 rt=$(echo "scale=$SC; $rt + $value" | bc)
 51 ((ct++))
 52 done
 53
 54 am=$(echo "scale=$SC; $rt / $ct" | bc)
 55
 56 echo $am; return $ct # This function "returns" TWO values!
 57 # Caution: This little trick will not work if $ct > 255!
 58 # To handle a larger number of data points,
 59 #+ simply comment out the "return $ct" above.
 60 } <"$datafile" # Feed in data file.

 61
 62 sd ()
 63 {
 64 mean1=$1 # Arithmetic mean (passed to function).
 65 n=$2 # How many data points.
 66 sum2=0 # Sum of squared differences ("variance").
 67 avg2=0 # Average of $sum2.
 68 sdev=0 # Standard Deviation.
 69
 70 while read value # Read one line at a time.
 71 do
 72 diff=$(echo "scale=$SC; $mean1 - $value" | bc)
 73 # Difference between arith. mean and data point.
 74 dif2=$(echo "scale=$SC; $diff * $diff" | bc) # Squared.
 75 sum2=$(echo "scale=$SC; $sum2 + $dif2" | bc) # Sum of squares.
 76 done
 77
 78 avg2=$(echo "scale=$SC; $sum2 / $n" | bc) # Avg. of sum of squares.
 79 sdev=$(echo "scale=$SC; sqrt($avg2)" | bc) # Square root =
 80 echo $sdev # Standard Deviation.
 81
 82 } <"$datafile" # Rewinds data file.
 83
 84
 85 # === #
 86 mean=$(arith_mean); count=$? # Two returns from function!
 87 std_dev=$(sd $mean $count)
 88
 89 echo
 90 echo "Number of data points in \""$datafile"\" = $count"
 91 echo "Arithmetic mean (average) = $mean"
 92 echo "Standard Deviation = $std_dev"
 93 echo
 94 # === #
 95
 96 exit
 97
 98 # This script could stand some drastic streamlining,
 99 #+ but not at the cost of reduced legibility, please.
 100
 101
 102 # ++ #
 103 # A sample data file (sample1.dat):
 104
 105 # 18.35
 106 # 19.0
 107 # 18.88
 108 # 18.91
 109 # 18.64
 110
 111
 112 # $ sh sd.sh sample1.dat
 113
 114 # Number of data points in "sample1.dat" = 5
 115 # Arithmetic mean (average) = 18.756000000
 116 # Standard Deviation = .235338054
 117 # ++ #

Example A-38. A pad file generator for shareware authors

 1 #!/bin/bash
 2 # pad.sh

 3
 4 ###
 5 # PAD (xml) file creator
 6 #+ Written by Mendel Cooper <thegrendel.abs@gmail.com>.
 7 #+ Released to the Public Domain.
 8 #
 9 # Generates a "PAD" descriptor file for shareware
 10 #+ packages, according to the specifications
 11 #+ of the ASP.
 12 # http://www.asp-shareware.org/pad
 13 ###
 14
 15
 16 # Accepts (optional) save filename as a command-line argument.
 17 if [-n "$1"]
 18 then
 19 savefile=$1
 20 else
 21 savefile=save_file.xml # Default save_file name.
 22 fi
 23
 24
 25 # ===== PAD file headers =====
 26 HDR1="<?xml version=\"1.0\" encoding=\"Windows-1252\" ?>"
 27 HDR2="<XML_DIZ_INFO>"
 28 HDR3="<MASTER_PAD_VERSION_INFO>"
 29 HDR4="\t<MASTER_PAD_VERSION>1.15</MASTER_PAD_VERSION>"
 30 HDR5="\t<MASTER_PAD_INFO>Portable Application Description, or PAD
 31 for short, is a data set that is used by shareware authors to
 32 disseminate information to anyone interested in their software products.
 33 To find out more go to http://www.asp-shareware.org/pad</MASTER_PAD_INFO>"
 34 HDR6="</MASTER_PAD_VERSION_INFO>"
 35 # ============================
 36
 37
 38 fill_in ()
 39 {
 40 if [-z "$2"]
 41 then
 42 echo -n "$1? " # Get user input.
 43 else
 44 echo -n "$1 $2? " # Additional query?
 45 fi
 46
 47 read var # May paste to fill in field.
 48 # This shows how flexible "read" can be.
 49
 50 if [-z "$var"]
 51 then
 52 echo -e "\t\t<$1 />" >>$savefile # Indent with 2 tabs.
 53 return
 54 else
 55 echo -e "\t\t<$1>$var</$1>" >>$savefile
 56 return ${#var} # Return length of input string.
 57 fi
 58 }
 59
 60 check_field_length () # Check length of program description fields.
 61 {
 62 # $1 = maximum field length
 63 # $2 = actual field length
 64 if ["$2" -gt "$1"]
 65 then
 66 echo "Warning: Maximum field length of $1 characters exceeded!"
 67 fi
 68 }

 69
 70 clear # Clear screen.
 71 echo "PAD File Creator"
 72 echo "--- ---- -------"
 73 echo
 74
 75 # Write File Headers to file.
 76 echo $HDR1 >$savefile
 77 echo $HDR2 >>$savefile
 78 echo $HDR3 >>$savefile
 79 echo -e $HDR4 >>$savefile
 80 echo -e $HDR5 >>$savefile
 81 echo $HDR6 >>$savefile
 82
 83
 84 # Company_Info
 85 echo "COMPANY INFO"
 86 CO_HDR="Company_Info"
 87 echo "<$CO_HDR>" >>$savefile
 88
 89 fill_in Company_Name
 90 fill_in Address_1
 91 fill_in Address_2
 92 fill_in City_Town
 93 fill_in State_Province
 94 fill_in Zip_Postal_Code
 95 fill_in Country
 96
 97 # If applicable:
 98 # fill_in ASP_Member "[Y/N]"
 99 # fill_in ASP_Member_Number
 100 # fill_in ESC_Member "[Y/N]"
 101
 102 fill_in Company_WebSite_URL
 103
 104 clear # Clear screen between sections.
 105
 106 # Contact_Info
 107 echo "CONTACT INFO"
 108 CONTACT_HDR="Contact_Info"
 109 echo "<$CONTACT_HDR>" >>$savefile
 110 fill_in Author_First_Name
 111 fill_in Author_Last_Name
 112 fill_in Author_Email
 113 fill_in Contact_First_Name
 114 fill_in Contact_Last_Name
 115 fill_in Contact_Email
 116 echo -e "\t</$CONTACT_HDR>" >>$savefile
 117 # END Contact_Info
 118
 119 clear
 120
 121 # Support_Info
 122 echo "SUPPORT INFO"
 123 SUPPORT_HDR="Support_Info"
 124 echo "<$SUPPORT_HDR>" >>$savefile
 125 fill_in Sales_Email
 126 fill_in Support_Email
 127 fill_in General_Email
 128 fill_in Sales_Phone
 129 fill_in Support_Phone
 130 fill_in General_Phone
 131 fill_in Fax_Phone
 132 echo -e "\t</$SUPPORT_HDR>" >>$savefile
 133 # END Support_Info
 134

 135 echo "</$CO_HDR>" >>$savefile
 136 # END Company_Info
 137
 138 clear
 139
 140 # Program_Info
 141 echo "PROGRAM INFO"
 142 PROGRAM_HDR="Program_Info"
 143 echo "<$PROGRAM_HDR>" >>$savefile
 144 fill_in Program_Name
 145 fill_in Program_Version
 146 fill_in Program_Release_Month
 147 fill_in Program_Release_Day
 148 fill_in Program_Release_Year
 149 fill_in Program_Cost_Dollars
 150 fill_in Program_Cost_Other
 151 fill_in Program_Type "[Shareware/Freeware/GPL]"
 152 fill_in Program_Release_Status "[Beta, Major Upgrade, etc.]"
 153 fill_in Program_Install_Support
 154 fill_in Program_OS_Support "[Win9x/Win2k/Linux/etc.]"
 155 fill_in Program_Language "[English/Spanish/etc.]"
 156
 157 echo; echo
 158
 159 # File_Info
 160 echo "FILE INFO"
 161 FILEINFO_HDR="File_Info"
 162 echo "<$FILEINFO_HDR>" >>$savefile
 163 fill_in Filename_Versioned
 164 fill_in Filename_Previous
 165 fill_in Filename_Generic
 166 fill_in Filename_Long
 167 fill_in File_Size_Bytes
 168 fill_in File_Size_K
 169 fill_in File_Size_MB
 170 echo -e "\t</$FILEINFO_HDR>" >>$savefile
 171 # END File_Info
 172
 173 clear
 174
 175 # Expire_Info
 176 echo "EXPIRE INFO"
 177 EXPIRE_HDR="Expire_Info"
 178 echo "<$EXPIRE_HDR>" >>$savefile
 179 fill_in Has_Expire_Info "Y/N"
 180 fill_in Expire_Count
 181 fill_in Expire_Based_On
 182 fill_in Expire_Other_Info
 183 fill_in Expire_Month
 184 fill_in Expire_Day
 185 fill_in Expire_Year
 186 echo -e "\t</$EXPIRE_HDR>" >>$savefile
 187 # END Expire_Info
 188
 189 clear
 190
 191 # More Program_Info
 192 echo "ADDITIONAL PROGRAM INFO"
 193 fill_in Program_Change_Info
 194 fill_in Program_Specific_Category
 195 fill_in Program_Categories
 196 fill_in Includes_JAVA_VM "[Y/N]"
 197 fill_in Includes_VB_Runtime "[Y/N]"
 198 fill_in Includes_DirectX "[Y/N]"
 199 # END More Program_Info
 200

 201 echo "</$PROGRAM_HDR>" >>$savefile
 202 # END Program_Info
 203
 204 clear
 205
 206 # Program Description
 207 echo "PROGRAM DESCRIPTIONS"
 208 PROGDESC_HDR="Program_Descriptions"
 209 echo "<$PROGDESC_HDR>" >>$savefile
 210
 211 LANG="English"
 212 echo "<$LANG>" >>$savefile
 213
 214 fill_in Keywords "[comma + space separated]"
 215 echo
 216 echo "45, 80, 250, 450, 2000 word program descriptions"
 217 echo "(may cut and paste into field)"
 218 # It would be highly appropriate to compose the following
 219 #+ "Char_Desc" fields with a text editor,
 220 #+ then cut-and-paste the text into the answer fields.
 221 echo
 222 echo " |---------------45 characters---------------|"
 223 fill_in Char_Desc_45
 224 check_field_length 45 "$?"
 225 echo
 226 fill_in Char_Desc_80
 227 check_field_length 80 "$?"
 228
 229 fill_in Char_Desc_250
 230 check_field_length 250 "$?"
 231
 232 fill_in Char_Desc_450
 233 fill_in Char_Desc_2000
 234
 235 echo "</$LANG>" >>$savefile
 236 echo "</$PROGDESC_HDR>" >>$savefile
 237 # END Program Description
 238
 239 clear
 240 echo "Done."; echo; echo
 241 echo "Save file is: \""$savefile"\""
 242
 243 exit 0

Example A-39. A man page editor

 1 #!/bin/bash
 2 # maned.sh
 3 # A rudimentary man page editor
 4
 5 # Version: 0.1 (Alpha, probably buggy)
 6 # Author: Mendel Cooper <thegrendel.abs@gmail.com>
 7 # Reldate: 16 June 2008
 8 # License: GPL3
 9
 10
 11 savefile= # Global, used in multiple functions.
 12 E_NOINPUT=90 # User input missing (error). May or may not be critical.
 13
 14 # =========== Markup Tags ============ #
 15 TopHeader=".TH"
 16 NameHeader=".SH NAME"

 17 SyntaxHeader=".SH SYNTAX"
 18 SynopsisHeader=".SH SYNOPSIS"
 19 InstallationHeader=".SH INSTALLATION"
 20 DescHeader=".SH DESCRIPTION"
 21 OptHeader=".SH OPTIONS"
 22 FilesHeader=".SH FILES"
 23 EnvHeader=".SH ENVIRONMENT"
 24 AuthHeader=".SH AUTHOR"
 25 BugsHeader=".SH BUGS"
 26 SeeAlsoHeader=".SH SEE ALSO"
 27 BOLD=".B"
 28 # Add more tags, as needed.
 29 # See groff docs for markup meanings.
 30 # ==================================== #
 31
 32 start ()
 33 {
 34 clear # Clear screen.
 35 echo "ManEd"
 36 echo "-----"
 37 echo
 38 echo "Simple man page creator"
 39 echo "Author: Mendel Cooper"
 40 echo "License: GPL3"
 41 echo; echo; echo
 42 }
 43
 44 progname ()
 45 {
 46 echo -n "Program name? "
 47 read name
 48
 49 echo -n "Manpage section? [Hit RETURN for default (\"1\")] "
 50 read section
 51 if [-z "$section"]
 52 then
 53 section=1 # Most man pages are in section 1.
 54 fi
 55
 56 if [-n "$name"]
 57 then
 58 savefile=""$name"."$section"" # Filename suffix = section.
 59 echo -n "$1 " >>$savefile
 60 name1=$(echo "$name" | tr a-z A-Z) # Change to uppercase,
 61 #+ per man page convention.
 62 echo -n "$name1" >>$savefile
 63 else
 64 echo "Error! No input." # Mandatory input.
 65 exit $E_NOINPUT # Critical!
 66 # Exercise: The script-abort if no filename input is a bit clumsy.
 67 # Rewrite this section so a default filename is used
 68 #+ if no input.
 69 fi
 70
 71 echo -n " \"$section\"">>$savefile # Append, always append.
 72
 73 echo -n "Version? "
 74 read ver
 75 echo -n " \"Version $ver \"">>$savefile
 76 echo >>$savefile
 77
 78 echo -n "Short description [0 - 5 words]? "
 79 read sdesc
 80 echo "$NameHeader">>$savefile
 81 echo ""$BOLD" "$name"">>$savefile
 82 echo "\- "$sdesc"">>$savefile

 83
 84 }
 85
 86 fill_in ()
 87 { # This function more or less copied from "pad.sh" script.
 88 echo -n "$2? " # Get user input.
 89 read var # May paste (a single line only!) to fill in field.
 90
 91 if [-n "$var"]
 92 then
 93 echo "$1 " >>$savefile
 94 echo -n "$var" >>$savefile
 95 else # Don't append empty field to file.
 96 return $E_NOINPUT # Not critical here.
 97 fi
 98
 99 echo >>$savefile
 100
 101 }
 102
 103
 104 end ()
 105 {
 106 clear
 107 echo -n "Would you like to view the saved man page (y/n)? "
 108 read ans
 109 if ["$ans" = "n" -o "$ans" = "N"]; then exit; fi
 110 exec less "$savefile" # Exit script and hand off control to "less" ...
 111 #+ ... which formats for viewing man page source.
 112 }
 113
 114
 115 # -- #
 116 start
 117 progname "$TopHeader"
 118 fill_in "$SynopsisHeader" "Synopsis"
 119 fill_in "$DescHeader" "Long description"
 120 # May paste in *single line* of text.
 121 fill_in "$OptHeader" "Options"
 122 fill_in "$FilesHeader" "Files"
 123 fill_in "$AuthHeader" "Author"
 124 fill_in "$BugsHeader" "Bugs"
 125 fill_in "$SeeAlsoHeader" "See also"
 126 # fill_in "$OtherHeader" ... as necessary.
 127 end # ... exit not needed.
 128 # -- #
 129
 130 # Note that the generated man page will usually
 131 #+ require manual fine-tuning with a text editor.
 132 # However, it's a distinct improvement upon
 133 #+ writing man source from scratch
 134 #+ or even editing a blank man page template.
 135
 136 # The main deficiency of the script is that it permits
 137 #+ pasting only a single text line into the input fields.
 138 # This may be a long, cobbled-together line, which groff
 139 # will automatically wrap and hyphenate.
 140 # However, if you want multiple (newline-separated) paragraphs,
 141 #+ these must be inserted by manual text editing on the
 142 #+ script-generated man page.
 143 # Exercise (difficult): Fix this!
 144
 145 # This script is not nearly as elaborate as the
 146 #+ full-featured "manedit" package
 147 #+ http://freshmeat.net/projects/manedit/
 148 #+ but it's much easier to use.

Example A-40. Petals Around the Rose

 1 #!/bin/bash -i
 2 # petals.sh
 3
 4 ###
 5 # Petals Around the Rose #
 6 # #
 7 # Version 0.1 Created by Serghey Rodin #
 8 # Version 0.2 Modded by ABS Guide Author #
 9 # #
 10 # License: GPL3 #
 11 # Used in ABS Guide with permission. #
 12 # ### #
 13
 14 hits=0 # Correct guesses.
 15 WIN=6 # Mastered the game.
 16 ALMOST=5 # One short of mastery.
 17 EXIT=exit # Give up early?
 18
 19 RANDOM=$$ # Seeds the random number generator from PID of script.
 20
 21
 22 # Bones (ASCII graphics for dice)
 23 bone1[1]="| |"
 24 bone1[2]="| o |"
 25 bone1[3]="| o |"
 26 bone1[4]="| o o |"
 27 bone1[5]="| o o |"
 28 bone1[6]="| o o |"
 29 bone2[1]="| o |"
 30 bone2[2]="| |"
 31 bone2[3]="| o |"
 32 bone2[4]="| |"
 33 bone2[5]="| o |"
 34 bone2[6]="| o o |"
 35 bone3[1]="| |"
 36 bone3[2]="| o |"
 37 bone3[3]="| o |"
 38 bone3[4]="| o o |"
 39 bone3[5]="| o o |"
 40 bone3[6]="| o o |"
 41 bone="+---------+"
 42
 43
 44
 45 # Functions
 46
 47 instructions () {
 48
 49 clear
 50 echo -n "Do you need instructions? (y/n) "; read ans
 51 if ["$ans" = "y" -o "$ans" = "Y"]; then
 52 clear
 53 echo -e '\E[34;47m' # Blue type.
 54
 55 # "cat document"
 56 cat <<INSTRUCTIONSZZZ
 57 The name of the game is Petals Around the Rose,
 58 and that name is significant.
 59 Five dice will roll and you must guess the "answer" for each roll.
 60 It will be zero or an even number.

 61 After your guess, you will be told the answer for the roll, but . . .
 62 that's ALL the information you will get.
 63
 64 Six consecutive correct guesses admits you to the
 65 Fellowship of the Rose.
 66 INSTRUCTIONSZZZ
 67
 68 echo -e "\033[0m" # Turn off blue.
 69 else clear
 70 fi
 71
 72 }
 73
 74
 75 fortune ()
 76 {
 77 RANGE=7
 78 FLOOR=0
 79 number=0
 80 while ["$number" -le $FLOOR]
 81 do
 82 number=$RANDOM
 83 let "number %= $RANGE" # 1 - 6.
 84 done
 85
 86 return $number
 87 }
 88
 89
 90
 91 throw () { # Calculate each individual die.
 92 fortune; B1=$?
 93 fortune; B2=$?
 94 fortune; B3=$?
 95 fortune; B4=$?
 96 fortune; B5=$?
 97
 98 calc () { # Function embedded within a function!
 99 case "$1" in
 100 3) rose=2;;
 101 5) rose=4;;
 102 *) rose=0;;
 103 esac # Simplified algorithm.
 104 # Doesn't really get to the heart of the matter.
 105 return $rose
 106 }
 107
 108 answer=0
 109 calc "$B1"; answer=$(expr $answer + $(echo $?))
 110 calc "$B2"; answer=$(expr $answer + $(echo $?))
 111 calc "$B3"; answer=$(expr $answer + $(echo $?))
 112 calc "$B4"; answer=$(expr $answer + $(echo $?))
 113 calc "$B5"; answer=$(expr $answer + $(echo $?))
 114 }
 115
 116
 117
 118 game ()
 119 { # Generate graphic display of dice throw.
 120 throw
 121 echo -e "\033[1m" # Bold.
 122 echo -e "\n"
 123 echo -e "$bone\t$bone\t$bone\t$bone\t$bone"
 124 echo -e \
 125 "${bone1[$B1]}\t${bone1[$B2]}\t${bone1[$B3]}\t${bone1[$B4]}\t${bone1[$B5]}"
 126 echo -e \

 127 "${bone2[$B1]}\t${bone2[$B2]}\t${bone2[$B3]}\t${bone2[$B4]}\t${bone2[$B5]}"
 128 echo -e \
 129 "${bone3[$B1]}\t${bone3[$B2]}\t${bone3[$B3]}\t${bone3[$B4]}\t${bone3[$B5]}"
 130 echo -e "$bone\t$bone\t$bone\t$bone\t$bone"
 131 echo -e "\n\n\t\t"
 132 echo -e "\033[0m" # Turn off bold.
 133 echo -n "There are how many petals around the rose? "
 134 }
 135
 136
 137
 138 # == #
 139
 140 instructions
 141
 142 while ["$petal" != "$EXIT"] # Main loop.
 143 do
 144 game
 145 read petal
 146 echo "$petal" | grep [0-9] >/dev/null # Filter response for digit.
 147 # Otherwise just roll dice again.
 148 if ["$?" -eq 0] # If-loop #1.
 149 then
 150 if ["$petal" == "$answer"]; then # If-loop #2.
 151 echo -e "\nCorrect. There are $petal petals around the rose.\n"
 152 ((hits++))
 153
 154 if ["$hits" -eq "$WIN"]; then # If-loop #3.
 155 echo -e '\E[31;47m' # Red type.
 156 echo -e "\033[1m" # Bold.
 157 echo "You have unraveled the mystery of the Rose Petals!"
 158 echo "Welcome to the Fellowship of the Rose!!!"
 159 echo "(You are herewith sworn to secrecy.)"; echo
 160 echo -e "\033[0m" # Turn off red & bold.
 161 break # Exit!
 162 else echo "You have $hits correct so far."; echo
 163
 164 if ["$hits" -eq "$ALMOST"]; then
 165 echo "Just one more gets you to the heart of the mystery!"; echo
 166 fi
 167
 168 fi # Close if-loop #3.
 169
 170 else
 171 echo -e "\nWrong. There are $answer petals around the rose.\n"
 172 hits=0 # Reset number of correct guesses.
 173 fi # Close if-loop #2.
 174
 175 echo -n "Hit ENTER for the next roll, or type \"exit\" to end. "
 176 read
 177 if ["$REPLY" = "$EXIT"]; then exit
 178 fi
 179
 180 fi # Close if-loop #1.
 181
 182 clear
 183 done # End of main (while) loop.
 184
 185 ###
 186
 187 exit $?
 188
 189 # Resources:
 190 # ---------
 191 # 1) http://en.wikipedia.org/wiki/Petals_Around_the_Rose
 192 # (Wikipedia entry.)

 193 # 2) http://www.borrett.id.au/computing/petals-bg.htm
 194 # (How Bill Gates coped with the Petals Around the Rose challenge.)

Example A-41. Quacky: a Perquackey-type word game

 1 #!/bin/bash
 2 # qky.sh
 3
 4 ##
 5 # QUACKEY: a somewhat simplified version of Perquackey [TM]. #
 6 # #
 7 # Author: Mendel Cooper <thegrendel.abs@gmail.com> #
 8 # version 0.1.02 03 May, 2008 #
 9 # License: GPL3 #
 10 ##
 11
 12 WLIST=/usr/share/dict/word.lst
 13 # ^^^^^^^^ Word list file found here.
 14 # ASCII word list, one word per line, UNIX format.
 15 # A suggested list is the script author's "yawl" word list package.
 16 # http://bash.deta.in/yawl-0.3.2.tar.gz
 17 # or
 18 # http://ibiblio.org/pub/Linux/libs/yawl-0.3.2.tar.gz
 19
 20 NONCONS=0 # Word not constructable from letter set.
 21 CONS=1 # Constructable.
 22 SUCCESS=0
 23 NG=1
 24 FAILURE=''
 25 NULL=0 # Zero out value of letter (if found).
 26 MINWLEN=3 # Minimum word length.
 27 MAXCAT=5 # Maximum number of words in a given category.
 28 PENALTY=200 # General-purpose penalty for unacceptable words.
 29 total=
 30 E_DUP=70 # Duplicate word error.
 31
 32 TIMEOUT=10 # Time for word input.
 33
 34 NVLET=10 # 10 letters for non-vulnerable.
 35 VULET=13 # 13 letters for vulnerable (not yet implemented!).
 36
 37 declare -a Words
 38 declare -a Status
 39 declare -a Score=(0 0 0 0 0 0 0 0 0 0 0)
 40
 41
 42 letters=(a n s r t m l k p r b c i d s i d z e w u e t f
 43 e y e r e f e g t g h h i t r s c i t i d i j a t a o l a
 44 m n a n o v n w o s e l n o s p a q e e r a b r s a o d s
 45 t g t i t l u e u v n e o x y m r k)
 46 # Letter distribution table shamelessly borrowed from "Wordy" game,
 47 #+ ca. 1992, written by a certain fine fellow named Mendel Cooper.
 48
 49 declare -a LS
 50
 51 numelements=${#letters[@]}
 52 randseed="$1"
 53
 54 instructions ()
 55 {
 56 clear
 57 echo "Welcome to QUACKEY, the anagramming word construction game."; echo

 58 echo -n "Do you need instructions? (y/n) "; read ans
 59
 60 if ["$ans" = "y" -o "$ans" = "Y"]; then
 61 clear
 62 echo -e '\E[31;47m' # Red foreground. '\E[34;47m' for blue.
 63 cat <<INSTRUCTION1
 64
 65 QUACKEY is a variant of Perquackey [TM].
 66 The rules are the same, but the scoring is simplified
 67 and plurals of previously played words are allowed.
 68 "Vulnerable" play is not yet implemented,
 69 but it is otherwise feature-complete.
 70
 71 As the game begins, the player gets 10 letters.
 72 The object is to construct valid dictionary words
 73 of at least 3-letter length from the letterset.
 74 Each word-length category
 75 -- 3-letter, 4-letter, 5-letter, ... --
 76 fills up with the fifth word entered,
 77 and no further words in that category are accepted.
 78
 79 The penalty for too-short (two-letter), duplicate, unconstructable,
 80 and invalid (not in dictionary) words is -200. The same penalty applies
 81 to attempts to enter a word in a filled-up category.
 82
 83 INSTRUCTION1
 84
 85 echo -n "Hit ENTER for next page of instructions. "; read az1
 86
 87 cat <<INSTRUCTION2
 88
 89 The scoring mostly corresponds to classic Perquackey:
 90 The first 3-letter word scores 60, plus 10 for each additional one.
 91 The first 4-letter word scores 120, plus 20 for each additional one.
 92 The first 5-letter word scores 200, plus 50 for each additional one.
 93 The first 6-letter word scores 300, plus 100 for each additional one.
 94 The first 7-letter word scores 500, plus 150 for each additional one.
 95 The first 8-letter word scores 750, plus 250 for each additional one.
 96 The first 9-letter word scores 1000, plus 500 for each additional one.
 97 The first 10-letter word scores 2000, plus 2000 for each additional one.
 98
 99 Category completion bonuses are:
 100 3-letter words 100
 101 4-letter words 200
 102 5-letter words 400
 103 6-letter words 800
 104 7-letter words 2000
 105 8-letter words 10000
 106 This is a simplification of the absurdly baroque Perquackey bonus
 107 scoring system.
 108
 109 INSTRUCTION2
 110
 111 echo -n "Hit ENTER for final page of instructions. "; read az1
 112
 113 cat <<INSTRUCTION3
 114
 115
 116 Hitting just ENTER for a word entry ends the game.
 117
 118 Individual word entry is timed to a maximum of 10 seconds.
 119 *** Timing out on an entry ends the game. ***
 120 Aside from that, the game is untimed.
 121
 122 --
 123 Game statistics are automatically saved to a file.

 124 --
 125
 126 For competitive ("duplicate") play, a previous letterset
 127 may be duplicated by repeating the script's random seed,
 128 command-line parameter \$1.
 129 For example, "qky 7633" specifies the letterset
 130 c a d i f r h u s k ...
 131 INSTRUCTION3
 132
 133 echo; echo -n "Hit ENTER to begin game. "; read az1
 134
 135 echo -e "\033[0m" # Turn off red.
 136 else clear
 137 fi
 138
 139 clear
 140
 141 }
 142
 143
 144
 145 seed_random ()
 146 { # Seed random number generator.
 147 if [-n "$randseed"] # Can specify random seed.
 148 then #+ for play in competitive mode.
 149 # RANDOM="$randseed"
 150 echo "RANDOM seed set to "$randseed""
 151 else
 152 randseed="$$" # Or get random seed from process ID.
 153 echo "RANDOM seed not specified, set to Process ID of script ($$)."
 154 fi
 155
 156 RANDOM="$randseed"
 157
 158 echo
 159 }
 160
 161
 162 get_letset ()
 163 {
 164 element=0
 165 echo -n "Letterset:"
 166
 167 for lset in $(seq $NVLET)
 168 do # Pick random letters to fill out letterset.
 169 LS[element]="${letters[$((RANDOM%numelements))]}"
 170 ((element++))
 171 done
 172
 173 echo
 174 echo "${LS[@]}"
 175
 176 }
 177
 178
 179 add_word ()
 180 {
 181 wrd="$1"
 182 local idx=0
 183
 184 Status[0]=""
 185 Status[3]=""
 186 Status[4]=""
 187
 188 while ["${Words[idx]}" != '']
 189 do

 190 if ["${Words[idx]}" = "$wrd"]
 191 then
 192 Status[3]="Duplicate-word-PENALTY"
 193 let "Score[0]= 0 - $PENALTY"
 194 let "Score[1]-=$PENALTY"
 195 return $E_DUP
 196 fi
 197
 198 ((idx++))
 199 done
 200
 201 Words[idx]="$wrd"
 202 get_score
 203
 204 }
 205
 206 get_score()
 207 {
 208 local wlen=0
 209 local score=0
 210 local bonus=0
 211 local first_word=0
 212 local add_word=0
 213 local numwords=0
 214
 215 wlen=${#wrd}
 216 numwords=${Score[wlen]}
 217 Score[2]=0
 218 Status[4]="" # Initialize "bonus" to 0.
 219
 220 case "$wlen" in
 221 3) first_word=60
 222 add_word=10;;
 223 4) first_word=120
 224 add_word=20;;
 225 5) first_word=200
 226 add_word=50;;
 227 6) first_word=300
 228 add_word=100;;
 229 7) first_word=500
 230 add_word=150;;
 231 8) first_word=750
 232 add_word=250;;
 233 9) first_word=1000
 234 add_word=500;;
 235 10) first_word=2000
 236 add_word=2000;; # This category modified from original rules!
 237 esac
 238
 239 ((Score[wlen]++))
 240 if [${Score[wlen]} -eq $MAXCAT]
 241 then # Category completion bonus scoring simplified!
 242 case $wlen in
 243 3) bonus=100;;
 244 4) bonus=200;;
 245 5) bonus=400;;
 246 6) bonus=800;;
 247 7) bonus=2000;;
 248 8) bonus=10000;;
 249 esac # Needn't worry about 9's and 10's.
 250 Status[4]="Category-$wlen-completion***BONUS***"
 251 Score[2]=$bonus
 252 else
 253 Status[4]="" # Erase it.
 254 fi
 255

 256
 257 let "score = $first_word + $add_word * $numwords"
 258 if ["$numwords" -eq 0]
 259 then
 260 Score[0]=$score
 261 else
 262 Score[0]=$add_word
 263 fi # All this to distinguish last-word score
 264 #+ from total running score.
 265 let "Score[1] += ${Score[0]}"
 266 let "Score[1] += ${Score[2]}"
 267
 268 }
 269
 270
 271
 272 get_word ()
 273 {
 274 local wrd=''
 275 read -t $TIMEOUT wrd # Timed read.
 276 echo $wrd
 277 }
 278
 279 is_constructable ()
 280 { # This is the most complex and difficult-to-write function.
 281 local -a local_LS=("${LS[@]}") # Local copy of letter set.
 282 local is_found=0
 283 local idx=0
 284 local pos
 285 local strlen
 286 local local_word=("$1")
 287 strlen=${#local_word}
 288
 289 while ["$idx" -lt "$strlen"]
 290 do
 291 is_found=$(expr index "${local_LS[*]}" "${local_word:idx:1}")
 292 if ["$is_found" -eq "$NONCONS"] # Not constructable!
 293 then
 294 echo "$FAILURE"; return
 295 else
 296 ((pos = ($is_found - 1) / 2)) # Compensate for spaces betw. letters!
 297 local_LS[pos]=$NULL # Zero out used letters.
 298 ((idx++)) # Bump index.
 299 fi
 300 done
 301
 302 echo "$SUCCESS"
 303 return
 304 }
 305
 306 is_valid ()
 307 { # Surprisingly easy to check if word in dictionary ...
 308 fgrep -qw "$1" "$WLIST" # ... courtesy of 'grep' ...
 309 echo $?
 310 }
 311
 312 check_word ()
 313 {
 314 if [-z "$1"]
 315 then
 316 return
 317 fi
 318
 319 Status[1]=""
 320 Status[2]=""
 321 Status[3]=""

 322 Status[4]=""
 323
 324 iscons=$(is_constructable "$1")
 325 if ["$iscons"]
 326 then
 327 Status[1]="constructable"
 328 v=$(is_valid "$1")
 329 if ["$v" -eq "$SUCCESS"]
 330 then
 331 Status[2]="valid"
 332 strlen=${#1}
 333
 334 if [${Score[strlen]} -eq "$MAXCAT"] # Category full!
 335 then
 336 Status[3]="Category-$strlen-overflow-PENALTY"
 337 return $NG
 338 fi
 339
 340 case "$strlen" in
 341 1 | 2)
 342 Status[3]="Two-letter-word-PENALTY"
 343 return $NG;;
 344 *)
 345 Status[3]=""
 346 return $SUCCESS;;
 347 esac
 348 else
 349 Status[3]="Not-valid-PENALTY"
 350 return $NG
 351 fi
 352 else
 353 Status[3]="Not-constructable-PENALTY"
 354 return $NG
 355 fi
 356
 357 ### FIXME: Streamline the above code block.
 358
 359 }
 360
 361
 362 display_words ()
 363 {
 364 local idx=0
 365 local wlen0
 366
 367 clear
 368 echo "Letterset: ${LS[@]}"
 369 echo "Threes: Fours: Fives: Sixes: Sevens: Eights:"
 370 echo "--"
 371
 372
 373
 374 while ["${Words[idx]}" != '']
 375 do
 376 wlen0=${#Words[idx]}
 377 case "$wlen0" in
 378 3) ;;
 379 4) echo -n " " ;;
 380 5) echo -n " " ;;
 381 6) echo -n " " ;;
 382 7) echo -n " " ;;
 383 8) echo -n " " ;;
 384 esac
 385 echo "${Words[idx]}"
 386 ((idx++))
 387 done

 388
 389 ### FIXME: The word display is pretty crude.
 390 }
 391
 392
 393 play ()
 394 {
 395 word="Start game" # Dummy word, to start ...
 396
 397 while ["$word"] # If player just hits return (null word),
 398 do #+ then game ends.
 399 echo "$word: "${Status[@]}""
 400 echo -n "Last score: [${Score[0]}] TOTAL score: [${Score[1]}]: Next word: "
 401 total=${Score[1]}
 402 word=$(get_word)
 403 check_word "$word"
 404
 405 if ["$?" -eq "$SUCCESS"]
 406 then
 407 add_word "$word"
 408 else
 409 let "Score[0]= 0 - $PENALTY"
 410 let "Score[1]-=$PENALTY"
 411 fi
 412
 413 display_words
 414 done # Exit game.
 415
 416 ### FIXME: The play () function calls too many other functions.
 417 ### This verges on "spaghetti code" !!!
 418 }
 419
 420 end_of_game ()
 421 { # Save and display stats.
 422
 423 #######################Autosave##########################
 424 savefile=qky.save.$$
 425 # ^^ PID of script
 426 echo `date` >> $savefile
 427 echo "Letterset # $randseed (random seed) ">> $savefile
 428 echo -n "Letterset: " >> $savefile
 429 echo "${LS[@]}" >> $savefile
 430 echo "---------" >> $savefile
 431 echo "Words constructed:" >> $savefile
 432 echo "${Words[@]}" >> $savefile
 433 echo >> $savefile
 434 echo "Score: $total" >> $savefile
 435
 436 echo "Statistics for this round saved in \""$savefile"\""
 437 ###
 438
 439 echo "Score for this round: $total"
 440 echo "Words: ${Words[@]}"
 441 }
 442
 443 # ---------#
 444 instructions
 445 seed_random
 446 get_letset
 447 play
 448 end_of_game
 449 # ---------#
 450
 451 exit $?
 452
 453 # TODO:

 454 #
 455 # 1) Clean up code!
 456 # 2) Prettify the display_words () function (maybe with widgets?).
 457 # 3) Improve the time-out ... maybe change to untimed entry,
 458 #+ but with a time limit for the overall round.
 459 # 4) An on-screen countdown timer would be nice.
 460 # 5) Implement "vulnerable" mode of play for compatibility with classic
 461 #+ version of the game.
 462 # 6) Improve save-to-file capability (and maybe make it optional).
 463 # 7) Fix bugs!!!
 464
 465 # For more info, reference:
 466 # http://bash.deta.in/qky.README.html

Example A-42. Nim

 1 #!/bin/bash
 2 # nim.sh: Game of Nim
 3
 4 # Author: Mendel Cooper
 5 # Reldate: 15 July 2008
 6 # License: GPL3
 7
 8 ROWS=5 # Five rows of pegs (or matchsticks).
 9 WON=91 # Exit codes to keep track of wins/losses.
 10 LOST=92 # Possibly useful if running in batch mode.
 11 QUIT=99
 12 peg_msg= # Peg/Pegs?
 13 Rows=(0 5 4 3 2 1) # Array holding play info.
 14 # ${Rows[0]} holds total number of pegs, updated after each turn.
 15 # Other array elements hold number of pegs in corresponding row.
 16
 17 instructions ()
 18 {
 19 clear
 20 tput bold
 21 echo "Welcome to the game of Nim."; echo
 22 echo -n "Do you need instructions? (y/n) "; read ans
 23
 24 if ["$ans" = "y" -o "$ans" = "Y"]; then
 25 clear
 26 echo -e '\E[33;41m' # Yellow fg., over red bg.; bold.
 27 cat <<INSTRUCTIONS
 28
 29 Nim is a game with roots in the distant past.
 30 This particular variant starts with five rows of pegs.
 31
 32 1: | | | | |
 33 2: | | | |
 34 3: | | |
 35 4: | |
 36 5: |
 37
 38 The number at the left identifies the row.
 39
 40 The human player moves first, and alternates turns with the bot.
 41 A turn consists of removing at least one peg from a single row.
 42 It is permissable to remove ALL the pegs from a row.
 43 For example, in row 2, above, the player can remove 1, 2, 3, or 4 pegs.
 44 The player who removes the last peg loses.
 45
 46 The strategy consists of trying to be the one who removes

 47 the next-to-last peg(s), leaving the loser with the final peg.
 48
 49 To exit the game early, hit ENTER during your turn.
 50 INSTRUCTIONS
 51
 52 echo; echo -n "Hit ENTER to begin game. "; read azx
 53
 54 echo -e "\033[0m" # Restore display.
 55 else tput sgr0; clear
 56 fi
 57
 58 clear
 59
 60 }
 61
 62
 63 tally_up ()
 64 {
 65 let "Rows[0] = ${Rows[1]} + ${Rows[2]} + ${Rows[3]} + ${Rows[4]} + \
 66 ${Rows[5]}" # Add up how many pegs remaining.
 67 }
 68
 69
 70 display ()
 71 {
 72 index=1 # Start with top row.
 73 echo
 74
 75 while ["$index" -le "$ROWS"]
 76 do
 77 p=${Rows[index]}
 78 echo -n "$index: " # Show row number.
 79
 80 # --
 81 # Two concurrent inner loops.
 82
 83 indent=$index
 84 while ["$indent" -gt 0]
 85 do
 86 echo -n " " # Staggered rows.
 87 ((indent--)) # Spacing between pegs.
 88 done
 89
 90 while ["$p" -gt 0]
 91 do
 92 echo -n "| "
 93 ((p--))
 94 done
 95 # ---
 96
 97 echo
 98 ((index++))
 99 done
 100
 101 tally_up
 102
 103 rp=${Rows[0]}
 104
 105 if ["$rp" -eq 1]
 106 then
 107 peg_msg=peg
 108 final_msg="Game over."
 109 else # Game not yet over . . .
 110 peg_msg=pegs
 111 final_msg="" # . . . So "final message" is blank.
 112 fi

 113
 114 echo " $rp $peg_msg remaining."
 115 echo " "$final_msg""
 116
 117
 118 echo
 119 }
 120
 121 player_move ()
 122 {
 123
 124 echo "Your move:"
 125
 126 echo -n "Which row? "
 127 while read idx
 128 do # Validity check, etc.
 129
 130 if [-z "$idx"] # Hitting return quits.
 131 then
 132 echo "Premature exit."; echo
 133 tput sgr0 # Restore display.
 134 exit $QUIT
 135 fi
 136
 137 if ["$idx" -gt "$ROWS" -o "$idx" -lt 1] # Bounds check.
 138 then
 139 echo "Invalid row number!"
 140 echo -n "Which row? "
 141 else
 142 break
 143 fi
 144 # TODO:
 145 # Add check for non-numeric input.
 146 # Also, script crashes on input outside of range of long double.
 147 # Fix this.
 148
 149 done
 150
 151 echo -n "Remove how many? "
 152 while read num
 153 do # Validity check.
 154
 155 if [-z "$num"]
 156 then
 157 echo "Premature exit."; echo
 158 tput sgr0 # Restore display.
 159 exit $QUIT
 160 fi
 161
 162 if ["$num" -gt ${Rows[idx]} -o "$num" -lt 1]
 163 then
 164 echo "Cannot remove $num!"
 165 echo -n "Remove how many? "
 166 else
 167 break
 168 fi
 169 done
 170 # TODO:
 171 # Add check for non-numeric input.
 172 # Also, script crashes on input outside of range of long double.
 173 # Fix this.
 174
 175 let "Rows[idx] -= $num"
 176
 177 display
 178 tally_up

 179
 180 if [${Rows[0]} -eq 1]
 181 then
 182 echo " Human wins!"
 183 echo " Congratulations!"
 184 tput sgr0 # Restore display.
 185 echo
 186 exit $WON
 187 fi
 188
 189 if [${Rows[0]} -eq 0]
 190 then # Snatching defeat from the jaws of victory . . .
 191 echo " Fool!"
 192 echo " You just removed the last peg!"
 193 echo " Bot wins!"
 194 tput sgr0 # Restore display.
 195 echo
 196 exit $LOST
 197 fi
 198 }
 199
 200
 201 bot_move ()
 202 {
 203
 204 row_b=0
 205 while [[$row_b -eq 0 || ${Rows[row_b]} -eq 0]]
 206 do
 207 row_b=$RANDOM # Choose random row.
 208 let "row_b %= $ROWS"
 209 done
 210
 211
 212 num_b=0
 213 r0=${Rows[row_b]}
 214
 215 if ["$r0" -eq 1]
 216 then
 217 num_b=1
 218 else
 219 let "num_b = $r0 - 1"
 220 # Leave only a single peg in the row.
 221 fi # Not a very strong strategy,
 222 #+ but probably a bit better than totally random.
 223
 224 let "Rows[row_b] -= $num_b"
 225 echo -n "Bot: "
 226 echo "Removing from row $row_b ... "
 227
 228 if ["$num_b" -eq 1]
 229 then
 230 peg_msg=peg
 231 else
 232 peg_msg=pegs
 233 fi
 234
 235 echo " $num_b $peg_msg."
 236
 237 display
 238 tally_up
 239
 240 if [${Rows[0]} -eq 1]
 241 then
 242 echo " Bot wins!"
 243 tput sgr0 # Restore display.
 244 exit $WON

 245 fi
 246
 247 }
 248
 249
 250 # == #
 251 instructions # If human player needs them . . .
 252 tput bold # Bold characters for easier viewing.
 253 display # Show game board.
 254
 255 while [true] # Main loop.
 256 do # Alternate human and bot turns.
 257 player_move
 258 bot_move
 259 done
 260 # == #
 261
 262 # Exercise:
 263 # --------
 264 # Improve the bot's strategy.
 265 # There is, in fact, a Nim strategy that can force a win.
 266 # See the Wikipedia article on Nim: http://en.wikipedia.org/wiki/Nim
 267 # Recode the bot to use this strategy (rather difficult).
 268
 269 # Curiosities:
 270 # -----------
 271 # Nim played a prominent role in Alain Resnais' 1961 New Wave film,
 272 #+ Last Year at Marienbad.
 273 #
 274 # In 1978, Leo Christopherson wrote an animated version of Nim,
 275 #+ Android Nim, for the TRS-80 Model I.

Example A-43. A command-line stopwatch

 1 #!/bin/sh
 2 # sw.sh
 3 # A command-line Stopwatch
 4
 5 # Author: Pádraig Brady
 6 # http://www.pixelbeat.org/scripts/sw
 7 # (Minor reformatting by ABS Guide author.)
 8 # Used in ABS Guide with script author's permission.
 9 # Notes:
 10 # This script starts a few processes per lap, in addition to
 11 # the shell loop processing, so the assumption is made that
 12 # this takes an insignificant amount of time compared to
 13 # the response time of humans (~.1s) (or the keyboard
 14 # interrupt rate (~.05s)).
 15 # '?' for splits must be entered twice if characters
 16 # (erroneously) entered before it (on the same line).
 17 # '?' since not generating a signal may be slightly delayed
 18 # on heavily loaded systems.
 19 # Lap timings on ubuntu may be slightly delayed due to:
 20 # https://bugs.launchpad.net/bugs/62511
 21 # Changes:
 22 # V1.0, 23 Aug 2005, Initial release
 23 # V1.1, 26 Jul 2007, Allow both splits and laps from single invocation.
 24 # Only start timer after a key is pressed.
 25 # Indicate lap number
 26 # Cache programs at startup so there is less error
 27 # due to startup delays.
 28 # V1.2, 01 Aug 2007, Work around `date` commands that don't have

 29 # nanoseconds.
 30 # Use stty to change interrupt keys to space for
 31 # laps etc.
 32 # Ignore other input as it causes problems.
 33 # V1.3, 01 Aug 2007, Testing release.
 34 # V1.4, 02 Aug 2007, Various tweaks to get working under ubuntu
 35 # and Mac OS X.
 36 # V1.5, 27 Jun 2008, set LANG=C as got vague bug report about it.
 37
 38 export LANG=C
 39
 40 ulimit -c 0 # No coredumps from SIGQUIT.
 41 trap '' TSTP # Ignore Ctrl-Z just in case.
 42 save_tty=`stty -g` && trap "stty $save_tty" EXIT # Restore tty on exit.
 43 stty quit ' ' # Space for laps rather than Ctrl-\.
 44 stty eof '?' # ? for splits rather than Ctrl-D.
 45 stty -echo # Don't echo input.
 46
 47 cache_progs() {
 48 stty > /dev/null
 49 date > /dev/null
 50 grep . < /dev/null
 51 (echo "import time" | python) 2> /dev/null
 52 bc < /dev/null
 53 sed '' < /dev/null
 54 printf '1' > /dev/null
 55 /usr/bin/time false 2> /dev/null
 56 cat < /dev/null
 57 }
 58 cache_progs # To minimise startup delay.
 59
 60 date +%s.%N | grep -qF 'N' && use_python=1 # If `date` lacks nanoseconds.
 61 now() {
 62 if ["$use_python"]; then
 63 echo "import time; print time.time()" 2>/dev/null | python
 64 else
 65 printf "%.2f" `date +%s.%N`
 66 fi
 67 }
 68
 69 fmt_seconds() {
 70 seconds=$1
 71 mins=`echo $seconds/60 | bc`
 72 if ["$mins" != "0"]; then
 73 seconds=`echo "$seconds - ($mins*60)" | bc`
 74 echo "$mins:$seconds"
 75 else
 76 echo "$seconds"
 77 fi
 78 }
 79
 80 total() {
 81 end=`now`
 82 total=`echo "$end - $start" | bc`
 83 fmt_seconds $total
 84 }
 85
 86 stop() {
 87 ["$lapped"] && lap "$laptime" "display"
 88 total
 89 exit
 90 }
 91
 92 lap() {
 93 laptime=`echo "$1" | sed -n 's/.*real[^0-9.]*\(.*\)/\1/p'`
 94 [! "$laptime" -o "$laptime" = "0.00"] && return

 95 # Signals too frequent.
 96 laptotal=`echo $laptime+0$laptotal | bc`
 97 if ["$2" = "display"]; then
 98 lapcount=`echo 0$lapcount+1 | bc`
 99 laptime=`fmt_seconds $laptotal`
 100 echo $laptime "($lapcount)"
 101 lapped="true"
 102 laptotal="0"
 103 fi
 104 }
 105
 106 echo -n "Space for lap | ? for split | Ctrl-C to stop | Space to start...">&2
 107
 108 while true; do
 109 trap true INT QUIT # Set signal handlers.
 110 laptime=`/usr/bin/time -p 2>&1 cat >/dev/null`
 111 ret=$?
 112 trap '' INT QUIT # Ignore signals within this script.
 113 if [$ret -eq 1 -o $ret -eq 2 -o $ret -eq 130]; then # SIGINT = stop
 114 [! "$start"] && { echo >&2; exit; }
 115 stop
 116 elif [$ret -eq 3 -o $ret -eq 131]; then # SIGQUIT = lap
 117 if [! "$start"]; then
 118 start=`now` || exit 1
 119 echo >&2
 120 continue
 121 fi
 122 lap "$laptime" "display"
 123 else # eof = split
 124 [! "$start"] && continue
 125 total
 126 lap "$laptime" # Update laptotal.
 127 fi
 128 done
 129
 130 exit $?

Example A-44. An all-purpose shell scripting homework assignment solution

 1 #!/bin/bash
 2 # homework.sh: All-purpose homework assignment solution.
 3 # Author: M. Leo Cooper
 4 # If you substitute your own name as author, then it is plagiarism,
 5 #+ possibly a lesser sin than cheating on your homework!
 6 # License: Public Domain
 7
 8 # This script may be turned in to your instructor
 9 #+ in fulfillment of ALL shell scripting homework assignments.
 10 # It's sparsely commented, but you, the student, can easily remedy that.
 11 # The script author repudiates all responsibility!
 12
 13 DLA=1
 14 P1=2
 15 P2=4
 16 P3=7
 17 PP1=0
 18 PP2=8
 19 MAXL=9
 20 E_LZY=99
 21
 22 declare -a L
 23 L[0]="3 4 0 17 29 8 13 18 19 17 20 2 19 14 17 28"

 24 L[1]="8 29 12 14 18 19 29 4 12 15 7 0 19 8 2 0 11 11 24 29 17 4 6 17 4 19"
 25 L[2]="29 19 7 0 19 29 8 29 7 0 21 4 29 13 4 6 11 4 2 19 4 3"
 26 L[3]="19 14 29 2 14 12 15 11 4 19 4 29 19 7 8 18 29"
 27 L[4]="18 2 7 14 14 11 22 14 17 10 29 0 18 18 8 6 13 12 4 13 19 26"
 28 L[5]="15 11 4 0 18 4 29 0 2 2 4 15 19 29 12 24 29 7 20 12 1 11 4 29"
 29 L[6]="4 23 2 20 18 4 29 14 5 29 4 6 17 4 6 8 14 20 18 29"
 30 L[7]="11 0 25 8 13 4 18 18 27"
 31 L[8]="0 13 3 29 6 17 0 3 4 29 12 4 29 0 2 2 14 17 3 8 13 6 11 24 26"
 32 L[9]="19 7 0 13 10 29 24 14 20 26"
 33
 34 declare -a \
 35 alph=(A B C D E F G H I J K L M N O P Q R S T U V W X Y Z . , : ' ')
 36
 37
 38 pt_lt ()
 39 {
 40 echo -n "${alph[$1]}"
 41 echo -n -e "\a"
 42 sleep $DLA
 43 }
 44
 45 b_r ()
 46 {
 47 echo -e '\E[31;48m\033[1m'
 48 }
 49
 50 cr ()
 51 {
 52 echo -e "\a"
 53 sleep $DLA
 54 }
 55
 56 restore ()
 57 {
 58 echo -e '\033[0m' # Bold off.
 59 tput sgr0 # Normal.
 60 }
 61
 62
 63 p_l ()
 64 {
 65 for ltr in $1
 66 do
 67 pt_lt "$ltr"
 68 done
 69 }
 70
 71 # ----------------------
 72 b_r
 73
 74 for i in $(seq 0 $MAXL)
 75 do
 76 p_l "${L[i]}"
 77 if [["$i" -eq "$P1" || "$i" -eq "$P2" || "$i" -eq "$P3"]]
 78 then
 79 cr
 80 elif [["$i" -eq "$PP1" || "$i" -eq "$PP2"]]
 81 then
 82 cr; cr
 83 fi
 84 done
 85
 86 restore
 87 # ----------------------
 88
 89 echo

 90
 91 exit $E_LZY
 92
 93 # A typical example of an obfuscated script that is difficult
 94 #+ to understand, and frustrating to maintain.
 95 # In your career as a sysadmin, you'll run into these critters
 96 #+ all too often.

Example A-45. The Knight's Tour

 1 #!/bin/bash
 2 # ktour.sh
 3
 4 # author: mendel cooper
 5 # reldate: 12 Jan 2009
 6 # license: public domain
 7 # (Not much sense GPLing something that's pretty much in the common
 8 #+ domain anyhow.)
 9
 10 ###
 11 # The Knight's Tour, a classic problem. #
 12 # ===================================== #
 13 # The knight must move onto every square of the chess board, #
 14 # but cannot revisit any square he has already visited. #
 15 # #
 16 # And just why is Sir Knight unwelcome for a return visit? #
 17 # Could it be that he has a habit of partying into the wee hours #
 18 #+ of the morning? #
 19 # Possibly he leaves pizza crusts in the bed, empty beer bottles #
 20 #+ all over the floor, and clogs the plumbing. . . . #
 21 # #
 22 # --- #
 23 # #
 24 # Usage: ktour.sh [start-square] [stupid] #
 25 # #
 26 # Note that start-square can be a square number #
 27 #+ in the range 0 - 63 ... or #
 28 # a square designator in conventional chess notation, #
 29 # such as a1, f5, h3, etc. #
 30 # #
 31 # If start-square-number not supplied, #
 32 #+ then starts on a random square somewhere on the board. #
 33 # #
 34 # "stupid" as second parameter sets the stupid strategy. #
 35 # #
 36 # Examples: #
 37 # ktour.sh 23 starts on square #23 (h3) #
 38 # ktour.sh g6 stupid starts on square #46, #
 39 # using "stupid" (non-Warnsdorff) strategy. #
 40 ###
 41
 42 DEBUG= # Set this to echo debugging info to stdout.
 43 SUCCESS=0
 44 FAIL=99
 45 BADMOVE=-999
 46 FAILURE=1
 47 LINELEN=21 # How many moves to display per line.
 48 # -- #
 49 # Board array params
 50 ROWS=8 # 8 x 8 board.
 51 COLS=8
 52 let "SQUARES = $ROWS * $COLS"

 53 let "MAX = $SQUARES - 1"
 54 MIN=0
 55 # 64 squares on board, indexed from 0 to 63.
 56
 57 VISITED=1
 58 UNVISITED=-1
 59 UNVSYM="##"
 60 # -- #
 61 # Global variables.
 62 startpos= # Starting position (square #, 0 - 63).
 63 currpos= # Current position.
 64 movenum= # Move number.
 65 CRITPOS=37 # Have to patch for f5 starting position!
 66
 67 declare -i board
 68 # Use a one-dimensional array to simulate a two-dimensional one.
 69 # This can make life difficult and result in ugly kludges; see below.
 70 declare -i moves # Offsets from current knight position.
 71
 72
 73 initialize_board ()
 74 {
 75 local idx
 76
 77 for idx in {0..63}
 78 do
 79 board[$idx]=$UNVISITED
 80 done
 81 }
 82
 83
 84
 85 print_board ()
 86 {
 87 local idx
 88
 89 echo " _____________________________________"
 90 for row in {7..0} # Reverse order of rows ...
 91 do #+ so it prints in chessboard order.
 92 let "rownum = $row + 1" # Start numbering rows at 1.
 93 echo -n "$rownum |" # Mark board edge with border and
 94 for column in {0..7} #+ "algebraic notation."
 95 do
 96 let "idx = $ROWS*$row + $column"
 97 if [${board[idx]} -eq $UNVISITED]
 98 then
 99 echo -n "$UNVSYM " ##
 100 else # Mark square with move number.
 101 printf "%02d " "${board[idx]}"; echo -n " "
 102 fi
 103 done
 104 echo -e -n "\b\b\b|" # \b is a backspace.
 105 echo # -e enables echoing escaped chars.
 106 done
 107
 108 echo " -------------------------------------"
 109 echo " a b c d e f g h"
 110 }
 111
 112
 113
 114 failure()
 115 { # Whine, then bail out.
 116 echo
 117 print_board
 118 echo

 119 echo " Waah!!! Ran out of squares to move to!"
 120 echo -n " Knight's Tour attempt ended"
 121 echo " on $(to_algebraic $currpos) [square #$currpos]"
 122 echo " after just $movenum moves!"
 123 echo
 124 exit $FAIL
 125 }
 126
 127
 128
 129 xlat_coords () # Translate x/y coordinates to board position
 130 { #+ (board-array element #).
 131 # For user input of starting board position as x/y coords.
 132 # This function not used in initial release of ktour.sh.
 133 # May be used in an updated version, for compatibility with
 134 #+ standard implementation of the Knight's Tour in C, Python, etc.
 135 if [-z "$1" -o -z "$2"]
 136 then
 137 return $FAIL
 138 fi
 139
 140 local xc=$1
 141 local yc=$2
 142
 143 let "board_index = $xc * $ROWS + yc"
 144
 145 if [$board_index -lt $MIN -o $board_index -gt $MAX]
 146 then
 147 return $FAIL # Strayed off the board!
 148 else
 149 return $board_index
 150 fi
 151 }
 152
 153
 154
 155 to_algebraic () # Translate board position (board-array element #)
 156 { #+ to standard algebraic notation used by chess players.
 157 if [-z "$1"]
 158 then
 159 return $FAIL
 160 fi
 161
 162 local element_no=$1 # Numerical board position.
 163 local col_arr=(a b c d e f g h)
 164 local row_arr=(1 2 3 4 5 6 7 8)
 165
 166 let "row_no = $element_no / $ROWS"
 167 let "col_no = $element_no % $ROWS"
 168 t1=${col_arr[col_no]}; t2=${row_arr[row_no]}
 169 local apos=$t1$t2 # Concatenate.
 170 echo $apos
 171 }
 172
 173
 174
 175 from_algebraic () # Translate standard algebraic chess notation
 176 { #+ to numerical board position (board-array element #).
 177 # Or recognize numerical input & return it unchanged.
 178 if [-z "$1"]
 179 then
 180 return $FAIL
 181 fi # If no command-line arg, then will default to random start pos.
 182
 183 local ix
 184 local ix_count=0

 185 local b_index # Board index [0-63]
 186 local alpos="$1"
 187
 188 arow=${alpos:0:1} # position = 0, length = 1
 189 acol=${alpos:1:1}
 190
 191 if [[$arow =~ [[:digit:]]]] # Numerical input?
 192 then # POSIX char class
 193 if [[$acol =~ [[:alpha:]]]] # Number followed by a letter? Illegal!
 194 then return $FAIL
 195 else if [$alpos -gt $MAX] # Off board?
 196 then return $FAIL
 197 else return $alpos # Return digit(s) unchanged . . .
 198 fi #+ if within range.
 199 fi
 200 fi
 201
 202 if [[$acol -eq $MIN || $acol -gt $ROWS]]
 203 then # Outside of range 1 - 8?
 204 return $FAIL
 205 fi
 206
 207 for ix in a b c d e f g h
 208 do # Convert column letter to column number.
 209 if ["$arow" = "$ix"]
 210 then
 211 break
 212 fi
 213 ((ix_count++)) # Find index count.
 214 done
 215
 216 ((acol--)) # Decrementing converts to zero-based array.
 217 let "b_index = $ix_count + $acol * $ROWS"
 218
 219 if [$b_index -gt $MAX] # Off board?
 220 then
 221 return $FAIL
 222 fi
 223
 224 return $b_index
 225
 226 }
 227
 228
 229 generate_moves () # Calculate all valid knight moves,
 230 { #+ relative to current position ($1),
 231 #+ and store in ${moves} array.
 232 local kt_hop=1 # One square :: short leg of knight move.
 233 local kt_skip=2 # Two squares :: long leg of knight move.
 234 local valmov=0 # Valid moves.
 235 local row_pos; let "row_pos = $1 % $COLS"
 236
 237
 238 let "move1 = -$kt_skip + $ROWS" # 2 sideways to-the-left, 1 up
 239 if [[`expr $row_pos - $kt_skip` -lt $MIN]] # An ugly, ugly kludge!
 240 then # Can't move off board.
 241 move1=$BADMOVE # Not even temporarily.
 242 else
 243 ((valmov++))
 244 fi
 245 let "move2 = -$kt_hop + $kt_skip * $ROWS" # 1 sideways to-the-left, 2 up
 246 if [[`expr $row_pos - $kt_hop` -lt $MIN]] # Kludge continued ...
 247 then
 248 move2=$BADMOVE
 249 else
 250 ((valmov++))

 251 fi
 252 let "move3 = $kt_hop + $kt_skip * $ROWS" # 1 sideways to-the-right, 2 up
 253 if [[`expr $row_pos + $kt_hop` -ge $COLS]]
 254 then
 255 move3=$BADMOVE
 256 else
 257 ((valmov++))
 258 fi
 259 let "move4 = $kt_skip + $ROWS" # 2 sideways to-the-right, 1 up
 260 if [[`expr $row_pos + $kt_skip` -ge $COLS]]
 261 then
 262 move4=$BADMOVE
 263 else
 264 ((valmov++))
 265 fi
 266 let "move5 = $kt_skip - $ROWS" # 2 sideways to-the-right, 1 dn
 267 if [[`expr $row_pos + $kt_skip` -ge $COLS]]
 268 then
 269 move5=$BADMOVE
 270 else
 271 ((valmov++))
 272 fi
 273 let "move6 = $kt_hop - $kt_skip * $ROWS" # 1 sideways to-the-right, 2 dn
 274 if [[`expr $row_pos + $kt_hop` -ge $COLS]]
 275 then
 276 move6=$BADMOVE
 277 else
 278 ((valmov++))
 279 fi
 280 let "move7 = -$kt_hop - $kt_skip * $ROWS" # 1 sideways to-the-left, 2 dn
 281 if [[`expr $row_pos - $kt_hop` -lt $MIN]]
 282 then
 283 move7=$BADMOVE
 284 else
 285 ((valmov++))
 286 fi
 287 let "move8 = -$kt_skip - $ROWS" # 2 sideways to-the-left, 1 dn
 288 if [[`expr $row_pos - $kt_skip` -lt $MIN]]
 289 then
 290 move8=$BADMOVE
 291 else
 292 ((valmov++))
 293 fi # There must be a better way to do this.
 294
 295 local m=($valmov $move1 $move2 $move3 $move4 $move5 $move6 $move7 $move8)
 296 # ${moves[0]} = number of valid moves.
 297 # ${moves[1]} ... ${moves[8]} = possible moves.
 298 echo "${m[*]}" # Elements of array to stdout for capture in a var.
 299
 300 }
 301
 302
 303
 304 is_on_board () # Is position actually on the board?
 305 {
 306 if [["$1" -lt "$MIN" || "$1" -gt "$MAX"]]
 307 then
 308 return $FAILURE
 309 else
 310 return $SUCCESS
 311 fi
 312 }
 313
 314
 315
 316 do_move () # Move the knight!

 317 {
 318 local valid_moves=0
 319 local aapos
 320 currposl="$1"
 321 lmin=$ROWS
 322 iex=0
 323 squarel=
 324 mpm=
 325 mov=
 326 declare -a p_moves
 327
 328 ########################## DECIDE-MOVE #############################
 329 if [$startpos -ne $CRITPOS]
 330 then # CRITPOS = square #37
 331 decide_move
 332 else # Needs a special patch for startpos=37 !!!
 333 decide_move_patched # Why this particular move and no other ???
 334 fi
 335 ##
 336
 337 ((++movenum)) # Increment move count.
 338 let "square = $currposl + ${moves[iex]}"
 339
 340 ################## DEBUG ###############
 341 if ["$DEBUG"]
 342 then debug # Echo debugging information.
 343 fi
 344 ##
 345
 346 if [["$square" -gt $MAX || "$square" -lt $MIN ||
 347 ${board[square]} -ne $UNVISITED]]
 348 then
 349 ((--movenum)) # Decrement move count,
 350 echo "RAN OUT OF SQUARES!!!" #+ since previous one was invalid.
 351 return $FAIL
 352 fi
 353
 354 board[square]=$movenum
 355 currpos=$square # Update current position.
 356 ((valid_moves++)); # moves[0]=$valid_moves
 357 aapos=$(to_algebraic $square)
 358 echo -n "$aapos "
 359 test $(($Moves % $LINELEN)) -eq 0 && echo
 360 # Print LINELEN=21 moves per line. A valid tour shows 3 complete lines.
 361 return $valid_moves # Found a square to move to!
 362 }
 363
 364
 365
 366 do_move_stupid() # Dingbat algorithm,
 367 { #+ courtesy of script author, *not* Warnsdorff.
 368 local valid_moves=0
 369 local movloc
 370 local squareloc
 371 local aapos
 372 local cposloc="$1"
 373
 374 for movloc in {1..8}
 375 do # Move to first-found unvisited square.
 376 let "squareloc = $cposloc + ${moves[movloc]}"
 377 is_on_board $squareloc
 378 if [$? -eq $SUCCESS] && [${board[squareloc]} -eq $UNVISITED]
 379 then # Add conditions to above if-test to improve algorithm.
 380 ((++movenum))
 381 board[squareloc]=$movenum
 382 currpos=$squareloc # Update current position.

 383 ((valid_moves++)); # moves[0]=$valid_moves
 384 aapos=$(to_algebraic $squareloc)
 385 echo -n "$aapos "
 386 test $(($Moves % $LINELEN)) -eq 0 && echo # Print 21 moves/line.
 387 return $valid_moves # Found a square to move to!
 388 fi
 389 done
 390
 391 return $FAIL
 392 # If no square found in all 8 loop iterations,
 393 #+ then Knight's Tour attempt ends in failure.
 394
 395 # Dingbat algorithm will typically fail after about 30 - 40 moves,
 396 #+ but executes _much_ faster than Warnsdorff's in do_move() function.
 397 }
 398
 399
 400
 401 decide_move () # Which move will we make?
 402 { # But, fails on startpos=37 !!!
 403 for mov in {1..8}
 404 do
 405 let "squarel = $currposl + ${moves[mov]}"
 406 is_on_board $squarel
 407 if [[$? -eq $SUCCESS && ${board[squarel]} -eq $UNVISITED]]
 408 then # Find accessible square with least possible future moves.
 409 # This is Warnsdorff's algorithm.
 410 # What happens is that the knight wanders toward the outer edge
 411 #+ of the board, then pretty much spirals inward.
 412 # Given two or more possible moves with same value of
 413 #+ least-possible-future-moves, this implementation chooses
 414 #+ the _first_ of those moves.
 415 # This means that there is not necessarily a unique solution
 416 #+ for any given starting position.
 417
 418 possible_moves $squarel
 419 mpm=$?
 420 p_moves[mov]=$mpm
 421
 422 if [$mpm -lt $lmin] # If less than previous minimum ...
 423 then # ^^
 424 lmin=$mpm # Update minimum.
 425 iex=$mov # Save index.
 426 fi
 427
 428 fi
 429 done
 430 }
 431
 432
 433
 434 decide_move_patched () # Decide which move to make,
 435 { # ^^^^^^^ #+ but only if startpos=37 !!!
 436 for mov in {1..8}
 437 do
 438 let "squarel = $currposl + ${moves[mov]}"
 439 is_on_board $squarel
 440 if [[$? -eq $SUCCESS && ${board[squarel]} -eq $UNVISITED]]
 441 then
 442 possible_moves $squarel
 443 mpm=$?
 444 p_moves[mov]=$mpm
 445
 446 if [$mpm -le $lmin] # If less-than-or equal to prev. minimum!
 447 then # ^^
 448 lmin=$mpm

 449 iex=$mov
 450 fi
 451
 452 fi
 453 done # There has to be a better way to do this.
 454 }
 455
 456
 457
 458 possible_moves () # Calculate number of possible moves,
 459 { #+ given the current position.
 460
 461 if [-z "$1"]
 462 then
 463 return $FAIL
 464 fi
 465
 466 local curr_pos=$1
 467 local valid_movl=0
 468 local icx=0
 469 local movl
 470 local sq
 471 declare -a movesloc
 472
 473 movesloc=($(generate_moves $curr_pos))
 474
 475 for movl in {1..8}
 476 do
 477 let "sq = $curr_pos + ${movesloc[movl]}"
 478 is_on_board $sq
 479 if [$? -eq $SUCCESS] && [${board[sq]} -eq $UNVISITED]
 480 then
 481 ((valid_movl++));
 482 fi
 483 done
 484
 485 return $valid_movl # Found a square to move to!
 486 }
 487
 488
 489 strategy ()
 490 {
 491 echo
 492
 493 if [-n "$STUPID"]
 494 then
 495 for Moves in {1..63}
 496 do
 497 cposl=$1
 498 moves=($(generate_moves $currpos))
 499 do_move_stupid "$currpos"
 500 if [$? -eq $FAIL]
 501 then
 502 failure
 503 fi
 504 done
 505 fi
 506
 507 # Don't need an "else" clause here,
 508 #+ because Stupid Strategy will always fail and exit!
 509 for Moves in {1..63}
 510 do
 511 cposl=$1
 512 moves=($(generate_moves $currpos))
 513 do_move "$currpos"
 514 if [$? -eq $FAIL]

 515 then
 516 failure
 517 fi
 518
 519 done
 520 # Could have condensed above two do-loops into a single one,
 521 echo #+ but this would have slowed execution.
 522
 523 print_board
 524 echo
 525 echo "Knight's Tour ends on $(to_algebraic $currpos) [square #$currpos]."
 526 return $SUCCESS
 527 }
 528
 529 debug ()
 530 { # Enable this by setting DEBUG=1 near beginning of script.
 531 local n
 532
 533 echo "================================="
 534 echo " At move number $movenum:"
 535 echo " *** possible moves = $mpm ***"
 536 # echo "### square = $square ###"
 537 echo "lmin = $lmin"
 538 echo "${moves[@]}"
 539
 540 for n in {1..8}
 541 do
 542 echo -n "($n):${p_moves[n]} "
 543 done
 544
 545 echo
 546 echo "iex = $iex :: moves[iex] = ${moves[iex]}"
 547 echo "square = $square"
 548 echo "================================="
 549 echo
 550 } # Gives pretty complete status after ea. move.
 551
 552
 553
 554 # === #
 555 # int main () {
 556 from_algebraic "$1"
 557 startpos=$?
 558 if ["$startpos" -eq "$FAIL"] # Okay even if no $1.
 559 then # ^^^^^^^^^^^ Okay even if input -lt 0.
 560 echo "No starting square specified (or illegal input)."
 561 let "startpos = $RANDOM % $SQUARES" # 0 - 63 permissable range.
 562 fi
 563
 564
 565 if ["$2" = "stupid"]
 566 then
 567 STUPID=1
 568 echo -n " ### Stupid Strategy ###"
 569 else
 570 STUPID=''
 571 echo -n " *** Warnsdorff's Algorithm ***"
 572 fi
 573
 574
 575 initialize_board
 576
 577 movenum=0
 578 board[startpos]=$movenum # Mark each board square with move number.
 579 currpos=$startpos
 580 algpos=$(to_algebraic $startpos)

 581
 582 echo; echo "Starting from $algpos [square #$startpos] ..."; echo
 583 echo -n "Moves:"
 584
 585 strategy "$currpos"
 586
 587 echo
 588
 589 exit 0 # return 0;
 590
 591 # } # End of main() pseudo-function.
 592 # === #
 593
 594
 595 # Exercises:
 596 # ---------
 597 #
 598 # 1) Extend this example to a 10 x 10 board or larger.
 599 # 2) Improve the "stupid strategy" by modifying the
 600 # do_move_stupid function.
 601 # Hint: Prevent straying into corner squares in early moves
 602 # (the exact opposite of Warnsdorff's algorithm!).
 603 # 3) This script could stand considerable improvement and
 604 # streamlining, especially in the poorly-written
 605 # generate_moves() function
 606 # and in the DECIDE-MOVE patch in the do_move() function.
 607 # Must figure out why standard algorithm fails for startpos=37 ...
 608 #+ but _not_ on any other, including symmetrical startpos=26.
 609 # Possibly, when calculating possible moves, counts the move back
 610 #+ to the originating square. If so, it might be a relatively easy fix.

Example A-46. Magic Squares

 1 #!/bin/bash
 2 # msquare.sh
 3 # Magic Square generator (odd-order squares only!)
 4
 5 # Author: mendel cooper
 6 # reldate: 19 Jan. 2009
 7 # License: Public Domain
 8 # A C-program by the very talented Kwon Young Shin inspired this script.
 9 # http://user.chollian.net/~brainstm/MagicSquare.htm
 10
 11 # Definition: A "magic square" is a two-dimensional array
 12 # of integers in which all the rows, columns,
 13 # and *long* diagonals add up to the same number.
 14 # Being "square," the array has the same number
 15 # of rows and columns. That number is the "order."
 16 # An example of a magic square of order 3 is:
 17 # 8 1 6
 18 # 3 5 7
 19 # 4 9 2
 20 # All the rows, columns, and the two long diagonals add up to 15.
 21
 22
 23 # Globals
 24 EVEN=2
 25 MAXSIZE=31 # 31 rows x 31 cols.
 26 E_usage=90 # Invocation error.
 27 dimension=
 28 declare -i square
 29

 30 usage_message ()
 31 {
 32 echo "Usage: $0 order"
 33 echo " ... where \"order\" (square size) is an ODD integer"
 34 echo " in the range 3 - 31."
 35 # Actually works for squares up to order 159,
 36 #+ but large squares will not display pretty-printed in a term window.
 37 # Try increasing MAXSIZE, above.
 38 exit $E_usage
 39 }
 40
 41
 42 calculate () # Here's where the actual work gets done.
 43 {
 44 local row col index dimadj j k cell_val=1
 45 dimension=$1
 46
 47 let "dimadj = $dimension * 3"; let "dimadj /= 2" # x 1.5, then truncate.
 48
 49 for ((j=0; j < dimension; j++))
 50 do
 51 for ((k=0; k < dimension; k++))
 52 do # Calculate indices, then convert to 1-dim. array index.
 53 # Bash doesn't support multidimensional arrays. Pity.
 54 let "col = $k - $j + $dimadj"; let "col %= $dimension"
 55 let "row = $j * 2 - $k + $dimension"; let "row %= $dimension"
 56 let "index = $row*($dimension) + $col"
 57 square[$index]=cell_val; ((cell_val++))
 58 done
 59 done
 60 } # Plain math, visualization not required.
 61
 62
 63 print_square () # Output square, one row at a time.
 64 {
 65 local row col idx d1
 66 let "d1 = $dimension - 1" # Adjust for zero-indexed array.
 67
 68 for row in $(seq 0 $d1)
 69 do
 70
 71 for col in $(seq 0 $d1)
 72 do
 73 let "idx = $row * $dimension + $col"
 74 printf "%3d " "${square[idx]}"; echo -n " "
 75 done # Displays up to 13th order neatly in 80-column term window.
 76
 77 echo # Newline after each row.
 78 done
 79 }
 80
 81
 82 ###
 83 if [[-z "$1"]] || [["$1" -gt $MAXSIZE]]
 84 then
 85 usage_message
 86 fi
 87
 88 let "test_even = $1 % $EVEN"
 89 if [$test_even -eq 0]
 90 then # Can't handle even-order squares.
 91 usage_message
 92 fi
 93
 94 calculate $1
 95 print_square # echo "${square[@]}" # DEBUG

 96
 97 exit $?
 98 ###
 99
 100
 101 # Exercises:
 102 # ---------
 103 # 1) Add a function to calculate the sum of each row, column,
 104 # and *long* diagonal. The sums must match.
 105 # This is the "magic constant" of that particular order square.
 106 # 2) Have the print_square function auto-calculate how much space
 107 # to allot between square elements for optimized display.
 108 # This might require parameterizing the "printf" line.
 109 # 3) Add appropriate functions for generating magic squares
 110 # with an *even* number of rows/columns.
 111 # This is non-trivial(!).
 112 # See the URL for Kwon Young Shin, above, for help.

Example A-47. Fifteen Puzzle

 1 #!/bin/bash
 2 # fifteen.sh
 3
 4 # Classic "Fifteen Puzzle"
 5 # Author: Antonio Macchi
 6 # Lightly edited and commented by ABS Guide author.
 7 # Used in ABS Guide with permission. (Thanks!)
 8
 9 # The invention of the Fifteen Puzzle is attributed to either
 10 #+ Sam Loyd or Noyes Palmer Chapman.
 11 # The puzzle was wildly popular in the late 19th-century.
 12
 13 # Object: Rearrange the numbers so they read in order,
 14 #+ from 1 - 15: ________________
 15 # | 1 2 3 4 |
 16 # | 5 6 7 8 |
 17 # | 9 10 11 12 |
 18 # | 13 14 15 |
 19 # ----------------
 20
 21
 22 #######################
 23 # Constants #
 24 SQUARES=16 #
 25 FAIL=70 #
 26 E_PREMATURE_EXIT=80 #
 27 #######################
 28
 29
 30 ########
 31 # Data #
 32 ########
 33
 34 Puzzle=(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 " ")
 35
 36
 37 #############
 38 # Functions #
 39 #############
 40
 41 function swap
 42 {

 43 local tmp
 44
 45 tmp=${Puzzle[$1]}
 46 Puzzle[$1]=${Puzzle[$2]}
 47 Puzzle[$2]=$tmp
 48 }
 49
 50
 51 function Jumble
 52 { # Scramble the pieces at beginning of round.
 53 local i pos1 pos2
 54
 55 for i in {1..100}
 56 do
 57 pos1=$(($RANDOM % $SQUARES))
 58 pos2=$(($RANDOM % $SQUARES))
 59 swap $pos1 $pos2
 60 done
 61 }
 62
 63
 64 function PrintPuzzle
 65 {
 66 local i1 i2 puzpos
 67 puzpos=0
 68
 69 clear
 70 echo "Enter quit to exit."; echo # Better that than Ctl-C.
 71
 72 echo ",----.----.----.----." # Top border.
 73 for i1 in {1..4}
 74 do
 75 for i2 in {1..4}
 76 do
 77 printf "| %2s " "${Puzzle[$puzpos]}"
 78 ((puzpos++))
 79 done
 80 echo "|" # Right-side border.
 81 test $i1 = 4 || echo "+----+----+----+----+"
 82 done
 83 echo "'----'----'----'----'" # Bottom border.
 84 }
 85
 86
 87 function GetNum
 88 { # Test for valid input.
 89 local puznum garbage
 90
 91 while true
 92 do
 93 echo "Moves: $moves" # Also counts invalid moves.
 94 read -p "Number to move: " puznum garbage
 95 if ["$puznum" = "quit"]; then echo; exit $E_PREMATURE_EXIT; fi
 96 test -z "$puznum" -o -n "${puznum//[0-9]/}" && continue
 97 test $puznum -gt 0 -a $puznum -lt $SQUARES && break
 98 done
 99 return $puznum
 100 }
 101
 102
 103 function GetPosFromNum
 104 { # $1 = puzzle-number
 105 local puzpos
 106
 107 for puzpos in {0..15}
 108 do

 109 test "${Puzzle[$puzpos]}" = "$1" && break
 110 done
 111 return $puzpos
 112 }
 113
 114
 115 function Move
 116 { # $1=Puzzle-pos
 117 test $1 -gt 3 && test "${Puzzle[$(($1 - 4))]}" = " "\
 118 && swap $1 $(($1 - 4)) && return 0
 119 test $(($1%4)) -ne 3 && test "${Puzzle[$(($1 + 1))]}" = " "\
 120 && swap $1 $(($1 + 1)) && return 0
 121 test $1 -lt 12 && test "${Puzzle[$(($1 + 4))]}" = " "\
 122 && swap $1 $(($1 + 4)) && return 0
 123 test $(($1%4)) -ne 0 && test "${Puzzle[$(($1 - 1))]}" = " " &&\
 124 swap $1 $(($1 - 1)) && return 0
 125 return 1
 126 }
 127
 128
 129 function Solved
 130 {
 131 local pos
 132
 133 for pos in {0..14}
 134 do
 135 test "${Puzzle[$pos]}" = $(($pos + 1)) || return $FAIL
 136 # Check whether number in each square = square number.
 137 done
 138 return 0 # Successful solution.
 139 }
 140
 141
 142 ################### MAIN () #######################{
 143 moves=0
 144 Jumble
 145
 146 while true # Loop continuously until puzzle solved.
 147 do
 148 echo; echo
 149 PrintPuzzle
 150 echo
 151 while true
 152 do
 153 GetNum
 154 puznum=$?
 155 GetPosFromNum $puznum
 156 puzpos=$?
 157 ((moves++))
 158 Move $puzpos && break
 159 done
 160 Solved && break
 161 done
 162
 163 echo;echo
 164 PrintPuzzle
 165 echo; echo "BRAVO!"; echo
 166
 167 exit 0
 168 ###}
 169
 170 # Exercise:
 171 # --------
 172 # Rewrite the script to display the letters A - O,
 173 #+ rather than the numbers 1 - 15.

Example A-48. The Towers of Hanoi, graphic version

 1 #! /bin/bash
 2 # The Towers Of Hanoi
 3 # Original script (hanoi.bash) copyright (C) 2000 Amit Singh.
 4 # All Rights Reserved.
 5 # http://hanoi.kernelthread.com
 6
 7 # hanoi2.bash
 8 # Version 2.00: modded for ASCII-graphic display.
 9 # Version 2.01: fixed no command-line param bug.
 10 # Uses code contributed by Antonio Macchi,
 11 #+ with heavy editing by ABS Guide author.
 12 # This variant falls under the original copyright, see above.
 13 # Used in ABS Guide with Amit Singh's permission (thanks!).
 14
 15
 16 ### Variables && sanity check ###
 17
 18 E_NOPARAM=86
 19 E_BADPARAM=87 # Illegal no. of disks passed to script.
 20 E_NOEXIT=88
 21
 22 DISKS=${1:-$E_NOPARAM} # Must specify how many disks.
 23 Moves=0
 24
 25 MWIDTH=7
 26 MARGIN=2
 27 # Arbitrary "magic" constants; work okay for relatively small # of disks.
 28 # BASEWIDTH=51 # Original code.
 29 let "basewidth = $MWIDTH * $DISKS + $MARGIN" # "Base" beneath rods.
 30 # Above "algorithm" could likely stand improvement.
 31
 32 ### Display variables ###
 33 let "disks1 = $DISKS - 1"
 34 let "spaces1 = $DISKS"
 35 let "spaces2 = 2 * $DISKS"
 36
 37 let "lastmove_t = $DISKS - 1" # Final move?
 38
 39
 40 declare -a Rod1 Rod2 Rod3
 41
 42 ### ######################### ###
 43
 44
 45 function repeat { # $1=char $2=number of repetitions
 46 local n # Repeat-print a character.
 47
 48 for ((n=0; n<$2; n++)); do
 49 echo -n "$1"
 50 done
 51 }
 52
 53 function FromRod {
 54 local rod summit weight sequence
 55
 56 while true; do
 57 rod=$1
 58 test ${rod/[^123]/} || continue
 59
 60 sequence=$(echo $(seq 0 $disks1 | tac))

 61 for summit in $sequence; do
 62 eval weight=\${Rod${rod}[$summit]}
 63 test $weight -ne 0 &&
 64 { echo "$rod $summit $weight"; return; }
 65 done
 66 done
 67 }
 68
 69
 70 function ToRod { # $1=previous (FromRod) weight
 71 local rod firstfree weight sequence
 72
 73 while true; do
 74 rod=$2
 75 test ${rod/[^123]} || continue
 76
 77 sequence=$(echo $(seq 0 $disks1 | tac))
 78 for firstfree in $sequence; do
 79 eval weight=\${Rod${rod}[$firstfree]}
 80 test $weight -gt 0 && { ((firstfree++)); break; }
 81 done
 82 test $weight -gt $1 -o $firstfree = 0 &&
 83 { echo "$rod $firstfree"; return; }
 84 done
 85 }
 86
 87
 88 function PrintRods {
 89 local disk rod empty fill sp sequence
 90
 91
 92 repeat " " $spaces1
 93 echo -n "|"
 94 repeat " " $spaces2
 95 echo -n "|"
 96 repeat " " $spaces2
 97 echo "|"
 98
 99 sequence=$(echo $(seq 0 $disks1 | tac))
 100 for disk in $sequence; do
 101 for rod in {1..3}; do
 102 eval empty=$(($DISKS - (Rod${rod}[$disk] / 2)))
 103 eval fill=\${Rod${rod}[$disk]}
 104 repeat " " $empty
 105 test $fill -gt 0 && repeat "*" $fill || echo -n "|"
 106 repeat " " $empty
 107 done
 108 echo
 109 done
 110 repeat "=" $basewidth # Print "base" beneath rods.
 111 echo
 112 }
 113
 114
 115 display ()
 116 {
 117 echo
 118 PrintRods
 119
 120 # Get rod-number, summit and weight
 121 first=(`FromRod $1`)
 122 eval Rod${first[0]}[${first[1]}]=0
 123
 124 # Get rod-number and first-free position
 125 second=(`ToRod ${first[2]} $2`)
 126 eval Rod${second[0]}[${second[1]}]=${first[2]}

 127
 128
 129 echo; echo; echo
 130 if ["${Rod3[lastmove_t]}" = 1]
 131 then # Last move? If yes, then display final position.
 132 echo "+ Final Position: $Moves moves"; echo
 133 PrintRods
 134 fi
 135 }
 136
 137
 138 # From here down, almost the same as original (hanoi.bash) script.
 139
 140 dohanoi() { # Recursive function.
 141 case $1 in
 142 0)
 143 ;;
 144 *)
 145 dohanoi "$(($1-1))" $2 $4 $3
 146 if ["$Moves" -ne 0]
 147 then
 148 echo "+ Position after move $Moves"
 149 fi
 150 ((Moves++))
 151 echo -n " Next move will be: "
 152 echo $2 "-->" $3
 153 display $2 $3
 154 dohanoi "$(($1-1))" $4 $3 $2
 155 ;;
 156 esac
 157 }
 158
 159
 160 setup_arrays ()
 161 {
 162 local dim n elem
 163
 164 let "dim1 = $1 - 1"
 165 elem=$dim1
 166
 167 for n in $(seq 0 $dim1)
 168 do
 169 let "Rod1[$elem] = 2 * $n + 1"
 170 Rod2[$n]=0
 171 Rod3[$n]=0
 172 ((elem--))
 173 done
 174 }
 175
 176
 177 ### Main ###
 178
 179 setup_arrays $DISKS
 180 echo; echo "+ Start Position"
 181
 182 case $# in
 183 1) case $(($1>0)) in # Must have at least one disk.
 184 1)
 185 disks=$1
 186 dohanoi $1 1 3 2
 187 # Total moves = 2^n - 1, where n = number of disks.
 188 echo
 189 exit 0;
 190 ;;
 191 *)
 192 echo "$0: Illegal value for number of disks";

 193 exit $E_BADPARAM;
 194 ;;
 195 esac
 196 ;;
 197 *)
 198 clear
 199 echo "usage: $0 N"
 200 echo " Where \"N\" is the number of disks."
 201 exit $E_NOPARAM;
 202 ;;
 203 esac
 204
 205 exit $E_NOEXIT # Shouldn't exit here.
 206
 207 # Note:
 208 # Redirect script output to a file, otherwise it scrolls off display.

Example A-49. The Towers of Hanoi, alternate graphic version

 1 #! /bin/bash
 2 # The Towers Of Hanoi
 3 # Original script (hanoi.bash) copyright (C) 2000 Amit Singh.
 4 # All Rights Reserved.
 5 # http://hanoi.kernelthread.com
 6
 7 # hanoi2.bash
 8 # Version 2: modded for ASCII-graphic display.
 9 # Uses code contributed by Antonio Macchi,
 10 #+ with heavy editing by ABS Guide author.
 11 # This variant also falls under the original copyright, see above.
 12 # Used in ABS Guide with Amit Singh's permission (thanks!).
 13
 14
 15 # Variables #
 16 E_NOPARAM=86
 17 E_BADPARAM=87 # Illegal no. of disks passed to script.
 18 E_NOEXIT=88
 19 DELAY=2 # Interval, in seconds, between moves. Change, if desired.
 20 DISKS=$1
 21 Moves=0
 22
 23 MWIDTH=7
 24 MARGIN=2
 25 # Arbitrary "magic" constants, work okay for relatively small # of disks.
 26 # BASEWIDTH=51 # Original code.
 27 let "basewidth = $MWIDTH * $DISKS + $MARGIN" # "Base" beneath rods.
 28 # Above "algorithm" could likely stand improvement.
 29
 30 # Display variables.
 31 let "disks1 = $DISKS - 1"
 32 let "spaces1 = $DISKS"
 33 let "spaces2 = 2 * $DISKS"
 34
 35 let "lastmove_t = $DISKS - 1" # Final move?
 36
 37
 38 declare -a Rod1 Rod2 Rod3
 39
 40 #################
 41
 42
 43 function repeat { # $1=char $2=number of repetitions

 44 local n # Repeat-print a character.
 45
 46 for ((n=0; n<$2; n++)); do
 47 echo -n "$1"
 48 done
 49 }
 50
 51 function FromRod {
 52 local rod summit weight sequence
 53
 54 while true; do
 55 rod=$1
 56 test ${rod/[^123]/} || continue
 57
 58 sequence=$(echo $(seq 0 $disks1 | tac))
 59 for summit in $sequence; do
 60 eval weight=\${Rod${rod}[$summit]}
 61 test $weight -ne 0 &&
 62 { echo "$rod $summit $weight"; return; }
 63 done
 64 done
 65 }
 66
 67
 68 function ToRod { # $1=previous (FromRod) weight
 69 local rod firstfree weight sequence
 70
 71 while true; do
 72 rod=$2
 73 test ${rod/[^123]} || continue
 74
 75 sequence=$(echo $(seq 0 $disks1 | tac))
 76 for firstfree in $sequence; do
 77 eval weight=\${Rod${rod}[$firstfree]}
 78 test $weight -gt 0 && { ((firstfree++)); break; }
 79 done
 80 test $weight -gt $1 -o $firstfree = 0 &&
 81 { echo "$rod $firstfree"; return; }
 82 done
 83 }
 84
 85
 86 function PrintRods {
 87 local disk rod empty fill sp sequence
 88
 89 tput cup 5 0
 90
 91 repeat " " $spaces1
 92 echo -n "|"
 93 repeat " " $spaces2
 94 echo -n "|"
 95 repeat " " $spaces2
 96 echo "|"
 97
 98 sequence=$(echo $(seq 0 $disks1 | tac))
 99 for disk in $sequence; do
 100 for rod in {1..3}; do
 101 eval empty=$(($DISKS - (Rod${rod}[$disk] / 2)))
 102 eval fill=\${Rod${rod}[$disk]}
 103 repeat " " $empty
 104 test $fill -gt 0 && repeat "*" $fill || echo -n "|"
 105 repeat " " $empty
 106 done
 107 echo
 108 done
 109 repeat "=" $basewidth # Print "base" beneath rods.

 110 echo
 111 }
 112
 113
 114 display ()
 115 {
 116 echo
 117 PrintRods
 118
 119 # Get rod-number, summit and weight
 120 first=(`FromRod $1`)
 121 eval Rod${first[0]}[${first[1]}]=0
 122
 123 # Get rod-number and first-free position
 124 second=(`ToRod ${first[2]} $2`)
 125 eval Rod${second[0]}[${second[1]}]=${first[2]}
 126
 127
 128 if ["${Rod3[lastmove_t]}" = 1]
 129 then # Last move? If yes, then display final position.
 130 tput cup 0 0
 131 echo; echo "+ Final Position: $Moves moves"
 132 PrintRods
 133 fi
 134
 135 sleep $DELAY
 136 }
 137
 138 # From here down, almost the same as original (hanoi.bash) script.
 139
 140 dohanoi() { # Recursive function.
 141 case $1 in
 142 0)
 143 ;;
 144 *)
 145 dohanoi "$(($1-1))" $2 $4 $3
 146 if ["$Moves" -ne 0]
 147 then
 148 tput cup 0 0
 149 echo; echo "+ Position after move $Moves"
 150 fi
 151 ((Moves++))
 152 echo -n " Next move will be: "
 153 echo $2 "-->" $3
 154 display $2 $3
 155 dohanoi "$(($1-1))" $4 $3 $2
 156 ;;
 157 esac
 158 }
 159
 160 setup_arrays ()
 161 {
 162 local dim n elem
 163
 164 let "dim1 = $1 - 1"
 165 elem=$dim1
 166
 167 for n in $(seq 0 $dim1)
 168 do
 169 let "Rod1[$elem] = 2 * $n + 1"
 170 Rod2[$n]=0
 171 Rod3[$n]=0
 172 ((elem--))
 173 done
 174 }
 175

 176
 177 ### Main ###
 178
 179 trap "tput cnorm" 0
 180 tput civis
 181 clear
 182
 183 setup_arrays $DISKS
 184
 185 tput cup 0 0
 186 echo; echo "+ Start Position"
 187
 188 case $# in
 189 1) case $(($1>0)) in # Must have at least one disk.
 190 1)
 191 disks=$1
 192 dohanoi $1 1 3 2
 193 # Total moves = 2^n - 1, where n = # of disks.
 194 echo
 195 exit 0;
 196 ;;
 197 *)
 198 echo "$0: Illegal value for number of disks";
 199 exit $E_BADPARAM;
 200 ;;
 201 esac
 202 ;;
 203 *)
 204 echo "usage: $0 N"
 205 echo " Where \"N\" is the number of disks."
 206 exit $E_NOPARAM;
 207 ;;
 208 esac
 209
 210 exit $E_NOEXIT # Shouldn't exit here.
 211
 212 # Exercise:
 213 # --------
 214 # There is a minor bug in the script that causes the display of
 215 #+ the next-to-last move to be skipped.
 216 #+ Fix this.

Example A-50. An alternate version of the getopt-simple.sh script

 1 #!/bin/bash
 2 # UseGetOpt.sh
 3
 4 # Author: Peggy Russell <prusselltechgroup@gmail.com>
 5
 6 UseGetOpt () {
 7 declare inputOptions
 8 declare -r E_OPTERR=85
 9 declare -r ScriptName=${0##*/}
 10 declare -r ShortOpts="adf:hlt"
 11 declare -r LongOpts="aoption,debug,file:,help,log,test"
 12
 13 DoSomething () {
 14 echo "The function name is '${FUNCNAME}'"
 15 # Recall that $FUNCNAME is an internal variable
 16 #+ holding the name of the function it is in.
 17 }
 18

 19 inputOptions=$(getopt -o "${ShortOpts}" --long \
 20 "${LongOpts}" --name "${ScriptName}" -- "${@}")
 21
 22 if [[($? -ne 0) || ($# -eq 0)]]; then
 23 echo "Usage: ${ScriptName} [-dhlt] {OPTION...}"
 24 exit $E_OPTERR
 25 fi
 26
 27 eval set -- "${inputOptions}"
 28
 29 # Only for educational purposes. Can be removed.
 30 #---
 31 echo "++ Test: Number of arguments: [$#]"
 32 echo '++ Test: Looping through "$@"'
 33 for a in "$@"; do
 34 echo " ++ [$a]"
 35 done
 36 #---
 37
 38 while true; do
 39 case "${1}" in
 40 --aoption | -a) # Argument found.
 41 echo "Option [$1]"
 42 ;;
 43
 44 --debug | -d) # Enable informational messages.
 45 echo "Option [$1] Debugging enabled"
 46 ;;
 47
 48 --file | -f) # Check for optional argument.
 49 case "$2" in #+ Double colon is optional argument.
 50 "") # Not there.
 51 echo "Option [$1] Use default"
 52 shift
 53 ;;
 54
 55 *) # Got it
 56 echo "Option [$1] Using input [$2]"
 57 shift
 58 ;;
 59
 60 esac
 61 DoSomething
 62 ;;
 63
 64 --log | -l) # Enable Logging.
 65 echo "Option [$1] Logging enabled"
 66 ;;
 67
 68 --test | -t) # Enable testing.
 69 echo "Option [$1] Testing enabled"
 70 ;;
 71
 72 --help | -h)
 73 echo "Option [$1] Display help"
 74 break
 75 ;;
 76
 77 --) # Done! $# is argument number for "--", $@ is "--"
 78 echo "Option [$1] Dash Dash"
 79 break
 80 ;;
 81
 82 *)
 83 echo "Major internal error!"
 84 exit 8

 85 ;;
 86
 87 esac
 88 echo "Number of arguments: [$#]"
 89 shift
 90 done
 91
 92 shift
 93 # Only for educational purposes. Can be removed.
 94 #--
 95 echo "++ Test: Number of arguments after \"--\" is [$#] They are: [$@]"
 96 echo '++ Test: Looping through "$@"'
 97 for a in "$@"; do
 98 echo " ++ [$a]"
 99 done
 100 #--
 101
 102 }
 103
 104 ################################### M A I N ########################
 105 # If you remove "function UseGetOpt () {" and corresponding "}",
 106 #+ you can uncomment the "exit 0" line below, and invoke this script
 107 #+ with the various options from the command-line.
 108 #---
 109 # exit 0
 110
 111 echo "Test 1"
 112 UseGetOpt -f myfile one "two three" four
 113
 114 echo;echo "Test 2"
 115 UseGetOpt -h
 116
 117 echo;echo "Test 3 - Short Options"
 118 UseGetOpt -adltf myfile anotherfile
 119
 120 echo;echo "Test 4 - Long Options"
 121 UseGetOpt --aoption --debug --log --test --file myfile anotherfile
 122
 123 exit

Example A-51. The version of the UseGetOpt.sh example used in the Tab Expansion appendix

 1 #!/bin/bash
 2
 3 # UseGetOpt-2.sh
 4 # Modified version of the script for illustrating tab-expansion
 5 #+ of command-line options.
 6 # See the "Introduction to Tab Expansion" appendix.
 7
 8 # Possible options: -a -d -f -l -t -h
 9 #+ --aoption, --debug --file --log --test -- help --
 10
 11 # Author of original script: Peggy Russell <prusselltechgroup@gmail.com>
 12
 13
 14 # UseGetOpt () {
 15 declare inputOptions
 16 declare -r E_OPTERR=85
 17 declare -r ScriptName=${0##*/}
 18 declare -r ShortOpts="adf:hlt"
 19 declare -r LongOpts="aoption,debug,file:,help,log,test"
 20

 21 DoSomething () {
 22 echo "The function name is '${FUNCNAME}'"
 23 }
 24
 25 inputOptions=$(getopt -o "${ShortOpts}" --long \
 26 "${LongOpts}" --name "${ScriptName}" -- "${@}")
 27
 28 if [[($? -ne 0) || ($# -eq 0)]]; then
 29 echo "Usage: ${ScriptName} [-dhlt] {OPTION...}"
 30 exit $E_OPTERR
 31 fi
 32
 33 eval set -- "${inputOptions}"
 34
 35
 36 while true; do
 37 case "${1}" in
 38 --aoption | -a) # Argument found.
 39 echo "Option [$1]"
 40 ;;
 41
 42 --debug | -d) # Enable informational messages.
 43 echo "Option [$1] Debugging enabled"
 44 ;;
 45
 46 --file | -f) # Check for optional argument.
 47 case "$2" in #+ Double colon is optional argument.
 48 "") # Not there.
 49 echo "Option [$1] Use default"
 50 shift
 51 ;;
 52
 53 *) # Got it
 54 echo "Option [$1] Using input [$2]"
 55 shift
 56 ;;
 57
 58 esac
 59 DoSomething
 60 ;;
 61
 62 --log | -l) # Enable Logging.
 63 echo "Option [$1] Logging enabled"
 64 ;;
 65
 66 --test | -t) # Enable testing.
 67 echo "Option [$1] Testing enabled"
 68 ;;
 69
 70 --help | -h)
 71 echo "Option [$1] Display help"
 72 break
 73 ;;
 74
 75 --) # Done! $# is argument number for "--", $@ is "--"
 76 echo "Option [$1] Dash Dash"
 77 break
 78 ;;
 79
 80 *)
 81 echo "Major internal error!"
 82 exit 8
 83 ;;
 84
 85 esac
 86 echo "Number of arguments: [$#]"

 87 shift
 88 done
 89
 90 shift
 91
 92 # }
 93
 94 exit

Example A-52. Cycling through all the possible color backgrounds

 1 #!/bin/bash
 2
 3 # show-all-colors.sh
 4 # Displays all 256 possible background colors, using ANSI escape sequences.
 5 # Author: Chetankumar Phulpagare
 6 # Used in ABS Guide with permission.
 7
 8 T1=8
 9 T2=6
 10 T3=36
 11 offset=0
 12
 13 for num1 in {0..7}
 14 do {
 15 for num2 in {0,1}
 16 do {
 17 shownum=`echo "$offset + $T1 * ${num2} + $num1" | bc`
 18 echo -en "\E[0;48;5;${shownum}m color ${shownum} \E[0m"
 19 }
 20 done
 21 echo
 22 }
 23 done
 24
 25 offset=16
 26 for num1 in {0..5}
 27 do {
 28 for num2 in {0..5}
 29 do {
 30 for num3 in {0..5}
 31 do {
 32 shownum=`echo "$offset + $T2 * ${num3} \
 33 + $num2 + $T3 * ${num1}" | bc`
 34 echo -en "\E[0;48;5;${shownum}m color ${shownum} \E[0m"
 35 }
 36 done
 37 echo
 38 }
 39 done
 40 }
 41 done
 42
 43 offset=232
 44 for num1 in {0..23}
 45 do {
 46 shownum=`expr $offset + $num1`
 47 echo -en "\E[0;48;5;${shownum}m ${shownum}\E[0m"
 48 }
 49 done
 50
 51 echo

Example A-53. Morse Code Practice

 1 #!/bin/bash
 2 # sam.sh, v. .01a
 3 # Still Another Morse (code training script)
 4 # With profuse apologies to Sam (F.B.) Morse.
 5 # Author: Mendel Cooper
 6 # License: GPL3
 7 # Reldate: 05/25/11
 8
 9 # Morse code training script.
 10 # Converts arguments to audible dots and dashes.
 11 # Note: lowercase input only at this time.
 12
 13
 14
 15 # Get the wav files from the source tarball:
 16 # http://bash.deta.in/abs-guide-latest.tar.bz2
 17 DOT='soundfiles/dot.wav'
 18 DASH='soundfiles/dash.wav'
 19 # Maybe move soundfiles to /usr/local/sounds?
 20
 21 LETTERSPACE=300000 # Microseconds.
 22 WORDSPACE=980000
 23 # Nice and slow, for beginners. Maybe 5 wpm?
 24
 25 EXIT_MSG="May the Morse be with you!"
 26 E_NOARGS=75 # No command-line args?
 27
 28
 29
 30 declare -A morse # Associative array!
 31 # ======================================= #
 32 morse[a]="dot; dash"
 33 morse[b]="dash; dot; dot; dot"
 34 morse[c]="dash; dot; dash; dot"
 35 morse[d]="dash; dot; dot"
 36 morse[e]="dot"
 37 morse[f]="dot; dot; dash; dot"
 38 morse[g]="dash; dash; dot"
 39 morse[h]="dot; dot; dot; dot"
 40 morse[i]="dot; dot;"
 41 morse[j]="dot; dash; dash; dash"
 42 morse[k]="dash; dot; dash"
 43 morse[l]="dot; dash; dot; dot"
 44 morse[m]="dash; dash"
 45 morse[n]="dash; dot"
 46 morse[o]="dash; dash; dash"
 47 morse[p]="dot; dash; dash; dot"
 48 morse[q]="dash; dash; dot; dash"
 49 morse[r]="dot; dash; dot"
 50 morse[s]="dot; dot; dot"
 51 morse[t]="dash"
 52 morse[u]="dot; dot; dash"
 53 morse[v]="dot; dot; dot; dash"
 54 morse[w]="dot; dash; dash"
 55 morse[x]="dash; dot; dot; dash"
 56 morse[y]="dash; dot; dash; dash"
 57 morse[z]="dash; dash; dot; dot"
 58 morse[0]="dash; dash; dash; dash; dash"
 59 morse[1]="dot; dash; dash; dash; dash"
 60 morse[2]="dot; dot; dash; dash; dash"

 61 morse[3]="dot; dot; dot; dash; dash"
 62 morse[4]="dot; dot; dot; dot; dash"
 63 morse[5]="dot; dot; dot; dot; dot"
 64 morse[6]="dash; dot; dot; dot; dot"
 65 morse[7]="dash; dash; dot; dot; dot"
 66 morse[8]="dash; dash; dash; dot; dot"
 67 morse[9]="dash; dash; dash; dash; dot"
 68 # The following must be escaped or quoted.
 69 morse[?]="dot; dot; dash; dash; dot; dot"
 70 morse[.]="dot; dash; dot; dash; dot; dash"
 71 morse[,]="dash; dash; dot; dot; dash; dash"
 72 morse[/]="dash; dot; dot; dash; dot"
 73 morse[\@]="dot; dash; dash; dot; dash; dot"
 74 # ======================================= #
 75
 76 play_letter ()
 77 {
 78 eval ${morse[$1]} # Play dots, dashes from appropriate sound files.
 79 # Why is 'eval' necessary here?
 80 usleep $LETTERSPACE # Pause in between letters.
 81 }
 82
 83 extract_letters ()
 84 { # Slice string apart, letter by letter.
 85 local pos=0 # Starting at left end of string.
 86 local len=1 # One letter at a time.
 87 strlen=${#1}
 88
 89 while [$pos -lt $strlen]
 90 do
 91 letter=${1:pos:len}
 92 # ^^^^^^^^^^^^ See Chapter 10.1.
 93 play_letter $letter
 94 echo -n "*" # Mark letter just played.
 95 ((pos++))
 96 done
 97 }
 98
 99 ######### Play the sounds ############
 100 dot() { aplay "$DOT" 2&>/dev/null; }
 101 dash() { aplay "$DASH" 2&>/dev/null; }
 102 ######################################
 103
 104 no_args ()
 105 {
 106 declare -a usage
 107 usage=($0 word1 word2 ...)
 108
 109 echo "Usage:"; echo
 110 echo ${usage[*]}
 111 for index in 0 1 2 3
 112 do
 113 extract_letters ${usage[index]}
 114 usleep $WORDSPACE
 115 echo -n " " # Print space between words.
 116 done
 117 # echo "Usage: $0 word1 word2 ... "
 118 echo; echo
 119 }
 120
 121
 122 # int main()
 123 # {
 124
 125 clear # Clear the terminal screen.
 126 echo " SAM"

 127 echo "Still Another Morse code trainer"
 128 echo " Author: Mendel Cooper"
 129 echo; echo;
 130
 131 if [-z "$1"]
 132 then
 133 no_args
 134 echo; echo; echo "$EXIT_MSG"; echo
 135 exit $E_NOARGS
 136 fi
 137
 138 echo; echo "$*" # Print text that will be played.
 139
 140 until [-z "$1"]
 141 do
 142 extract_letters $1
 143 shift # On to next word.
 144 usleep $WORDSPACE
 145 echo -n " " # Print space between words.
 146 done
 147
 148 echo; echo; echo "$EXIT_MSG"; echo
 149
 150 exit 0
 151 # }
 152
 153 # Exercises:
 154 # ---------
 155 # 1) Have the script accept either lowercase or uppercase words
 156 #+ as arguments. Hint: Use 'tr' . . .
 157 # 2) Have the script optionally accept input from a text file.

Example A-54. Base64 encoding/decoding

 1 #!/bin/bash
 2 # base64.sh: Bash implementation of Base64 encoding and decoding.
 3 #
 4 # Copyright (c) 2011 vladz <vladz@devzero.fr>
 5 # Used in ABSG with permission (thanks!).
 6 #
 7 # Encode or decode original Base64 (and also Base64url)
 8 #+ from STDIN to STDOUT.
 9 #
 10 # Usage:
 11 #
 12 # Encode
 13 # $./base64.sh < binary-file > binary-file.base64
 14 # Decode
 15 # $./base64.sh -d < binary-file.base64 > binary-file
 16 #
 17 # Reference:
 18 #
 19 # [1] RFC4648 - "The Base16, Base32, and Base64 Data Encodings"
 20 # http://tools.ietf.org/html/rfc4648#section-5
 21
 22
 23 # The base64_charset[] array contains entire base64 charset,
 24 # and additionally the character "=" ...
 25 base64_charset=({A..Z} {a..z} {0..9} + / =)
 26 # Nice illustration of brace expansion.
 27
 28 # Uncomment the ### line below to use base64url encoding instead of

 29 #+ original base64.
 30 ### base64_charset=({A..Z} {a..z} {0..9} - _ =)
 31
 32 # Output text width when encoding
 33 #+ (64 characters, just like openssl output).
 34 text_width=64
 35
 36 function display_base64_char {
 37 # Convert a 6-bit number (between 0 and 63) into its corresponding values
 38 #+ in Base64, then display the result with the specified text width.
 39 printf "${base64_charset[$1]}"; ((width++))
 40 ((width % text_width == 0)) && printf "\n"
 41 }
 42
 43 function encode_base64 {
 44 # Encode three 8-bit hexadecimal codes into four 6-bit numbers.
 45 # We need two local int array variables:
 46 # c8[]: to store the codes of the 8-bit characters to encode
 47 # c6[]: to store the corresponding encoded values on 6-bit
 48 declare -a -i c8 c6
 49
 50 # Convert hexadecimal to decimal.
 51 c8=($(printf "ibase=16; ${1:0:2}\n${1:2:2}\n${1:4:2}\n" | bc))
 52
 53 # Let's play with bitwise operators
 54 #+ (3x8-bit into 4x6-bits conversion).
 55 ((c6[0] = c8[0] >> 2))
 56 ((c6[1] = ((c8[0] & 3) << 4) | (c8[1] >> 4)))
 57
 58 # The following operations depend on the c8 element number.
 59 case ${#c8[*]} in
 60 3) ((c6[2] = ((c8[1] & 15) << 2) | (c8[2] >> 6)))
 61 ((c6[3] = c8[2] & 63)) ;;
 62 2) ((c6[2] = (c8[1] & 15) << 2))
 63 ((c6[3] = 64)) ;;
 64 1) ((c6[2] = c6[3] = 64)) ;;
 65 esac
 66
 67 for char in ${c6[@]}; do
 68 display_base64_char ${char}
 69 done
 70 }
 71
 72 function decode_base64 {
 73 # Decode four base64 characters into three hexadecimal ASCII characters.
 74 # c8[]: to store the codes of the 8-bit characters
 75 # c6[]: to store the corresponding Base64 values on 6-bit
 76 declare -a -i c8 c6
 77
 78 # Find decimal value corresponding to the current base64 character.
 79 for current_char in ${1:0:1} ${1:1:1} ${1:2:1} ${1:3:1}; do
 80 ["${current_char}" = "="] && break
 81
 82 position=0
 83 while ["${current_char}" != "${base64_charset[${position}]}"]; do
 84 ((position++))
 85 done
 86
 87 c6=(${c6[*]} ${position})
 88 done
 89
 90 # Let's play with bitwise operators
 91 #+ (4x8-bit into 3x6-bits conversion).
 92 ((c8[0] = (c6[0] << 2) | (c6[1] >> 4)))
 93
 94 # The next operations depends on the c6 elements number.

 95 case ${#c6[*]} in
 96 3) ((c8[1] = ((c6[1] & 15) << 4) | (c6[2] >> 2)))
 97 ((c8[2] = (c6[2] & 3) << 6)); unset c8[2] ;;
 98 4) ((c8[1] = ((c6[1] & 15) << 4) | (c6[2] >> 2)))
 99 ((c8[2] = ((c6[2] & 3) << 6) | c6[3])) ;;
 100 esac
 101
 102 for char in ${c8[*]}; do
 103 printf "\x$(printf "%x" ${char})"
 104 done
 105 }
 106
 107
 108 # main ()
 109
 110 if ["$1" = "-d"]; then # decode
 111
 112 # Reformat STDIN in pseudo 4x6-bit groups.
 113 content=$(cat - | tr -d "\n" | sed -r "s/(.{4})/\1 /g")
 114
 115 for chars in ${content}; do decode_base64 ${chars}; done
 116
 117 else
 118 # Make a hexdump of stdin and reformat in 3-byte groups.
 119 content=$(cat - | xxd -ps -u | sed -r "s/(\w{6})/\1 /g" |
 120 tr -d "\n")
 121
 122 for chars in ${content}; do encode_base64 ${chars}; done
 123
 124 echo
 125
 126 fi

Example A-55. Inserting text in a file using sed

 1 #!/bin/bash
 2 # Prepends a string at a specified line
 3 #+ in files with names ending in "sample"
 4 #+ in the current working directory.
 5 # 000000000000000000000000000000000000
 6 # This script overwrites files!
 7 # Be careful running it in a directory
 8 #+ where you have important files!!!
 9 # 000000000000000000000000000000000000
 10
 11 # Create a couple of files to operate on ...
 12 # 01sample
 13 # 02sample
 14 # ... etc.
 15 # These files must not be empty, else the prepend will not work.
 16
 17 lineno=1 # Append at line 1 (prepend).
 18 filespec="*sample" # Filename pattern to operate on.
 19
 20 string=$(whoami) # Will set your username as string to insert.
 21 # It could just as easily be any other string.
 22
 23 for file in $filespec # Specify which files to alter.
 24 do # ^^^^^^^^^
 25 sed -i ""$lineno"i "$string"" $file
 26 # ^^ -i option edits files in-place.
 27 # ^ Insert (i) command.

 28 echo ""$file" altered!"
 29 done
 30
 31 echo "Warning: files possibly clobbered!"
 32
 33 exit 0
 34
 35 # Exercise:
 36 # Add error checking to this script.
 37 # It needs it badly.

Example A-56. The Gronsfeld Cipher

 1 #!/bin/bash
 2 # gronsfeld.bash
 3
 4 # License: GPL3
 5 # Reldate 06/23/11
 6
 7 # This is an implementation of the Gronsfeld Cipher.
 8 # It's essentially a stripped-down variant of the
 9 #+ polyalphabetic Vigenère Tableau, but with only 10 alphabets.
 10 # The classic Gronsfeld has a numeric sequence as the key word,
 11 #+ but here we substitute a letter string, for ease of use.
 12 # Allegedly, this cipher was invented by the eponymous Count Gronsfeld
 13 #+ in the 17th Century. It was at one time considered to be unbreakable.
 14 # Note that this is ###not### a secure cipher by modern standards.
 15
 16 # Global Variables #
 17 Enc_suffix="29379" # Encrypted text output with this 5-digit suffix.
 18 # This functions as a decryption flag,
 19 #+ and when used to generate passwords adds security.
 20 Default_key="gronsfeldk"
 21 # The script uses this if key not entered below
 22 # (at "Keychain").
 23 # Change the above two values frequently
 24 #+ for added security.
 25
 26 GROUPLEN=5 # Output in groups of 5 letters, per tradition.
 27 alpha1=(abcdefghijklmnopqrstuvwxyz)
 28 alpha2=({A..Z}) # Output in all caps, per tradition.
 29 # Use alpha2=({a..z}) for password generator.
 30 wraplen=26 # Wrap around if past end of alphabet.
 31 dflag= # Decrypt flag (set if $Enc_suffix present).
 32 E_NOARGS=76 # Missing command-line args?
 33 DEBUG=77 # Debugging flag.
 34 declare -a offsets # This array holds the numeric shift values for
 35 #+ encryption/decryption.
 36
 37 ########Keychain#########
 38 key= ### Put key here!!!
 39 # 10 characters!
 40 #########################
 41
 42
 43
 44 # Function
 45 : ()
 46 { # Encrypt or decrypt, depending on whether $dflag is set.
 47 # Why ": ()" as a function name? Just to prove that it can be done.
 48
 49 local idx keydx mlen off1 shft

 50 local plaintext="$1"
 51 local mlen=${#plaintext}
 52
 53 for ((idx=0; idx<$mlen; idx++))
 54 do
 55 let "keydx = $idx % $keylen"
 56 shft=${offsets[keydx]}
 57
 58 if [-n "$dflag"]
 59 then # Decrypt!
 60 let "off1 = $(expr index "${alpha1[*]}" ${plaintext:idx:1}) - $shft"
 61 # Shift backward to decrypt.
 62 else # Encrypt!
 63 let "off1 = $(expr index "${alpha1[*]}" ${plaintext:idx:1}) + $shft"
 64 # Shift forward to encrypt.
 65 test $(($idx % $GROUPLEN)) = 0 && echo -n " " # Groups of 5 letters.
 66 # Comment out above line for output as a string without whitespace,
 67 #+ for example, if using the script as a password generator.
 68 fi
 69
 70 ((off1--)) # Normalize. Why is this necessary?
 71
 72 if [$off1 -lt 0]
 73 then # Catch negative indices.
 74 let "off1 += $wraplen"
 75 fi
 76
 77 ((off1 %= $wraplen)) # Wrap around if past end of alphabet.
 78
 79 echo -n "${alpha2[off1]}"
 80
 81 done
 82
 83 if [-z "$dflag"]
 84 then
 85 echo " $Enc_suffix"
 86 # echo "$Enc_suffix" # For password generator.
 87 else
 88 echo
 89 fi
 90 } # End encrypt/decrypt function.
 91
 92
 93
 94 # int main () {
 95
 96 # Check for command-line args.
 97 if [-z "$1"]
 98 then
 99 echo "Usage: $0 TEXT TO ENCODE/DECODE"
 100 exit $E_NOARGS
 101 fi
 102
 103 if [${!#} == "$Enc_suffix"]
 104 # ^^^^^ Final command-line arg.
 105 then
 106 dflag=ON
 107 echo -n "+" # Flag decrypted text with a "+" for easy ID.
 108 fi
 109
 110 if [-z "$key"]
 111 then
 112 key="$Default_key" # "gronsfeldk" per above.
 113 fi
 114
 115 keylen=${#key}

 116
 117 for ((idx=0; idx<$keylen; idx++))
 118 do # Calculate shift values for encryption/decryption.
 119 offsets[idx]=$(expr index "${alpha1[*]}" ${key:idx:1}) # Normalize.
 120 ((offsets[idx]--)) # Necessary because "expr index" starts at 1,
 121 #+ whereas array count starts at 0.
 122 # Generate array of numerical offsets corresponding to the key.
 123 # There are simpler ways to accomplish this.
 124 done
 125
 126 args=$(echo "$*" | sed -e 's/ //g' | tr A-Z a-z | sed -e 's/[0-9]//g')
 127 # Remove whitespace and digits from command-line args.
 128 # Can modify to also remove punctuation characters, if desired.
 129
 130 # Debug:
 131 # echo "$args"; exit $DEBUG
 132
 133 : "$args" # Call the function named ":".
 134 # : is a null operator, except . . . when it's a function name!
 135
 136 exit $? # } End-of-script
 137
 138
 139 # ** #
 140 # This script can function as a password generator,
 141 #+ with several minor mods, see above.
 142 # That would allow an easy-to-remember password, even the word
 143 #+ "password" itself, which encrypts to vrgfotvo29379
 144 #+ a fairly secure password not susceptible to a dictionary attack.
 145 # Or, you could use your own name (surely that's easy to remember!).
 146 # For example, Bozo Bozeman encrypts to hfnbttdppkt29379.
 147 # ** #

Example A-57. Bingo Number Generator

 1 #!/bin/bash
 2 # bingo.sh
 3 # Bingo number generator
 4 # Reldate 20Aug12, License: Public Domain
 5
 6 ###
 7 # This script generates bingo numbers.
 8 # Hitting a key generates a new number.
 9 # Hitting 'q' terminates the script.
 10 # In a given run of the script, there will be no duplicate numbers.
 11 # When the script terminates, it prints a log of the numbers generated.
 12 ###
 13
 14 MIN=1 # Lowest allowable bingo number.
 15 MAX=75 # Highest allowable bingo number.
 16 COLS=15 # Numbers in each column (B I N G O).
 17 SINGLE_DIGIT_MAX=9
 18
 19 declare -a Numbers
 20 Prefix=(B I N G O)
 21
 22 initialize_Numbers ()
 23 { # Zero them out to start.
 24 # They'll be incremented if chosen.
 25 local index=0
 26 until ["$index" -gt $MAX]
 27 do

 28 Numbers[index]=0
 29 ((index++))
 30 done
 31
 32 Numbers[0]=1 # Flag zero, so it won't be selected.
 33 }
 34
 35
 36 generate_number ()
 37 {
 38 local number
 39
 40 while [1]
 41 do
 42 let "number = $(expr $RANDOM % $MAX)"
 43 if [${Numbers[number]} -eq 0] # Number not yet called.
 44 then
 45 let "Numbers[number]+=1" # Flag it in the array.
 46 break # And terminate loop.
 47 fi # Else if already called, loop and generate another number.
 48 done
 49 # Exercise: Rewrite this more elegantly as an until-loop.
 50
 51 return $number
 52 }
 53
 54
 55 print_numbers_called ()
 56 { # Print out the called number log in neat columns.
 57 # echo ${Numbers[@]}
 58
 59 local pre2=0 # Prefix a zero, so columns will align
 60 #+ on single-digit numbers.
 61
 62 echo "Number Stats"
 63
 64 for ((index=1; index<=MAX; index++))
 65 do
 66 count=${Numbers[index]}
 67 let "t = $index - 1" # Normalize, since array begins with index 0.
 68 let "column = $(expr $t / $COLS)"
 69 pre=${Prefix[column]}
 70 # echo -n "${Prefix[column]} "
 71
 72 if [$(expr $t % $COLS) -eq 0]
 73 then
 74 echo # Newline at end of row.
 75 fi
 76
 77 if ["$index" -gt $SINGLE_DIGIT_MAX] # Check for single-digit number.
 78 then
 79 echo -n "preindex#$count "
 80 else # Prefix a zero.
 81 echo -n "prepre2$index#$count "
 82 fi
 83
 84 done
 85 }
 86
 87
 88
 89 # main () {
 90 RANDOM=$$ # Seed random number generator.
 91
 92 initialize_Numbers # Zero out the number tracking array.
 93

 94 clear
 95 echo "Bingo Number Caller"; echo
 96
 97 while [["$key" != "q"]] # Main loop.
 98 do
 99 read -s -n1 -p "Hit a key for the next number [q to exit] " key
 100 # Usually 'q' exits, but not always.
 101 # Can always hit Ctl-C if q fails.
 102 echo
 103
 104 generate_number; new_number=$?
 105
 106 let "column = $(expr $new_number / $COLS)"
 107 echo -n "${Prefix[column]} " # B-I-N-G-O
 108
 109 echo $new_number
 110 done
 111
 112 echo; echo
 113
 114 # Game over ...
 115 print_numbers_called
 116 echo; echo "[#0 = not called . . . #1 = called]"
 117
 118 echo
 119
 120 exit 0
 121 # }
 122
 123
 124 # Certainly, this script could stand some improvement.
 125 #See also the author's Instructable:
 126 #www.instructables.com/id/Binguino-An-Arduino-based-Bingo-Number-Generato/

To end this section, a review of the basics . . . and more.

Example A-58. Basics Reviewed

 1 #!/bin/bash
 2 # basics-reviewed.bash
 3
 4 # File extension == *.bash == specific to Bash
 5
 6 # Copyright (c) Michael S. Zick, 2003; All rights reserved.
 7 # License: Use in any form, for any purpose.
 8 # Revision: ID
 9 #
 10 # Edited for layout by M.C.
 11 # (author of the "Advanced Bash Scripting Guide")
 12 # Fixes and updates (04/08) by Cliff Bamford.
 13
 14
 15 # This script tested under Bash versions 2.04, 2.05a and 2.05b.
 16 # It may not work with earlier versions.
 17 # This demonstration script generates one --intentional--
 18 #+ "command not found" error message. See line 436.
 19
 20 # The current Bash maintainer, Chet Ramey, has fixed the items noted
 21 #+ for later versions of Bash.
 22
 23
 24
 25 ###---###

 26 ### Pipe the output of this script to 'more' ###
 27 ###+ else it will scroll off the page. ###
 28 ### ###
 29 ### You may also redirect its output ###
 30 ###+ to a file for examination. ###
 31 ###---###
 32
 33
 34
 35 # Most of the following points are described at length in
 36 #+ the text of the foregoing "Advanced Bash Scripting Guide."
 37 # This demonstration script is mostly just a reorganized presentation.
 38 # -- msz
 39
 40 # Variables are not typed unless otherwise specified.
 41
 42 # Variables are named. Names must contain a non-digit.
 43 # File descriptor names (as in, for example: 2>&1)
 44 #+ contain ONLY digits.
 45
 46 # Parameters and Bash array elements are numbered.
 47 # (Parameters are very similar to Bash arrays.)
 48
 49 # A variable name may be undefined (null reference).
 50 unset VarNull
 51
 52 # A variable name may be defined but empty (null contents).
 53 VarEmpty='' # Two, adjacent, single quotes.
 54
 55 # A variable name may be defined and non-empty.
 56 VarSomething='Literal'
 57
 58 # A variable may contain:
 59 # * A whole number as a signed 32-bit (or larger) integer
 60 # * A string
 61 # A variable may also be an array.
 62
 63 # A string may contain embedded blanks and may be treated
 64 #+ as if it where a function name with optional arguments.
 65
 66 # The names of variables and the names of functions
 67 #+ are in different namespaces.
 68
 69
 70 # A variable may be defined as a Bash array either explicitly or
 71 #+ implicitly by the syntax of the assignment statement.
 72 # Explicit:
 73 declare -a ArrayVar
 74
 75
 76
 77 # The echo command is a builtin.
 78 echo $VarSomething
 79
 80 # The printf command is a builtin.
 81 # Translate %s as: String-Format
 82 printf %s $VarSomething # No linebreak specified, none output.
 83 echo # Default, only linebreak output.
 84
 85
 86
 87
 88 # The Bash parser word breaks on whitespace.
 89 # Whitespace, or the lack of it is significant.
 90 # (This holds true in general; there are, of course, exceptions.)
 91

 92
 93
 94
 95 # Translate the DOLLAR_SIGN character as: Content-Of.
 96
 97 # Extended-Syntax way of writing Content-Of:
 98 echo ${VarSomething}
 99
 100 # The ${ ... } Extended-Syntax allows more than just the variable
 101 #+ name to be specified.
 102 # In general, $VarSomething can always be written as: ${VarSomething}.
 103
 104 # Call this script with arguments to see the following in action.
 105
 106
 107
 108 # Outside of double-quotes, the special characters @ and *
 109 #+ specify identical behavior.
 110 # May be pronounced as: All-Elements-Of.
 111
 112 # Without specification of a name, they refer to the
 113 #+ pre-defined parameter Bash-Array.
 114
 115
 116
 117 # Glob-Pattern references
 118 echo $* # All parameters to script or function
 119 echo ${*} # Same
 120
 121 # Bash disables filename expansion for Glob-Patterns.
 122 # Only character matching is active.
 123
 124
 125 # All-Elements-Of references
 126 echo $@ # Same as above
 127 echo ${@} # Same as above
 128
 129
 130
 131
 132 # Within double-quotes, the behavior of Glob-Pattern references
 133 #+ depends on the setting of IFS (Input Field Separator).
 134 # Within double-quotes, All-Elements-Of references behave the same.
 135
 136
 137 # Specifying only the name of a variable holding a string refers
 138 #+ to all elements (characters) of a string.
 139
 140
 141 # To specify an element (character) of a string,
 142 #+ the Extended-Syntax reference notation (see below) MAY be used.
 143
 144
 145
 146
 147 # Specifying only the name of a Bash array references
 148 #+ the subscript zero element,
 149 #+ NOT the FIRST DEFINED nor the FIRST WITH CONTENTS element.
 150
 151 # Additional qualification is needed to reference other elements,
 152 #+ which means that the reference MUST be written in Extended-Syntax.
 153 # The general form is: ${name[subscript]}.
 154
 155 # The string forms may also be used: ${name:subscript}
 156 #+ for Bash-Arrays when referencing the subscript zero element.
 157

 158
 159 # Bash-Arrays are implemented internally as linked lists,
 160 #+ not as a fixed area of storage as in some programming languages.
 161
 162
 163 # Characteristics of Bash arrays (Bash-Arrays):
 164 # --
 165
 166 # If not otherwise specified, Bash-Array subscripts begin with
 167 #+ subscript number zero. Literally: [0]
 168 # This is called zero-based indexing.
 169 ###
 170 # If not otherwise specified, Bash-Arrays are subscript packed
 171 #+ (sequential subscripts without subscript gaps).
 172 ###
 173 # Negative subscripts are not allowed.
 174 ###
 175 # Elements of a Bash-Array need not all be of the same type.
 176 ###
 177 # Elements of a Bash-Array may be undefined (null reference).
 178 # That is, a Bash-Array may be "subscript sparse."
 179 ###
 180 # Elements of a Bash-Array may be defined and empty (null contents).
 181 ###
 182 # Elements of a Bash-Array may contain:
 183 # * A whole number as a signed 32-bit (or larger) integer
 184 # * A string
 185 # * A string formated so that it appears to be a function name
 186 # + with optional arguments
 187 ###
 188 # Defined elements of a Bash-Array may be undefined (unset).
 189 # That is, a subscript packed Bash-Array may be changed
 190 # + into a subscript sparse Bash-Array.
 191 ###
 192 # Elements may be added to a Bash-Array by defining an element
 193 #+ not previously defined.
 194 ###
 195 # For these reasons, I have been calling them "Bash-Arrays".
 196 # I'll return to the generic term "array" from now on.
 197 # -- msz
 198
 199
 200 echo "==="
 201
 202 # Lines 202 - 334 supplied by Cliff Bamford. (Thanks!)
 203 # Demo --- Interaction with Arrays, quoting, IFS, echo, * and @ ---
 204 #+ all affect how things work
 205
 206 ArrayVar[0]='zero' # 0 normal
 207 ArrayVar[1]=one # 1 unquoted literal
 208 ArrayVar[2]='two' # 2 normal
 209 ArrayVar[3]='three' # 3 normal
 210 ArrayVar[4]='I am four' # 4 normal with spaces
 211 ArrayVar[5]='five' # 5 normal
 212 unset ArrayVar[6] # 6 undefined
 213 ArrayValue[7]='seven' # 7 normal
 214 ArrayValue[8]='' # 8 defined but empty
 215 ArrayValue[9]='nine' # 9 normal
 216
 217
 218 echo '--- Here is the array we are using for this test'
 219 echo
 220 echo "ArrayVar[0]='zero' # 0 normal"
 221 echo "ArrayVar[1]=one # 1 unquoted literal"
 222 echo "ArrayVar[2]='two' # 2 normal"
 223 echo "ArrayVar[3]='three' # 3 normal"

 224 echo "ArrayVar[4]='I am four' # 4 normal with spaces"
 225 echo "ArrayVar[5]='five' # 5 normal"
 226 echo "unset ArrayVar[6] # 6 undefined"
 227 echo "ArrayValue[7]='seven' # 7 normal"
 228 echo "ArrayValue[8]='' # 8 defined but empty"
 229 echo "ArrayValue[9]='nine' # 9 normal"
 230 echo
 231
 232
 233 echo
 234 echo '---Case0: No double-quotes, Default IFS of space,tab,newline ---'
 235 IFS=$'\x20'$'\x09'$'\x0A' # In exactly this order.
 236 echo 'Here is: printf %q {${ArrayVar[*]}'
 237 printf %q ${ArrayVar[*]}
 238 echo
 239 echo 'Here is: printf %q {${ArrayVar[@]}'
 240 printf %q ${ArrayVar[@]}
 241 echo
 242 echo 'Here is: echo ${ArrayVar[*]}'
 243 echo ${ArrayVar[@]}
 244 echo 'Here is: echo {${ArrayVar[@]}'
 245 echo ${ArrayVar[@]}
 246
 247 echo
 248 echo '---Case1: Within double-quotes - Default IFS of space-tab-
 249 newline ---'
 250 IFS=$'\x20'$'\x09'$'\x0A' # These three bytes,
 251 echo 'Here is: printf %q "{${ArrayVar[*]}"'
 252 printf %q "${ArrayVar[*]}"
 253 echo
 254 echo 'Here is: printf %q "{${ArrayVar[@]}"'
 255 printf %q "${ArrayVar[@]}"
 256 echo
 257 echo 'Here is: echo "${ArrayVar[*]}"'
 258 echo "${ArrayVar[@]}"
 259 echo 'Here is: echo "{${ArrayVar[@]}"'
 260 echo "${ArrayVar[@]}"
 261
 262 echo
 263 echo '---Case2: Within double-quotes - IFS is q'
 264 IFS='q'
 265 echo 'Here is: printf %q "{${ArrayVar[*]}"'
 266 printf %q "${ArrayVar[*]}"
 267 echo
 268 echo 'Here is: printf %q "{${ArrayVar[@]}"'
 269 printf %q "${ArrayVar[@]}"
 270 echo
 271 echo 'Here is: echo "${ArrayVar[*]}"'
 272 echo "${ArrayVar[@]}"
 273 echo 'Here is: echo "{${ArrayVar[@]}"'
 274 echo "${ArrayVar[@]}"
 275
 276 echo
 277 echo '---Case3: Within double-quotes - IFS is ^'
 278 IFS='^'
 279 echo 'Here is: printf %q "{${ArrayVar[*]}"'
 280 printf %q "${ArrayVar[*]}"
 281 echo
 282 echo 'Here is: printf %q "{${ArrayVar[@]}"'
 283 printf %q "${ArrayVar[@]}"
 284 echo
 285 echo 'Here is: echo "${ArrayVar[*]}"'
 286 echo "${ArrayVar[@]}"
 287 echo 'Here is: echo "{${ArrayVar[@]}"'
 288 echo "${ArrayVar[@]}"
 289

 290 echo
 291 echo '---Case4: Within double-quotes - IFS is ^ followed by
 292 space,tab,newline'
 293 IFS=$'^'$'\x20'$'\x09'$'\x0A' # ^ + space tab newline
 294 echo 'Here is: printf %q "{${ArrayVar[*]}"'
 295 printf %q "${ArrayVar[*]}"
 296 echo
 297 echo 'Here is: printf %q "{${ArrayVar[@]}"'
 298 printf %q "${ArrayVar[@]}"
 299 echo
 300 echo 'Here is: echo "${ArrayVar[*]}"'
 301 echo "${ArrayVar[@]}"
 302 echo 'Here is: echo "{${ArrayVar[@]}"'
 303 echo "${ArrayVar[@]}"
 304
 305 echo
 306 echo '---Case6: Within double-quotes - IFS set and empty '
 307 IFS=''
 308 echo 'Here is: printf %q "{${ArrayVar[*]}"'
 309 printf %q "${ArrayVar[*]}"
 310 echo
 311 echo 'Here is: printf %q "{${ArrayVar[@]}"'
 312 printf %q "${ArrayVar[@]}"
 313 echo
 314 echo 'Here is: echo "${ArrayVar[*]}"'
 315 echo "${ArrayVar[@]}"
 316 echo 'Here is: echo "{${ArrayVar[@]}"'
 317 echo "${ArrayVar[@]}"
 318
 319 echo
 320 echo '---Case7: Within double-quotes - IFS is unset'
 321 unset IFS
 322 echo 'Here is: printf %q "{${ArrayVar[*]}"'
 323 printf %q "${ArrayVar[*]}"
 324 echo
 325 echo 'Here is: printf %q "{${ArrayVar[@]}"'
 326 printf %q "${ArrayVar[@]}"
 327 echo
 328 echo 'Here is: echo "${ArrayVar[*]}"'
 329 echo "${ArrayVar[@]}"
 330 echo 'Here is: echo "{${ArrayVar[@]}"'
 331 echo "${ArrayVar[@]}"
 332
 333 echo
 334 echo '---End of Cases---'
 335 echo "==="; echo
 336
 337
 338
 339 # Put IFS back to the default.
 340 # Default is exactly these three bytes.
 341 IFS=$'\x20'$'\x09'$'\x0A' # In exactly this order.
 342
 343 # Interpretation of the above outputs:
 344 # A Glob-Pattern is I/O; the setting of IFS matters.
 345 ###
 346 # An All-Elements-Of does not consider IFS settings.
 347 ###
 348 # Note the different output using the echo command and the
 349 #+ quoted format operator of the printf command.
 350
 351
 352 # Recall:
 353 # Parameters are similar to arrays and have the similar behaviors.
 354 ###
 355 # The above examples demonstrate the possible variations.

 356 # To retain the shape of a sparse array, additional script
 357 #+ programming is required.
 358 ###
 359 # The source code of Bash has a routine to output the
 360 #+ [subscript]=value array assignment format.
 361 # As of version 2.05b, that routine is not used,
 362 #+ but that might change in future releases.
 363
 364
 365
 366 # The length of a string, measured in non-null elements (characters):
 367 echo
 368 echo '- - Non-quoted references - -'
 369 echo 'Non-Null character count: '${#VarSomething}' characters.'
 370
 371 # test='Lit'$'\x00''eral' # $'\x00' is a null character.
 372 # echo ${#test} # See that?
 373
 374
 375
 376 # The length of an array, measured in defined elements,
 377 #+ including null content elements.
 378 echo
 379 echo 'Defined content count: '${#ArrayVar[@]}' elements.'
 380 # That is NOT the maximum subscript (4).
 381 # That is NOT the range of the subscripts (1 . . 4 inclusive).
 382 # It IS the length of the linked list.
 383 ###
 384 # Both the maximum subscript and the range of the subscripts may
 385 #+ be found with additional script programming.
 386
 387 # The length of a string, measured in non-null elements (characters):
 388 echo
 389 echo '- - Quoted, Glob-Pattern references - -'
 390 echo 'Non-Null character count: '"${#VarSomething}"' characters.'
 391
 392 # The length of an array, measured in defined elements,
 393 #+ including null-content elements.
 394 echo
 395 echo 'Defined element count: '"${#ArrayVar[*]}"' elements.'
 396
 397 # Interpretation: Substitution does not effect the ${# ... } operation.
 398 # Suggestion:
 399 # Always use the All-Elements-Of character
 400 #+ if that is what is intended (independence from IFS).
 401
 402
 403
 404 # Define a simple function.
 405 # I include an underscore in the name
 406 #+ to make it distinctive in the examples below.
 407 ###
 408 # Bash separates variable names and function names
 409 #+ in different namespaces.
 410 # The Mark-One eyeball isn't that advanced.
 411 ###
 412 _simple() {
 413 echo -n 'SimpleFunc'$@ # Newlines are swallowed in
 414 } #+ result returned in any case.
 415
 416
 417 # The (...) notation invokes a command or function.
 418 # The $(...) notation is pronounced: Result-Of.
 419
 420
 421 # Invoke the function _simple

 422 echo
 423 echo '- - Output of function _simple - -'
 424 _simple # Try passing arguments.
 425 echo
 426 # or
 427 (_simple) # Try passing arguments.
 428 echo
 429
 430 echo '- Is there a variable of that name? -'
 431 echo $_simple not defined # No variable by that name.
 432
 433 # Invoke the result of function _simple (Error msg intended)
 434
 435 ###
 436 $(_simple) # Gives an error message:
 437 # line 436: SimpleFunc: command not found
 438 # ---------------------------------------
 439
 440 echo
 441 ###
 442
 443 # The first word of the result of function _simple
 444 #+ is neither a valid Bash command nor the name of a defined function.
 445 ###
 446 # This demonstrates that the output of _simple is subject to evaluation.
 447 ###
 448 # Interpretation:
 449 # A function can be used to generate in-line Bash commands.
 450
 451
 452 # A simple function where the first word of result IS a bash command:
 453 ###
 454 _print() {
 455 echo -n 'printf %q '$@
 456 }
 457
 458 echo '- - Outputs of function _print - -'
 459 _print parm1 parm2 # An Output NOT A Command.
 460 echo
 461
 462 $(_print parm1 parm2) # Executes: printf %q parm1 parm2
 463 # See above IFS examples for the
 464 #+ various possibilities.
 465 echo
 466
 467 $(_print $VarSomething) # The predictable result.
 468 echo
 469
 470
 471
 472 # Function variables
 473 # ------------------
 474
 475 echo
 476 echo '- - Function variables - -'
 477 # A variable may represent a signed integer, a string or an array.
 478 # A string may be used like a function name with optional arguments.
 479
 480 # set -vx # Enable if desired
 481 declare -f funcVar #+ in namespace of functions
 482
 483 funcVar=_print # Contains name of function.
 484 $funcVar parm1 # Same as _print at this point.
 485 echo
 486
 487 funcVar=$(_print) # Contains result of function.

 488 $funcVar # No input, No output.
 489 $funcVar $VarSomething # The predictable result.
 490 echo
 491
 492 funcVar=$(_print $VarSomething) # $VarSomething replaced HERE.
 493 $funcVar # The expansion is part of the
 494 echo #+ variable contents.
 495
 496 funcVar="$(_print $VarSomething)" # $VarSomething replaced HERE.
 497 $funcVar # The expansion is part of the
 498 echo #+ variable contents.
 499
 500 # The difference between the unquoted and the double-quoted versions
 501 #+ above can be seen in the "protect_literal.sh" example.
 502 # The first case above is processed as two, unquoted, Bash-Words.
 503 # The second case above is processed as one, quoted, Bash-Word.
 504
 505
 506
 507
 508 # Delayed replacement
 509 # -------------------
 510
 511 echo
 512 echo '- - Delayed replacement - -'
 513 funcVar="$(_print '$VarSomething')" # No replacement, single Bash-Word.
 514 eval $funcVar # $VarSomething replaced HERE.
 515 echo
 516
 517 VarSomething='NewThing'
 518 eval $funcVar # $VarSomething replaced HERE.
 519 echo
 520
 521 # Restore the original setting trashed above.
 522 VarSomething=Literal
 523
 524 # There are a pair of functions demonstrated in the
 525 #+ "protect_literal.sh" and "unprotect_literal.sh" examples.
 526 # These are general purpose functions for delayed replacement literals
 527 #+ containing variables.
 528
 529
 530
 531
 532
 533 # REVIEW:
 534 # ------
 535
 536 # A string can be considered a Classic-Array of elements (characters).
 537 # A string operation applies to all elements (characters) of the string
 538 #+ (in concept, anyway).
 539 ###
 540 # The notation: ${array_name[@]} represents all elements of the
 541 #+ Bash-Array: array_name.
 542 ###
 543 # The Extended-Syntax string operations can be applied to all
 544 #+ elements of an array.
 545 ###
 546 # This may be thought of as a For-Each operation on a vector of strings.
 547 ###
 548 # Parameters are similar to an array.
 549 # The initialization of a parameter array for a script
 550 #+ and a parameter array for a function only differ
 551 #+ in the initialization of ${0}, which never changes its setting.
 552 ###
 553 # Subscript zero of the script's parameter array contains

 554 #+ the name of the script.
 555 ###
 556 # Subscript zero of a function's parameter array DOES NOT contain
 557 #+ the name of the function.
 558 # The name of the current function is accessed by the $FUNCNAME variable.
 559 ###
 560 # A quick, review list follows (quick, not short).
 561
 562 echo
 563 echo '- - Test (but not change) - -'
 564 echo '- null reference -'
 565 echo -n ${VarNull-'NotSet'}' ' # NotSet
 566 echo ${VarNull} # NewLine only
 567 echo -n ${VarNull:-'NotSet'}' ' # NotSet
 568 echo ${VarNull} # Newline only
 569
 570 echo '- null contents -'
 571 echo -n ${VarEmpty-'Empty'}' ' # Only the space
 572 echo ${VarEmpty} # Newline only
 573 echo -n ${VarEmpty:-'Empty'}' ' # Empty
 574 echo ${VarEmpty} # Newline only
 575
 576 echo '- contents -'
 577 echo ${VarSomething-'Content'} # Literal
 578 echo ${VarSomething:-'Content'} # Literal
 579
 580 echo '- Sparse Array -'
 581 echo ${ArrayVar[@]-'not set'}
 582
 583 # ASCII-Art time
 584 # State Y==yes, N==no
 585 # - :-
 586 # Unset Y Y ${# ... } == 0
 587 # Empty N Y ${# ... } == 0
 588 # Contents N N ${# ... } > 0
 589
 590 # Either the first and/or the second part of the tests
 591 #+ may be a command or a function invocation string.
 592 echo
 593 echo '- - Test 1 for undefined - -'
 594 declare -i t
 595 _decT() {
 596 t=$t-1
 597 }
 598
 599 # Null reference, set: t == -1
 600 t=${#VarNull} # Results in zero.
 601 ${VarNull- _decT } # Function executes, t now -1.
 602 echo $t
 603
 604 # Null contents, set: t == 0
 605 t=${#VarEmpty} # Results in zero.
 606 ${VarEmpty- _decT } # _decT function NOT executed.
 607 echo $t
 608
 609 # Contents, set: t == number of non-null characters
 610 VarSomething='_simple' # Set to valid function name.
 611 t=${#VarSomething} # non-zero length
 612 ${VarSomething- _decT } # Function _simple executed.
 613 echo $t # Note the Append-To action.
 614
 615 # Exercise: clean up that example.
 616 unset t
 617 unset _decT
 618 VarSomething=Literal
 619

 620 echo
 621 echo '- - Test and Change - -'
 622 echo '- Assignment if null reference -'
 623 echo -n ${VarNull='NotSet'}' ' # NotSet NotSet
 624 echo ${VarNull}
 625 unset VarNull
 626
 627 echo '- Assignment if null reference -'
 628 echo -n ${VarNull:='NotSet'}' ' # NotSet NotSet
 629 echo ${VarNull}
 630 unset VarNull
 631
 632 echo '- No assignment if null contents -'
 633 echo -n ${VarEmpty='Empty'}' ' # Space only
 634 echo ${VarEmpty}
 635 VarEmpty=''
 636
 637 echo '- Assignment if null contents -'
 638 echo -n ${VarEmpty:='Empty'}' ' # Empty Empty
 639 echo ${VarEmpty}
 640 VarEmpty=''
 641
 642 echo '- No change if already has contents -'
 643 echo ${VarSomething='Content'} # Literal
 644 echo ${VarSomething:='Content'} # Literal
 645
 646
 647 # "Subscript sparse" Bash-Arrays
 648 ###
 649 # Bash-Arrays are subscript packed, beginning with
 650 #+ subscript zero unless otherwise specified.
 651 ###
 652 # The initialization of ArrayVar was one way
 653 #+ to "otherwise specify". Here is the other way:
 654 ###
 655 echo
 656 declare -a ArraySparse
 657 ArraySparse=([1]=one [2]='' [4]='four')
 658 # [0]=null reference, [2]=null content, [3]=null reference
 659
 660 echo '- - Array-Sparse List - -'
 661 # Within double-quotes, default IFS, Glob-Pattern
 662
 663 IFS=$'\x20'$'\x09'$'\x0A'
 664 printf %q "${ArraySparse[*]}"
 665 echo
 666
 667 # Note that the output does not distinguish between "null content"
 668 #+ and "null reference".
 669 # Both print as escaped whitespace.
 670 ###
 671 # Note also that the output does NOT contain escaped whitespace
 672 #+ for the "null reference(s)" prior to the first defined element.
 673 ###
 674 # This behavior of 2.04, 2.05a and 2.05b has been reported
 675 #+ and may change in a future version of Bash.
 676
 677 # To output a sparse array and maintain the [subscript]=value
 678 #+ relationship without change requires a bit of programming.
 679 # One possible code fragment:
 680 ###
 681 # local l=${#ArraySparse[@]} # Count of defined elements
 682 # local f=0 # Count of found subscripts
 683 # local i=0 # Subscript to test
 684 (# Anonymous in-line function
 685 for ((l=${#ArraySparse[@]}, f = 0, i = 0 ; f < l ; i++))

 686 do
 687 # 'if defined then...'
 688 ${ArraySparse[$i]+ eval echo '\ ['$i']='${ArraySparse[$i]} ; ((f++)) }
 689 done
 690)
 691
 692 # The reader coming upon the above code fragment cold
 693 #+ might want to review "command lists" and "multiple commands on a line"
 694 #+ in the text of the foregoing "Advanced Bash Scripting Guide."
 695 ###
 696 # Note:
 697 # The "read -a array_name" version of the "read" command
 698 #+ begins filling array_name at subscript zero.
 699 # ArraySparse does not define a value at subscript zero.
 700 ###
 701 # The user needing to read/write a sparse array to either
 702 #+ external storage or a communications socket must invent
 703 #+ a read/write code pair suitable for their purpose.
 704 ###
 705 # Exercise: clean it up.
 706
 707 unset ArraySparse
 708
 709 echo
 710 echo '- - Conditional alternate (But not change)- -'
 711 echo '- No alternate if null reference -'
 712 echo -n ${VarNull+'NotSet'}' '
 713 echo ${VarNull}
 714 unset VarNull
 715
 716 echo '- No alternate if null reference -'
 717 echo -n ${VarNull:+'NotSet'}' '
 718 echo ${VarNull}
 719 unset VarNull
 720
 721 echo '- Alternate if null contents -'
 722 echo -n ${VarEmpty+'Empty'}' ' # Empty
 723 echo ${VarEmpty}
 724 VarEmpty=''
 725
 726 echo '- No alternate if null contents -'
 727 echo -n ${VarEmpty:+'Empty'}' ' # Space only
 728 echo ${VarEmpty}
 729 VarEmpty=''
 730
 731 echo '- Alternate if already has contents -'
 732
 733 # Alternate literal
 734 echo -n ${VarSomething+'Content'}' ' # Content Literal
 735 echo ${VarSomething}
 736
 737 # Invoke function
 738 echo -n ${VarSomething:+ $(_simple) }' ' # SimpleFunc Literal
 739 echo ${VarSomething}
 740 echo
 741
 742 echo '- - Sparse Array - -'
 743 echo ${ArrayVar[@]+'Empty'} # An array of 'Empty'(ies)
 744 echo
 745
 746 echo '- - Test 2 for undefined - -'
 747
 748 declare -i t
 749 _incT() {
 750 t=$t+1
 751 }

 752
 753 # Note:
 754 # This is the same test used in the sparse array
 755 #+ listing code fragment.
 756
 757 # Null reference, set: t == -1
 758 t=${#VarNull}-1 # Results in minus-one.
 759 ${VarNull+ _incT } # Does not execute.
 760 echo $t' Null reference'
 761
 762 # Null contents, set: t == 0
 763 t=${#VarEmpty}-1 # Results in minus-one.
 764 ${VarEmpty+ _incT } # Executes.
 765 echo $t' Null content'
 766
 767 # Contents, set: t == (number of non-null characters)
 768 t=${#VarSomething}-1 # non-null length minus-one
 769 ${VarSomething+ _incT } # Executes.
 770 echo $t' Contents'
 771
 772 # Exercise: clean up that example.
 773 unset t
 774 unset _incT
 775
 776 # ${name?err_msg} ${name:?err_msg}
 777 # These follow the same rules but always exit afterwards
 778 #+ if an action is specified following the question mark.
 779 # The action following the question mark may be a literal
 780 #+ or a function result.
 781 ###
 782 # ${name?} ${name:?} are test-only, the return can be tested.
 783
 784
 785
 786
 787 # Element operations
 788 # ------------------
 789
 790 echo
 791 echo '- - Trailing sub-element selection - -'
 792
 793 # Strings, Arrays and Positional parameters
 794
 795 # Call this script with multiple arguments
 796 #+ to see the parameter selections.
 797
 798 echo '- All -'
 799 echo ${VarSomething:0} # all non-null characters
 800 echo ${ArrayVar[@]:0} # all elements with content
 801 echo ${@:0} # all parameters with content;
 802 # ignoring parameter[0]
 803
 804 echo
 805 echo '- All after -'
 806 echo ${VarSomething:1} # all non-null after character[0]
 807 echo ${ArrayVar[@]:1} # all after element[0] with content
 808 echo ${@:2} # all after param[1] with content
 809
 810 echo
 811 echo '- Range after -'
 812 echo ${VarSomething:4:3} # ral
 813 # Three characters after
 814 # character[3]
 815
 816 echo '- Sparse array gotch -'
 817 echo ${ArrayVar[@]:1:2} # four - The only element with content.

 818 # Two elements after (if that many exist).
 819 # the FIRST WITH CONTENTS
 820 #+ (the FIRST WITH CONTENTS is being
 821 #+ considered as if it
 822 #+ were subscript zero).
 823 # Executed as if Bash considers ONLY array elements with CONTENT
 824 # printf %q "${ArrayVar[@]:0:3}" # Try this one
 825
 826 # In versions 2.04, 2.05a and 2.05b,
 827 #+ Bash does not handle sparse arrays as expected using this notation.
 828 #
 829 # The current Bash maintainer, Chet Ramey, has corrected this.
 830
 831
 832 echo '- Non-sparse array -'
 833 echo ${@:2:2} # Two parameters following parameter[1]
 834
 835 # New victims for string vector examples:
 836 stringZ=abcABC123ABCabc
 837 arrayZ=(abcabc ABCABC 123123 ABCABC abcabc)
 838 sparseZ=([1]='abcabc' [3]='ABCABC' [4]='' [5]='123123')
 839
 840 echo
 841 echo ' - - Victim string - -'$stringZ'- - '
 842 echo ' - - Victim array - -'${arrayZ[@]}'- - '
 843 echo ' - - Sparse array - -'${sparseZ[@]}'- - '
 844 echo ' - [0]==null ref, [2]==null ref, [4]==null content - '
 845 echo ' - [1]=abcabc [3]=ABCABC [5]=123123 - '
 846 echo ' - non-null-reference count: '${#sparseZ[@]}' elements'
 847
 848 echo
 849 echo '- - Prefix sub-element removal - -'
 850 echo '- - Glob-Pattern match must include the first character. - -'
 851 echo '- - Glob-Pattern may be a literal or a function result. - -'
 852 echo
 853
 854
 855 # Function returning a simple, Literal, Glob-Pattern
 856 _abc() {
 857 echo -n 'abc'
 858 }
 859
 860 echo '- Shortest prefix -'
 861 echo ${stringZ#123} # Unchanged (not a prefix).
 862 echo ${stringZ#$(_abc)} # ABC123ABCabc
 863 echo ${arrayZ[@]#abc} # Applied to each element.
 864
 865 # echo ${sparseZ[@]#abc} # Version-2.05b core dumps.
 866 # Has since been fixed by Chet Ramey.
 867
 868 # The -it would be nice- First-Subscript-Of
 869 # echo ${#sparseZ[@]#*} # This is NOT valid Bash.
 870
 871 echo
 872 echo '- Longest prefix -'
 873 echo ${stringZ##1*3} # Unchanged (not a prefix)
 874 echo ${stringZ##a*C} # abc
 875 echo ${arrayZ[@]##a*c} # ABCABC 123123 ABCABC
 876
 877 # echo ${sparseZ[@]##a*c} # Version-2.05b core dumps.
 878 # Has since been fixed by Chet Ramey.
 879
 880 echo
 881 echo '- - Suffix sub-element removal - -'
 882 echo '- - Glob-Pattern match must include the last character. - -'
 883 echo '- - Glob-Pattern may be a literal or a function result. - -'

 884 echo
 885 echo '- Shortest suffix -'
 886 echo ${stringZ%1*3} # Unchanged (not a suffix).
 887 echo ${stringZ%$(_abc)} # abcABC123ABC
 888 echo ${arrayZ[@]%abc} # Applied to each element.
 889
 890 # echo ${sparseZ[@]%abc} # Version-2.05b core dumps.
 891 # Has since been fixed by Chet Ramey.
 892
 893 # The -it would be nice- Last-Subscript-Of
 894 # echo ${#sparseZ[@]%*} # This is NOT valid Bash.
 895
 896 echo
 897 echo '- Longest suffix -'
 898 echo ${stringZ%%1*3} # Unchanged (not a suffix)
 899 echo ${stringZ%%b*c} # a
 900 echo ${arrayZ[@]%%b*c} # a ABCABC 123123 ABCABC a
 901
 902 # echo ${sparseZ[@]%%b*c} # Version-2.05b core dumps.
 903 # Has since been fixed by Chet Ramey.
 904
 905 echo
 906 echo '- - Sub-element replacement - -'
 907 echo '- - Sub-element at any location in string. - -'
 908 echo '- - First specification is a Glob-Pattern - -'
 909 echo '- - Glob-Pattern may be a literal or Glob-Pattern function result. - -'
 910 echo '- - Second specification may be a literal or function result. - -'
 911 echo '- - Second specification may be unspecified. Pronounce that'
 912 echo ' as: Replace-With-Nothing (Delete) - -'
 913 echo
 914
 915
 916
 917 # Function returning a simple, Literal, Glob-Pattern
 918 _123() {
 919 echo -n '123'
 920 }
 921
 922 echo '- Replace first occurrence -'
 923 echo ${stringZ/$(_123)/999} # Changed (123 is a component).
 924 echo ${stringZ/ABC/xyz} # xyzABC123ABCabc
 925 echo ${arrayZ[@]/ABC/xyz} # Applied to each element.
 926 echo ${sparseZ[@]/ABC/xyz} # Works as expected.
 927
 928 echo
 929 echo '- Delete first occurrence -'
 930 echo ${stringZ/$(_123)/}
 931 echo ${stringZ/ABC/}
 932 echo ${arrayZ[@]/ABC/}
 933 echo ${sparseZ[@]/ABC/}
 934
 935 # The replacement need not be a literal,
 936 #+ since the result of a function invocation is allowed.
 937 # This is general to all forms of replacement.
 938 echo
 939 echo '- Replace first occurrence with Result-Of -'
 940 echo ${stringZ/$(_123)/$(_simple)} # Works as expected.
 941 echo ${arrayZ[@]/ca/$(_simple)} # Applied to each element.
 942 echo ${sparseZ[@]/ca/$(_simple)} # Works as expected.
 943
 944 echo
 945 echo '- Replace all occurrences -'
 946 echo ${stringZ//[b2]/X} # X-out b's and 2's
 947 echo ${stringZ//abc/xyz} # xyzABC123ABCxyz
 948 echo ${arrayZ[@]//abc/xyz} # Applied to each element.
 949 echo ${sparseZ[@]//abc/xyz} # Works as expected.

 950
 951 echo
 952 echo '- Delete all occurrences -'
 953 echo ${stringZ//[b2]/}
 954 echo ${stringZ//abc/}
 955 echo ${arrayZ[@]//abc/}
 956 echo ${sparseZ[@]//abc/}
 957
 958 echo
 959 echo '- - Prefix sub-element replacement - -'
 960 echo '- - Match must include the first character. - -'
 961 echo
 962
 963 echo '- Replace prefix occurrences -'
 964 echo ${stringZ/#[b2]/X} # Unchanged (neither is a prefix).
 965 echo ${stringZ/#$(_abc)/XYZ} # XYZABC123ABCabc
 966 echo ${arrayZ[@]/#abc/XYZ} # Applied to each element.
 967 echo ${sparseZ[@]/#abc/XYZ} # Works as expected.
 968
 969 echo
 970 echo '- Delete prefix occurrences -'
 971 echo ${stringZ/#[b2]/}
 972 echo ${stringZ/#$(_abc)/}
 973 echo ${arrayZ[@]/#abc/}
 974 echo ${sparseZ[@]/#abc/}
 975
 976 echo
 977 echo '- - Suffix sub-element replacement - -'
 978 echo '- - Match must include the last character. - -'
 979 echo
 980
 981 echo '- Replace suffix occurrences -'
 982 echo ${stringZ/%[b2]/X} # Unchanged (neither is a suffix).
 983 echo ${stringZ/%$(_abc)/XYZ} # abcABC123ABCXYZ
 984 echo ${arrayZ[@]/%abc/XYZ} # Applied to each element.
 985 echo ${sparseZ[@]/%abc/XYZ} # Works as expected.
 986
 987 echo
 988 echo '- Delete suffix occurrences -'
 989 echo ${stringZ/%[b2]/}
 990 echo ${stringZ/%$(_abc)/}
 991 echo ${arrayZ[@]/%abc/}
 992 echo ${sparseZ[@]/%abc/}
 993
 994 echo
 995 echo '- - Special cases of null Glob-Pattern - -'
 996 echo
 997
 998 echo '- Prefix all -'
 999 # null substring pattern means 'prefix'
 1000 echo ${stringZ/#/NEW} # NEWabcABC123ABCabc
 1001 echo ${arrayZ[@]/#/NEW} # Applied to each element.
 1002 echo ${sparseZ[@]/#/NEW} # Applied to null-content also.
 1003 # That seems reasonable.
 1004
 1005 echo
 1006 echo '- Suffix all -'
 1007 # null substring pattern means 'suffix'
 1008 echo ${stringZ/%/NEW} # abcABC123ABCabcNEW
 1009 echo ${arrayZ[@]/%/NEW} # Applied to each element.
 1010 echo ${sparseZ[@]/%/NEW} # Applied to null-content also.
 1011 # That seems reasonable.
 1012
 1013 echo
 1014 echo '- - Special case For-Each Glob-Pattern - -'
 1015 echo '- - - - This is a nice-to-have dream - - - -'

 1016 echo
 1017
 1018 _GenFunc() {
 1019 echo -n ${0} # Illustration only.
 1020 # Actually, that would be an arbitrary computation.
 1021 }
 1022
 1023 # All occurrences, matching the AnyThing pattern.
 1024 # Currently //*/ does not match null-content nor null-reference.
 1025 # /#/ and /%/ does match null-content but not null-reference.
 1026 echo ${sparseZ[@]//*/$(_GenFunc)}
 1027
 1028
 1029 # A possible syntax would be to make
 1030 #+ the parameter notation used within this construct mean:
 1031 # ${1} - The full element
 1032 # ${2} - The prefix, if any, to the matched sub-element
 1033 # ${3} - The matched sub-element
 1034 # ${4} - The suffix, if any, to the matched sub-element
 1035 #
 1036 # echo ${sparseZ[@]//*/$(_GenFunc ${3})} # Same as ${1} here.
 1037 # Perhaps it will be implemented in a future version of Bash.
 1038
 1039
 1040 exit 0

Example A-59. Testing execution times of various commands

 1 #!/bin/bash
 2 # test-execution-time.sh
 3 # Example by Erik Brandsberg, for testing execution time
 4 #+ of certain operations.
 5 # Referenced in the "Optimizations" section of "Miscellany" chapter.
 6
 7 count=50000
 8 echo "Math tests"
 9 echo "Math via \$(())"
 10 time for ((i=0; i< $count; i++))
 11 do
 12 result=$(($i%2))
 13 done
 14
 15 echo "Math via *expr*:"
 16 time for ((i=0; i< $count; i++))
 17 do
 18 result=`expr "$i%2"`
 19 done
 20
 21 echo "Math via *let*:"
 22 time for ((i=0; i< $count; i++))
 23 do
 24 let result=$i%2
 25 done
 26
 27 echo
 28 echo "Conditional testing tests"
 29
 30 echo "Test via case:"
 31 time for ((i=0; i< $count; i++))
 32 do
 33 case $(($i%2)) in
 34 0) : ;;

 35 1) : ;;
 36 esac
 37 done
 38
 39 echo "Test with if [], no quotes:"
 40 time for ((i=0; i< $count; i++))
 41 do
 42 if [$(($i%2)) = 0]; then
 43 :
 44 else
 45 :
 46 fi
 47 done
 48
 49 echo "Test with if [], quotes:"
 50 time for ((i=0; i< $count; i++))
 51 do
 52 if ["$(($i%2))" = "0"]; then
 53 :
 54 else
 55 :
 56 fi
 57 done
 58
 59 echo "Test with if [], using -eq:"
 60 time for ((i=0; i< $count; i++))
 61 do
 62 if [$(($i%2)) -eq 0]; then
 63 :
 64 else
 65 :
 66 fi
 67 done
 68
 69 exit $?

Example A-60. Associative arrays vs. conventional arrays (execution times)

 1 #!/bin/bash
 2 # assoc-arr-test.sh
 3 # Benchmark test script to compare execution times of
 4 # numeric-indexed array vs. associative array.
 5 # Thank you, Erik Brandsberg.
 6
 7 count=100000 # May take a while for some of the tests below.
 8 declare simple # Can change to 20000, if desired.
 9 declare -a array1
 10 declare -A array2
 11 declare -a array3
 12 declare -A array4
 13
 14 echo "===Assignment tests==="
 15 echo
 16
 17 echo "Assigning a simple variable:"
 18 # References $i twice to equalize lookup times.
 19 time for ((i=0; i< $count; i++)); do
 20 simple=ii
 21 done
 22
 23 echo "---"
 24

 25 echo "Assigning a numeric index array entry:"
 26 time for ((i=0; i< $count; i++)); do
 27 array1[$i]=$i
 28 done
 29
 30 echo "---"
 31
 32 echo "Overwriting a numeric index array entry:"
 33 time for ((i=0; i< $count; i++)); do
 34 array1[$i]=$i
 35 done
 36
 37 echo "---"
 38
 39 echo "Linear reading of numeric index array:"
 40 time for ((i=0; i< $count; i++)); do
 41 simple=array1[$i]
 42 done
 43
 44 echo "---"
 45
 46 echo "Assigning an associative array entry:"
 47 time for ((i=0; i< $count; i++)); do
 48 array2[$i]=$i
 49 done
 50
 51 echo "---"
 52
 53 echo "Overwriting an associative array entry:"
 54 time for ((i=0; i< $count; i++)); do
 55 array2[$i]=$i
 56 done
 57
 58 echo "---"
 59
 60 echo "Linear reading an associative array entry:"
 61 time for ((i=0; i< $count; i++)); do
 62 simple=array2[$i]
 63 done
 64
 65 echo "---"
 66
 67 echo "Assigning a random number to a simple variable:"
 68 time for ((i=0; i< $count; i++)); do
 69 simple=$RANDOM
 70 done
 71
 72 echo "---"
 73
 74 echo "Assign a sparse numeric index array entry randomly into 64k cells:"
 75 time for ((i=0; i< $count; i++)); do
 76 array3[$RANDOM]=$i
 77 done
 78
 79 echo "---"
 80
 81 echo "Reading sparse numeric index array entry:"
 82 time for value in "${array3[@]}"i; do
 83 simple=$value
 84 done
 85
 86 echo "---"
 87
 88 echo "Assigning a sparse associative array entry randomly into 64k cells:"
 89 time for ((i=0; i< $count; i++)); do
 90 array4[$RANDOM]=$i

 91 done
 92
 93 echo "---"
 94
 95 echo "Reading sparse associative index array entry:"
 96 time for value in "${array4[@]}"; do
 97 simple=$value
 98 done
 99
 100 exit $?

Prev Home Next
Bibliography Reference Cards

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Next

Appendix B. Reference Cards
The following reference cards provide a useful summary of certain scripting concepts. The foregoing text
treats these matters in more depth, as well as giving usage examples.

Table B-1. Special Shell Variables

Variable Meaning
$0 Filename of script
$1 Positional parameter #1
$2 - $9 Positional parameters #2 - #9
${10} Positional parameter #10
$# Number of positional parameters
"$*" All the positional parameters (as a single word) *
"$@" All the positional parameters (as separate strings)
${#*} Number of positional parameters
${#@} Number of positional parameters
$? Return value
$$ Process ID (PID) of script
$- Flags passed to script (using set)
$_ Last argument of previous command
$! Process ID (PID) of last job run in background

* Must be quoted, otherwise it defaults to $@.

Table B-2. TEST Operators: Binary Comparison

Operator Meaning ----- Operator Meaning

Arithmetic Comparison String Comparison
-eq Equal to = Equal to

== Equal to
-ne Not equal to != Not equal to
-lt Less than \< Less than (ASCII) *
-le Less than or equal to
-gt Greater than \> Greater than (ASCII) *
-ge Greater than or equal to

-z String is empty
-n String is not empty

Arithmetic Comparison within double parentheses ((...))
> Greater than

>= Greater than or equal to
< Less than
<= Less than or equal to

* If within a double-bracket [[...]] test construct, then no escape \ is needed.

Table B-3. TEST Operators: Files

Operator Tests Whether ----- Operator Tests Whether
-e File exists -s File is not zero size
-f File is a regular file
-d File is a directory -r File has read permission
-h File is a symbolic link -w File has write permission
-L File is a symbolic link -x File has execute permission
-b File is a block device
-c File is a character device -g sgid flag set
-p File is a pipe -u suid flag set
-S File is a socket -k "sticky bit" set
-t File is associated with a terminal

-N File modified since it was last
read

F1 -nt F2 File F1 is newer than F2 *

-O You own the file F1 -ot F2 File F1 is older than F2 *
-G Group id of file same as yours F1 -ef F2 Files F1 and F2 are hard links to the same

file *

! NOT (inverts sense of above
tests)

* Binary operator (requires two operands).

Table B-4. Parameter Substitution and Expansion

Expression Meaning
${var} Value of var (same as $var)

${var-$DEFAULT} If var not set, evaluate expression as $DEFAULT *
${var:-$DEFAULT} If var not set or is empty, evaluate expression as $DEFAULT *

${var=$DEFAULT} If var not set, evaluate expression as $DEFAULT *
${var:=$DEFAULT} If var not set or is empty, evaluate expression as $DEFAULT *

${var+$OTHER} If var set, evaluate expression as $OTHER, otherwise as null string

${var:+$OTHER} If var set, evaluate expression as $OTHER, otherwise as null string

${var?$ERR_MSG} If var not set, print $ERR_MSG and abort script with an exit status of 1.*
${var:?$ERR_MSG} If var not set, print $ERR_MSG and abort script with an exit status of 1.*

${!varprefix*} Matches all previously declared variables beginning with varprefix
${!varprefix@} Matches all previously declared variables beginning with varprefix

* If var is set, evaluate the expression as $var with no side-effects.

Note that some of the above behavior of operators has changed from earlier versions of Bash.

Table B-5. String Operations

Expression Meaning
${#string} Length of $string

${string:position} Extract substring from $string at $position
${string:position:length} Extract $length characters substring from $string

at $position [zero-indexed, first character is at
position 0]

${string#substring} Strip shortest match of $substring from front of
$string

${string##substring} Strip longest match of $substring from front of
$string

${string%substring} Strip shortest match of $substring from back of
$string

${string%%substring} Strip longest match of $substring from back of
$string

${string/substring/replacement} Replace first match of $substring with
$replacement

${string//substring/replacement} Replace all matches of $substring with
$replacement

${string/#substring/replacement} If $substring matches front end of $string,
substitute $replacement for $substring

${string/%substring/replacement} If $substring matches back end of $string,
substitute $replacement for $substring

expr match "$string" '$substring' Length of matching $substring* at beginning of
$string

expr "$string" : '$substring' Length of matching $substring* at beginning of
$string

expr index "$string" $substring

Numerical position in $string of first character in
$substring* that matches [0 if no match, first
character counts as position 1]

expr substr $string $position
$length

Extract $length characters from $string starting at
$position [0 if no match, first character counts as
position 1]

expr match "$string"
'\($substring\)'

Extract $substring*, searching from beginning of
$string

expr "$string" : '\($substring\)' Extract $substring* , searching from beginning of
$string

expr match "$string"
'.*\($substring\)'

Extract $substring*, searching from end of
$string

expr "$string" :
'.*\($substring\)'

Extract $substring*, searching from end of
$string

* Where $substring is a Regular Expression.

Table B-6. Miscellaneous Constructs

Expression Interpretation

Brackets
if [CONDITION] Test construct
if [[CONDITION]] Extended test construct
Array[1]=element1 Array initialization
[a-z] Range of characters within a Regular Expression

Curly Brackets
${variable} Parameter substitution
${!variable} Indirect variable reference
{ command1; command2; . . . commandN; } Block of code
{string1,string2,string3,...} Brace expansion
{a..z} Extended brace expansion
{} Text replacement, after find and xargs

Parentheses
(command1; command2) Command group executed within a subshell
Array=(element1 element2 element3) Array initialization
result=$(COMMAND) Command substitution, new style
>(COMMAND) Process substitution
<(COMMAND) Process substitution

Double Parentheses
((var = 78)) Integer arithmetic

var=$((20 + 5)) Integer arithmetic, with variable assignment
((var++)) C-style variable increment
((var--)) C-style variable decrement
((var0 = var1<98?9:21)) C-style ternary operation

Quoting
"$variable" "Weak" quoting
'string' 'Strong' quoting

Back Quotes
result=`COMMAND` Command substitution, classic style

Prev Home Next
Contributed Scripts A Sed and Awk Micro-Primer

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Next

Appendix C. A Sed and Awk Micro-Primer

This is a very brief introduction to the sed and awk text processing utilities. We will deal with only a few
basic commands here, but that will suffice for understanding simple sed and awk constructs within shell
scripts.

sed: a non-interactive text file editor

awk: a field-oriented pattern processing language with a C-style syntax

For all their differences, the two utilities share a similar invocation syntax, use regular expressions , read input
by default from stdin, and output to stdout. These are well-behaved UNIX tools, and they work together
well. The output from one can be piped to the other, and their combined capabilities give shell scripts some of
the power of Perl.

One important difference between the utilities is that while shell scripts can easily pass arguments to sed,
it is more cumbersome for awk (see Example 36-5 and Example 28-2).

C.1. Sed
Sed is a non-interactive [1] stream editor. It receives text input, whether from stdin or from a file, performs
certain operations on specified lines of the input, one line at a time, then outputs the result to stdout or to a
file. Within a shell script, sed is usually one of several tool components in a pipe.

Sed determines which lines of its input that it will operate on from the address range passed to it. [2] Specify
this address range either by line number or by a pattern to match. For example, 3d signals sed to delete line 3
of the input, and /Windows/d tells sed that you want every line of the input containing a match to
"Windows" deleted.

Of all the operations in the sed toolkit, we will focus primarily on the three most commonly used ones. These
are printing (to stdout), deletion, and substitution.

Table C-1. Basic sed operators

Operator Name Effect
[address-range]/p print Print [specified address range]
[address-range]/d delete Delete [specified address range]
s/pattern1/pattern2/ substitute Substitute pattern2 for first instance of

pattern1 in a line
[address-range]/s/pattern1/pattern2/ substitute Substitute pattern2 for first instance of

pattern1 in a line, over address-range
[address-range]/y/pattern1/pattern2/ transform replace any character in pattern1 with the

corresponding character in pattern2, over
address-range (equivalent of tr)

[address] i pattern Filename insert Insert pattern at address indicated in file
Filename. Usually used with -i
in-place option.

g global Operate on every pattern match within each
matched line of input

Unless the g (global) operator is appended to a substitute command, the substitution operates only on the
first instance of a pattern match within each line.

From the command-line and in a shell script, a sed operation may require quoting and certain options.

 1 sed -e '/^$/d' $filename
 2 # The -e option causes the next string to be interpreted as an editing instruction.
 3 # (If passing only a single instruction to sed, the "-e" is optional.)
 4 # The "strong" quotes ('') protect the RE characters in the instruction
 5 #+ from reinterpretation as special characters by the body of the script.
 6 # (This reserves RE expansion of the instruction for sed.)
 7 #
 8 # Operates on the text contained in file $filename.

In certain cases, a sed editing command will not work with single quotes.

 1 filename=file1.txt
 2 pattern=BEGIN
 3
 4 sed "/^$pattern/d" "$filename" # Works as specified.
 5 # sed '/^$pattern/d' "$filename" has unexpected results.

 6 # In this instance, with strong quoting (' ... '),
 7 #+ "$pattern" will not expand to "BEGIN".

Sed uses the -e option to specify that the following string is an instruction or set of instructions. If there
is only a single instruction contained in the string, then this may be omitted.

 1 sed -n '/xzy/p' $filename
 2 # The -n option tells sed to print only those lines matching the pattern.
 3 # Otherwise all input lines would print.
 4 # The -e option not necessary here since there is only a single editing instruction.

Table C-2. Examples of sed operators

Notation Effect
8d Delete 8th line of input.
/^$/d Delete all blank lines.
1,/^$/d Delete from beginning of input up to, and

including first blank line.
/Jones/p Print only lines containing "Jones" (with -n

option).
s/Windows/Linux/ Substitute "Linux" for first instance of

"Windows" found in each input line.
s/BSOD/stability/g Substitute "stability" for every instance of

"BSOD" found in each input line.
s/ *$// Delete all spaces at the end of every line.
s/00*/0/g Compress all consecutive sequences of zeroes

into a single zero.
echo "Working on it." | sed -e '1i How
far are you along?'

Prints "How far are you along?" as first line,
"Working on it" as second.

5i 'Linux is great.' file.txt Inserts 'Linux is great.' at line 5 of the file
file.txt.

/GUI/d Delete all lines containing "GUI".
s/GUI//g Delete all instances of "GUI", leaving the

remainder of each line intact.

Substituting a zero-length string for another is equivalent to deleting that string within a line of input. This
leaves the remainder of the line intact. Applying s/GUI// to the line

The most important parts of any application are its GUI and sound effects

results in
The most important parts of any application are its and sound effects

A backslash forces the sed replacement command to continue on to the next line. This has the effect of using
the newline at the end of the first line as the replacement string.

 1 s/^ */\
 2 /g

This substitution replaces line-beginning spaces with a newline. The net result is to replace paragraph indents
with a blank line between paragraphs.

An address range followed by one or more operations may require open and closed curly brackets, with
appropriate newlines.

 1 /[0-9A-Za-z]/,/^$/{
 2 /^$/d
 3 }

This deletes only the first of each set of consecutive blank lines. That might be useful for single-spacing a text
file, but retaining the blank line(s) between paragraphs.

The usual delimiter that sed uses is /. However, sed allows other delimiters, such as %. This is useful
when / is part of a replacement string, as in a file pathname. See Example 11-10 and Example 16-32.

A quick way to double-space a text file is sed G filename.

For illustrative examples of sed within shell scripts, see:

Example 36-11.
Example 36-22.
Example 16-33.
Example A-24.
Example 16-175.
Example 16-276.
Example A-127.
Example A-168.
Example A-179.
Example 16-3210.
Example 11-1011.
Example 16-4812.
Example A-113.
Example 16-1414.
Example 16-1215.
Example A-1016.
Example 19-1217.
Example 16-1918.
Example A-2919.
Example A-3120.
Example A-2421.
Example A-4322.
Example A-5523.

For a more extensive treatment of sed, refer to the pertinent references in the Bibliography.

Notes

[1] Sed executes without user intervention.
[2] If no address range is specified, the default is all lines.

Prev Home Next
Reference Cards Awk

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Appendix C. A Sed and Awk Micro-Primer Next

C.2. Awk

Awk [1] is a full-featured text processing language with a syntax reminiscent of C. While it possesses an
extensive set of operators and capabilities, we will cover only a few of these here - the ones most useful in
shell scripts.

Awk breaks each line of input passed to it into fields. By default, a field is a string of consecutive characters
delimited by whitespace, though there are options for changing this. Awk parses and operates on each separate
field. This makes it ideal for handling structured text files -- especially tables -- data organized into consistent
chunks, such as rows and columns.

Strong quoting and curly brackets enclose blocks of awk code within a shell script.

 1 # $1 is field #1, $2 is field #2, etc.
 2
 3 echo one two | awk '{print $1}'
 4 # one
 5
 6 echo one two | awk '{print $2}'
 7 # two
 8
 9 # But what is field #0 ($0)?
 10 echo one two | awk '{print $0}'
 11 # one two
 12 # All the fields!
 13
 14
 15 awk '{print $3}' $filename
 16 # Prints field #3 of file $filename to stdout.
 17
 18 awk '{print $1 $5 $6}' $filename
 19 # Prints fields #1, #5, and #6 of file $filename.
 20
 21 awk '{print $0}' $filename
 22 # Prints the entire file!
 23 # Same effect as: cat $filename . . . or . . . sed '' $filename

We have just seen the awk print command in action. The only other feature of awk we need to deal with here
is variables. Awk handles variables similarly to shell scripts, though a bit more flexibly.

 1 { total += ${column_number} }

This adds the value of column_number to the running total of total>. Finally, to print "total", there is an
END command block, executed after the script has processed all its input.
 1 END { print total }

Corresponding to the END, there is a BEGIN, for a code block to be performed before awk starts processing
its input.

The following example illustrates how awk can add text-parsing tools to a shell script.

Example C-1. Counting Letter Occurrences

 1 #! /bin/sh
 2 # letter-count2.sh: Counting letter occurrences in a text file.
 3 #
 4 # Script by nyal [nyal@voila.fr].
 5 # Used in ABS Guide with permission.
 6 # Recommented and reformatted by ABS Guide author.

 7 # Version 1.1: Modified to work with gawk 3.1.3.
 8 # (Will still work with earlier versions.)
 9
 10
 11 INIT_TAB_AWK=""
 12 # Parameter to initialize awk script.
 13 count_case=0
 14 FILE_PARSE=$1
 15
 16 E_PARAMERR=85
 17
 18 usage()
 19 {
 20 echo "Usage: letter-count.sh file letters" 2>&1
 21 # For example: ./letter-count2.sh filename.txt a b c
 22 exit $E_PARAMERR # Too few arguments passed to script.
 23 }
 24
 25 if [! -f "$1"] ; then
 26 echo "$1: No such file." 2>&1
 27 usage # Print usage message and exit.
 28 fi
 29
 30 if [-z "$2"] ; then
 31 echo "$2: No letters specified." 2>&1
 32 usage
 33 fi
 34
 35 shift # Letters specified.
 36 for letter in `echo $@` # For each one . . .
 37 do
 38 INIT_TAB_AWK="$INIT_TAB_AWK tab_search[${count_case}] = \
 39 \"$letter\"; final_tab[${count_case}] = 0; "
 40 # Pass as parameter to awk script below.
 41 count_case=`expr $count_case + 1`
 42 done
 43
 44 # DEBUG:
 45 # echo $INIT_TAB_AWK;
 46
 47 cat $FILE_PARSE |
 48 # Pipe the target file to the following awk script.
 49
 50 # ---
 51 # Earlier version of script:
 52 # awk -v tab_search=0 -v final_tab=0 -v tab=0 -v \
 53 # nb_letter=0 -v chara=0 -v chara2=0 \
 54
 55 awk \
 56 "BEGIN { $INIT_TAB_AWK } \
 57 { split(\$0, tab, \"\"); \
 58 for (chara in tab) \
 59 { for (chara2 in tab_search) \
 60 { if (tab_search[chara2] == tab[chara]) { final_tab[chara2]++ } } } } \
 61 END { for (chara in final_tab) \
 62 { print tab_search[chara] \" => \" final_tab[chara] } }"
 63 # ---
 64 # Nothing all that complicated, just . . .
 65 #+ for-loops, if-tests, and a couple of specialized functions.
 66
 67 exit $?
 68
 69 # Compare this script to letter-count.sh.

For simpler examples of awk within shell scripts, see:

Example 15-141.
Example 20-82.
Example 16-323.
Example 36-54.
Example 28-25.
Example 15-206.
Example 29-37.
Example 29-48.
Example 11-39.
Example 16-6110.
Example 9-1611.
Example 16-412.
Example 10-613.
Example 36-1914.
Example 11-915.
Example 36-416.
Example 16-5317.
Example T-318.

That's all the awk we'll cover here, folks, but there's lots more to learn. See the appropriate references in the
Bibliography.

Notes

[1] Its name derives from the initials of its authors, Aho, Weinberg, and Kernighan.

Prev Home Next
A Sed and Awk Micro-Primer Up Parsing and Managing Pathnames

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Next

Appendix D. Parsing and Managing Pathnames
Emmanual Rouat contributed the following example of parsing and transforming filenames and, in particular,
pathnames. It draws heavily on the functionality of sed.

 1 #!/usr/bin/env bash
 2 #---
 3 # Management of PATH, LD_LIBRARY_PATH, MANPATH variables...
 4 # By Emmanuel Rouat <no-email>
 5 # (Inspired by the bash documentation 'pathfuncs' and on
 6 # discussions found on stackoverflow:
 7 # http://stackoverflow.com/questions/370047/
 8 # http://stackoverflow.com/questions/273909/#346860)
 9 # Last modified: Sat Sep 22 12:01:55 CEST 2012
 10 #
 11 # The following functions handle spaces correctly.
 12 # These functions belong in .bash_profile rather than in
 13 # .bashrc, I guess.
 14 #
 15 # The modular aspect of these functions should make it easy
 16 # to expand them to handle path substitutions instead
 17 # of path removal etc....
 18 #
 19 # See http://www.catonmat.net/blog/awk-one-liners-explained-part-two/
 20 # (item 43) for an explanation of the 'duplicate-entries' removal
 21 # (it's a nice trick!)
 22 #---
 23
 24 # Show $@ (usually PATH) as list.
 25 function p_show() { local p="$@" && for p; do [[${!p}]] &&
 26 echo -e ${!p//:/\\n}; done }
 27
 28 # Filter out empty lines, multiple/trailing slashes, and duplicate entries.
 29 function p_filter()
 30 { awk '/^[\t]*$/ {next} {sub(/\/+$/, "");gsub(/\/+/, "/")}!x[$0]++' ;}
 31
 32 # Rebuild list of items into ':' separated word (PATH-like).
 33 function p_build() { paste -sd: ;}
 34
 35 # Clean $1 (typically PATH) and rebuild it
 36 function p_clean()
 37 { local p=${1} && eval ${p}='$(p_show ${p} | p_filter | p_build)' ;}
 38
 39 # Remove $1 from $2 (found on stackoverflow, with modifications).
 40 function p_rm()
 41 { local d=$(echo $1 | p_filter) p=${2} &&
 42 eval ${p}='$(p_show ${p} | p_filter | grep -xv "${d}" | p_build)' ;}
 43
 44 # Same as previous, but filters on a pattern (dangerous...
 45 #+ don't use 'bin' or '/' as pattern!).
 46 function p_rmpat()
 47 { local d=$(echo $1 | p_filter) p=${2} && eval ${p}='$(p_show ${p} |
 48 p_filter | grep -v "${d}" | p_build)' ;}
 49
 50 # Delete $1 from $2 and append it cleanly.
 51 function p_append()
 52 { local d=$(echo $1 | p_filter) p=${2} && p_rm "${d}" ${p} &&
 53 eval ${p}='$(p_show ${p} d | p_build)' ;}
 54
 55 # Delete $1 from $2 and prepend it cleanly.
 56 function p_prepend()
 57 { local d=$(echo $1 | p_filter) p=${2} && p_rm "${d}" ${p} &&
 58 eval ${p}='$(p_show d ${p} | p_build)' ;}
 59

 60 # Some tests:
 61 echo
 62 MYPATH="/bin:/usr/bin/:/bin://bin/"
 63 p_append "/project//my project/bin" MYPATH
 64 echo "Append '/project//my project/bin' to '/bin:/usr/bin/:/bin://bin/'"
 65 echo "(result should be: /bin:/usr/bin:/project/my project/bin)"
 66 echo $MYPATH
 67
 68 echo
 69 MYOTHERPATH="/bin:/usr/bin/:/bin:/project//my project/bin"
 70 p_prepend "/project//my project/bin" MYOTHERPATH
 71 echo "Prepend '/project//my project/bin' \
 72 to '/bin:/usr/bin/:/bin:/project//my project/bin/'"
 73 echo "(result should be: /project/my project/bin:/bin:/usr/bin)"
 74 echo $MYOTHERPATH
 75
 76 echo
 77 p_prepend "/project//my project/bin" FOOPATH # FOOPATH doesn't exist.
 78 echo "Prepend '/project//my project/bin' to an unset variable"
 79 echo "(result should be: /project/my project/bin)"
 80 echo $FOOPATH
 81
 82 echo
 83 BARPATH="/a:/b/://b c://a:/my local pub"
 84 p_clean BARPATH
 85 echo "Clean BARPATH='/a:/b/://b c://a:/my local pub'"
 86 echo "(result should be: /a:/b:/b c:/my local pub)"
 87 echo $BARPATH

David Wheeler kindly permitted me to use his instructive examples.

 1 Doing it correctly: A quick summary
 2 by David Wheeler
 3 http://www.dwheeler.com/essays/filenames-in-shell.html
 4
 5 So, how can you process filenames correctly in shell? Here's a quick
 6 summary about how to do it correctly, for the impatient who "just want the
 7 answer". In short: Double-quote to use "$variable" instead of $variable,
 8 set IFS to just newline and tab, prefix all globs/filenames so they cannot
 9 begin with "-" when expanded, and use one of a few templates that work
 10 correctly. Here are some of those templates that work correctly:
 11
 12
 13 IFS="$(printf '\n\t')"
 14 # Remove SPACE, so filenames with spaces work well.
 15
 16 # Correct glob use:
 17 #+ always use "for" loop, prefix glob, check for existence:
 18 for file in ./* ; do # Use "./*" ... NEVER bare "*" ...
 19 if [-e "$file"] ; then # Make sure it isn't an empty match.
 20 COMMAND ... "$file" ...
 21 fi
 22 done
 23
 24
 25
 26 # Correct glob use, but requires nonstandard bash extension.
 27 shopt -s nullglob # Bash extension,
 28 #+ so that empty glob matches will work.
 29 for file in ./* ; do # Use "./*", NEVER bare "*"
 30 COMMAND ... "$file" ...
 31 done
 32
 33

 34
 35 # These handle all filenames correctly;
 36 #+ can be unwieldy if COMMAND is large:
 37 find ... -exec COMMAND... {} \;
 38 find ... -exec COMMAND... {} \+ # If multiple files are okay for COMMAND.
 39
 40
 41
 42 # This skips filenames with control characters
 43 #+ (including tab and newline).
 44 IFS="$(printf '\n\t')"
 45 controlchars="$(printf '*[\001-\037\177]*')"
 46 for file in $(find . ! -name "$controlchars"') ; do
 47 COMMAND "$file" ...
 48 done
 49
 50
 51
 52 # Okay if filenames can't contain tabs or newlines --
 53 #+ beware the assumption.
 54 IFS="$(printf '\n\t')"
 55 for file in $(find .) ; do
 56 COMMAND "$file" ...
 57 done
 58
 59
 60
 61 # Requires nonstandard but common extensions in find and xargs:
 62 find . -print0 | xargs -0 COMMAND
 63
 64 # Requires nonstandard extensions to find and to shell (bash works).
 65 # variables might not stay set once the loop ends:
 66 find . -print0 | while IFS="" read -r -d "" file ; do ...
 67 COMMAND "$file" # Use quoted "$file", not $file, everywhere.
 68 done
 69
 70
 71
 72 # Requires nonstandard extensions to find and to shell (bash works).
 73 # Underlying system must include named pipes (FIFOs)
 74 #+ or the /dev/fd mechanism.
 75 # In this version, variables *do* stay set after the loop ends,
 76 # and you can read from stdin.
 77 #+ (Change the 4 to another number if fd 4 is needed.)
 78
 79 while IFS="" read -r -d "" file <&4 ; do
 80 COMMAND "$file" # Use quoted "$file" -- not $file, everywhere.
 81 done 4< <(find . -print0)
 82
 83
 84 # Named pipe version.
 85 # Requires nonstandard extensions to find and to shell's read (bash ok).
 86 # Underlying system must include named pipes (FIFOs).
 87 # Again, in this version, variables *do* stay set after the loop ends,
 88 # and you can read from stdin.
 89 # (Change the 4 to something else if fd 4 needed).
 90
 91 mkfifo mypipe
 92
 93 find . -print0 > mypipe &
 94 while IFS="" read -r -d "" file <&4 ; do
 95 COMMAND "$file" # Use quoted "$file", not $file, everywhere.
 96 done 4< mypipe

Prev Home Next

Awk Exit Codes With Special Meanings
Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting

Prev Next

Appendix E. Exit Codes With Special Meanings

Table E-1. Reserved Exit Codes

Exit Code
Number

Meaning Example Comments

1 Catchall for general errors let "var1 = 1/0" Miscellaneous errors, such as "divide by
zero" and other impermissible operations

2 Misuse of shell builtins
(according to Bash
documentation)

empty_function()
{}

Missing keyword or command, or
permission problem (and diff return code on
a failed binary file comparison).

126 Command invoked cannot
execute

/dev/null Permission problem or command is not an
executable

127 "command not found" illegal_command Possible problem with $PATH or a typo
128 Invalid argument to exit exit 3.14159 exit takes only integer args in the range 0 -

255 (see first footnote)
128+n Fatal error signal "n" kill -9 $PPID of

script
$? returns 137 (128 + 9)

130 Script terminated by
Control-C

Ctl-C Control-C is fatal error signal 2, (130 = 128
+ 2, see above)

255* Exit status out of range exit -1 exit takes only integer args in the range 0 -
255

According to the above table, exit codes 1 - 2, 126 - 165, and 255 [1] have special meanings, and should
therefore be avoided for user-specified exit parameters. Ending a script with exit 127 would certainly cause
confusion when troubleshooting (is the error code a "command not found" or a user-defined one?). However,
many scripts use an exit 1 as a general bailout-upon-error. Since exit code 1 signifies so many possible errors,
it is not particularly useful in debugging.

There has been an attempt to systematize exit status numbers (see /usr/include/sysexits.h), but this
is intended for C and C++ programmers. A similar standard for scripting might be appropriate. The author of
this document proposes restricting user-defined exit codes to the range 64 - 113 (in addition to 0, for success),
to conform with the C/C++ standard. This would allot 50 valid codes, and make troubleshooting scripts more
straightforward. [2] All user-defined exit codes in the accompanying examples to this document conform to
this standard, except where overriding circumstances exist, as in Example 9-2.

Issuing a $? from the command-line after a shell script exits gives results consistent with the table above
only from the Bash or sh prompt. Running the C-shell or tcsh may give different values in some cases.

Notes

[1] Out of range exit values can result in unexpected exit codes. An exit value greater than 255 returns an
exit code modulo 256. For example, exit 3809 gives an exit code of 225 (3809 % 256 = 225).

[2] An update of /usr/include/sysexits.h allocates previously unused exit codes from 64 - 78. It
may be anticipated that the range of unallotted exit codes will be further restricted in the future. The
author of this document will not do fixups on the scripting examples to conform to the changing
standard. This should not cause any problems, since there is no overlap or conflict in usage of exit codes
between compiled C/C++ binaries and shell scripts.

Prev Home Next
Parsing and Managing Pathnames A Detailed Introduction to I/O and

I/O Redirection
Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting

Prev Next

Appendix F. A Detailed Introduction to I/O and I/O
Redirection
written by Stéphane Chazelas, and revised by the document author

A command expects the first three file descriptors to be available. The first, fd 0 (standard input, stdin), is
for reading. The other two (fd 1, stdout and fd 2, stderr) are for writing.

There is a stdin, stdout, and a stderr associated with each command. ls 2>&1 means temporarily
connecting the stderr of the ls command to the same "resource" as the shell's stdout.

By convention, a command reads its input from fd 0 (stdin), prints normal output to fd 1 (stdout), and
error ouput to fd 2 (stderr). If one of those three fd's is not open, you may encounter problems:

bash$ cat /etc/passwd >&-
cat: standard output: Bad file descriptor

For example, when xterm runs, it first initializes itself. Before running the user's shell, xterm opens the
terminal device (/dev/pts/<n> or something similar) three times.

At this point, Bash inherits these three file descriptors, and each command (child process) run by Bash inherits
them in turn, except when you redirect the command. Redirection means reassigning one of the file
descriptors to another file (or a pipe, or anything permissible). File descriptors may be reassigned locally (for
a command, a command group, a subshell, a while or if or case or for loop...), or globally, for the remainder of
the shell (using exec).

ls > /dev/null means running ls with its fd 1 connected to /dev/null.

bash$ lsof -a -p $$ -d0,1,2
COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME

 bash 363 bozo 0u CHR 136,1 3 /dev/pts/1
 bash 363 bozo 1u CHR 136,1 3 /dev/pts/1
 bash 363 bozo 2u CHR 136,1 3 /dev/pts/1

bash$ exec 2> /dev/null
bash$ lsof -a -p $$ -d0,1,2
COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME

 bash 371 bozo 0u CHR 136,1 3 /dev/pts/1
 bash 371 bozo 1u CHR 136,1 3 /dev/pts/1
 bash 371 bozo 2w CHR 1,3 120 /dev/null

bash$ bash -c 'lsof -a -p $$ -d0,1,2' | cat
COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME

 lsof 379 root 0u CHR 136,1 3 /dev/pts/1
 lsof 379 root 1w FIFO 0,0 7118 pipe
 lsof 379 root 2u CHR 136,1 3 /dev/pts/1

bash$ echo "$(bash -c 'lsof -a -p $$ -d0,1,2' 2>&1)"
COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME

 lsof 426 root 0u CHR 136,1 3 /dev/pts/1
 lsof 426 root 1w FIFO 0,0 7520 pipe
 lsof 426 root 2w FIFO 0,0 7520 pipe

This works for different types of redirection.

Exercise: Analyze the following script.

 1 #! /usr/bin/env bash
 2
 3 mkfifo /tmp/fifo1 /tmp/fifo2
 4 while read a; do echo "FIFO1: $a"; done < /tmp/fifo1 & exec 7> /tmp/fifo1
 5 exec 8> >(while read a; do echo "FD8: $a, to fd7"; done >&7)
 6
 7 exec 3>&1
 8 (
 9 (
 10 (
 11 while read a; do echo "FIFO2: $a"; done < /tmp/fifo2 | tee /dev/stderr \
 12 | tee /dev/fd/4 | tee /dev/fd/5 | tee /dev/fd/6 >&7 & exec 3> /tmp/fifo2
 13
 14 echo 1st, to stdout
 15 sleep 1
 16 echo 2nd, to stderr >&2
 17 sleep 1
 18 echo 3rd, to fd 3 >&3
 19 sleep 1
 20 echo 4th, to fd 4 >&4
 21 sleep 1
 22 echo 5th, to fd 5 >&5
 23 sleep 1
 24 echo 6th, through a pipe | sed 's/.*/PIPE: &, to fd 5/' >&5
 25 sleep 1
 26 echo 7th, to fd 6 >&6
 27 sleep 1
 28 echo 8th, to fd 7 >&7
 29 sleep 1
 30 echo 9th, to fd 8 >&8
 31
 32) 4>&1 >&3 3>&- | while read a; do echo "FD4: $a"; done 1>&3 5>&- 6>&-
 33) 5>&1 >&3 | while read a; do echo "FD5: $a"; done 1>&3 6>&-
 34) 6>&1 >&3 | while read a; do echo "FD6: $a"; done 3>&-
 35
 36 rm -f /tmp/fifo1 /tmp/fifo2
 37
 38
 39 # For each command and subshell, figure out which fd points to what.
 40 # Good luck!
 41
 42 exit 0

Prev Home Next
Exit Codes With Special Meanings Command-Line Options

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Next

Appendix G. Command-Line Options
Many executables, whether binaries or script files, accept options to modify their run-time behavior. For
example: from the command-line, typing command -o would invoke command, with option o.

G.1. Standard Command-Line Options
Over time, there has evolved a loose standard for the meanings of command-line option flags. The GNU
utilities conform more closely to this "standard" than older UNIX utilities.

Traditionally, UNIX command-line options consist of a dash, followed by one or more lowercase letters. The
GNU utilities added a double-dash, followed by a complete word or compound word.

The two most widely-accepted options are:

-h

--help

Help: Give usage message and exit.

•

-v

--version

Version: Show program version and exit.

•

Other common options are:

-a

--all

All: show all information or operate on all arguments.

•

-l

--list

List: list files or arguments without taking other action.

•

-o

Output filename

•

-q

--quiet

Quiet: suppress stdout.

•

-r

-R

--recursive

Recursive: Operate recursively (down directory tree).

•

-v

--verbose

Verbose: output additional information to stdout or stderr.

•

-z

--compress

Compress: apply compression (usually gzip).

•

However:

In tar and gawk:

-f

--file

File: filename follows.

•

In cp, mv, rm:

-f

--force

Force: force overwrite of target file(s).

•

Many UNIX and Linux utilities deviate from this "standard," so it is dangerous to assume that a given
option will behave in a standard way. Always check the man page for the command in question when in
doubt.

A complete table of recommended options for the GNU utilities is available at the GNU standards page.

Prev Home Next
A Detailed Introduction to I/O and
I/O Redirection

Bash Command-Line Options

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Appendix G. Command-Line Options Next

http://www.gnu.org/prep/standards/

G.2. Bash Command-Line Options

Bash itself has a number of command-line options. Here are some of the more useful ones.

-c

Read commands from the following string and assign any arguments to the positional parameters.

bash$ bash -c 'set a b c d; IFS="+-;"; echo "$*"'
a+b+c+d

•

-r

--restricted

Runs the shell, or a script, in restricted mode.

•

--posix

Forces Bash to conform to POSIX mode.

•

--version

Display Bash version information and exit.

•

--

End of options. Anything further on the command line is an argument, not an option.

•

Prev Home Next
Command-Line Options Up Important Files

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Next

Appendix H. Important Files
startup files

These files contain the aliases and environmental variables made available to Bash running as a user
shell and to all Bash scripts invoked after system initialization.

/etc/profile
Systemwide defaults, mostly setting the environment (all Bourne-type shells, not just Bash [1])

/etc/bashrc
systemwide functions and aliases for Bash

$HOME/.bash_profile
user-specific Bash environmental default settings, found in each user's home directory (the local
counterpart to /etc/profile)

$HOME/.bashrc
user-specific Bash init file, found in each user's home directory (the local counterpart to
/etc/bashrc). Only interactive shells and user scripts read this file. See Appendix M for a sample
.bashrc file.

logout file

$HOME/.bash_logout
user-specific instruction file, found in each user's home directory. Upon exit from a login (Bash) shell,
the commands in this file execute.

data files

/etc/passwd
A listing of all the user accounts on the system, their identities, their home directories, the groups they
belong to, and their default shell. Note that the user passwords are not stored in this file, [2] but in
/etc/shadow in encrypted form.

system configuration files

/etc/sysconfig/hwconf
Listing and description of attached hardware devices. This information is in text form and can be
extracted and parsed.

bash$ grep -A 5 AUDIO /etc/sysconfig/hwconf
class: AUDIO

 bus: PCI
 detached: 0
 driver: snd-intel8x0
 desc: "Intel Corporation 82801CA/CAM AC'97 Audio Controller"
 vendorId: 8086

This file is present on Red Hat and Fedora Core installations, but may be
missing from other distros.

Notes

[1] This does not apply to csh, tcsh, and other shells not related to or descended from the classic Bourne
shell (sh).

[2] In older versions of UNIX, passwords were stored in /etc/passwd, and that explains the name of the
file.

Prev Home Next
Bash Command-Line Options Important System Directories

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Next

Appendix I. Important System Directories
Sysadmins and anyone else writing administrative scripts should be intimately familiar with the following
system directories.

/bin

Binaries (executables). Basic system programs and utilities (such as bash).

•

/usr/bin [1]

More system binaries.

•

/usr/local/bin

Miscellaneous binaries local to the particular machine.

•

/sbin

System binaries. Basic system administrative programs and utilities (such as fsck).

•

/usr/sbin

More system administrative programs and utilities.

•

/etc

Et cetera. Systemwide configuration scripts.

Of particular interest are the /etc/fstab (filesystem table), /etc/mtab (mounted filesystem
table), and the /etc/inittab files.

•

/etc/rc.d

Boot scripts, on Red Hat and derivative distributions of Linux.

•

/usr/share/doc

Documentation for installed packages.

•

/usr/man

The systemwide manpages.

•

/dev

Device directory. Entries (but not mount points) for physical and virtual devices. See Chapter 29.

•

/proc

Process directory. Contains information and statistics about running processes and kernel parameters.
See Chapter 29.

•

/sys

Systemwide device directory. Contains information and statistics about device and device names. This
is newly added to Linux with the 2.6.X kernels.

•

/mnt

Mount. Directory for mounting hard drive partitions, such as /mnt/dos, and physical devices. In
newer Linux distros, the /media directory has taken over as the preferred mount point for I/O
devices.

•

/media•

In newer Linux distros, the preferred mount point for I/O devices, such as CD/DVD drives or USB
flash drives.
/var

Variable (changeable) system files. This is a catchall "scratchpad" directory for data generated while a
Linux/UNIX machine is running.

•

/var/log

Systemwide log files.

•

/var/spool/mail

User mail spool.

•

/lib

Systemwide library files.

•

/usr/lib

More systemwide library files.

•

/tmp

System temporary files.

•

/boot

System boot directory. The kernel, module links, system map, and boot manager reside here.

Altering files in this directory may result in an unbootable system.

•

Notes

[1] Some early UNIX systems had a fast, small-capacity fixed disk (containing /, the root partition), and a
second drive which was larger, but slower (containing /usr and other partitions). The most frequently
used programs and utilities therefore resided on the small-but-fast drive, in /bin, and the others on the
slower drive, in /usr/bin.

This likewise accounts for the split between /sbin and /usr/sbin, /lib and /usr/lib, etc.

Prev Home Next
Important Files An Introduction to Programmable

Completion
Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting

Prev Next

Appendix J. An Introduction to Programmable
Completion
The programmable completion feature in Bash permits typing a partial command, then pressing the [Tab] key
to auto-complete the command sequence. [1] If multiple completions are possible, then [Tab] lists them all.
Let's see how it works.

bash$ xtra[Tab]
xtraceroute xtrapin xtrapproto

 xtraceroute.real xtrapinfo xtrapreset
 xtrapchar xtrapout xtrapstats

bash$ xtrac[Tab]
xtraceroute xtraceroute.real

bash$ xtraceroute.r[Tab]
xtraceroute.real

Tab completion also works for variables and path names.

bash$ echo $BASH[Tab]
$BASH $BASH_COMPLETION $BASH_SUBSHELL

 $BASH_ARGC $BASH_COMPLETION_DIR $BASH_VERSINFO
 $BASH_ARGV $BASH_LINENO $BASH_VERSION
 $BASH_COMMAND $BASH_SOURCE

bash$ echo /usr/local/[Tab]
bin/ etc/ include/ libexec/ sbin/ src/

 doc/ games/ lib/ man/ share/

The Bash complete and compgen builtins make it possible for tab completion to recognize partial parameters
and options to commands. In a very simple case, we can use complete from the command-line to specify a
short list of acceptable parameters.

bash$ touch sample_command
bash$ touch file1.txt file2.txt file2.doc file30.txt file4.zzz
bash$ chmod +x sample_command
bash$ complete -f -X '!*.txt' sample_command

bash$./sample[Tab][Tab]
sample_command
file1.txt file2.txt file30.txt

The -f option to complete specifies filenames, and -X the filter pattern.

For anything more complex, we could write a script that specifies a list of acceptable command-line
parameters. The compgen builtin expands a list of arguments to generate completion matches.

Let us take a modified version of the UseGetOpt.sh script as an example command. This script accepts a
number of command-line parameters, preceded by either a single or double dash. And here is the
corresponding completion script, by convention given a filename corresponding to its associated command.

Example J-1. Completion script for UseGetOpt.sh

 1 # file: UseGetOpt-2
 2 # UseGetOpt-2.sh parameter-completion
 3
 4 _UseGetOpt-2 () # By convention, the function name
 5 { #+ starts with an underscore.
 6 local cur
 7 # Pointer to current completion word.
 8 # By convention, it's named "cur" but this isn't strictly necessary.
 9
 10 COMPREPLY=() # Array variable storing the possible completions.
 11 cur=${COMP_WORDS[COMP_CWORD]}
 12
 13 case "$cur" in
 14 -*)
 15 COMPREPLY=($(compgen -W '-a -d -f -l -t -h --aoption --debug \
 16 --file --log --test --help --' -- $cur));;
 17 # Generate the completion matches and load them into $COMPREPLY array.
 18 # xx) May add more cases here.
 19 # yy)
 20 # zz)
 21 esac
 22
 23 return 0
 24 }
 25
 26 complete -F _UseGetOpt-2 -o filenames ./UseGetOpt-2.sh
 27 # ^^ ^^^^^^^^^^^^ Invokes the function _UseGetOpt-2.

Now, let's try it.

bash$ source UseGetOpt-2

bash$./UseGetOpt-2.sh -[Tab]
-- --aoption --debug --file --help --log --test

 -a -d -f -h -l -t

bash$./UseGetOpt-2.sh --[Tab]
-- --aoption --debug --file --help --log --test

We begin by sourcing the "completion script." This sets the command-line parameters. [2]

In the first instance, hitting [Tab] after a single dash, the output is all the possible parameters preceded by one
or more dashes. Hitting [Tab] after two dashes gives the possible parameters preceded by two or more dashes.

Now, just what is the point of having to jump through flaming hoops to enable command-line tab completion?
It saves keystrokes. [3]

--

Resources:

Bash programmable completion project

Mitch Frazier's Linux Journal article, More on Using the Bash Complete Command

Steve's excellent two-part article, "An Introduction to Bash Completion": Part 1 and Part 2

http://freshmeat.net/projects/bashcompletion
http://www.linuxjournal.com
http://www.linuxjournal.com/content/more-using-bash-complete-command
http://www.debian-administration.org/article/An_introduction_to_bash_completion_part_1
http://www.debian-administration.org/article/An_introduction_to_bash_completion_part_2

Notes

[1] This works only from the command line, of course, and not within a script.
[2] Normally the default parameter completion files reside in either the /etc/profile.d directory or in

/etc/bash_completion. These autoload on system startup. So, after writing a useful completion
script, you might wish to move it (as root, of course) to one of these directories.

[3] It has been extensively documented that programmers are willing to put in long hours of effort in order
to save ten minutes of "unnecessary" labor. This is known as optimization.

Prev Home Next
Important System Directories Localization

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Next

Appendix K. Localization
Localization is an undocumented Bash feature.

A localized shell script echoes its text output in the language defined as the system's locale. A Linux user in
Berlin, Germany, would get script output in German, whereas his cousin in Berlin, Maryland, would get
output from the same script in English.

To create a localized script, use the following template to write all messages to the user (error messages,
prompts, etc.).

 1 #!/bin/bash
 2 # localized.sh
 3 # Script by Stéphane Chazelas,
 4 #+ modified by Bruno Haible, bugfixed by Alfredo Pironti.
 5
 6 . gettext.sh
 7
 8 E_CDERROR=65
 9
 10 error()
 11 {
 12 printf "$@" >&2
 13 exit $E_CDERROR
 14 }
 15
 16 cd $var || error "`eval_gettext \"Can\'t cd to \\\$var.\"`"
 17 # The triple backslashes (escapes) in front of $var needed
 18 #+ "because eval_gettext expects a string
 19 #+ where the variable values have not yet been substituted."
 20 # -- per Bruno Haible
 21 read -p "`gettext \"Enter the value: \"`" var
 22 # ...
 23
 24
 25 # --
 26 # Alfredo Pironti comments:
 27
 28 # This script has been modified to not use the $"..." syntax in
 29 #+ favor of the "`gettext \"...\"`" syntax.
 30 # This is ok, but with the new localized.sh program, the commands
 31 #+ "bash -D filename" and "bash --dump-po-string filename"
 32 #+ will produce no output
 33 #+ (because those command are only searching for the $"..." strings)!
 34 # The ONLY way to extract strings from the new file is to use the
 35 # 'xgettext' program. However, the xgettext program is buggy.
 36
 37 # Note that 'xgettext' has another bug.
 38 #
 39 # The shell fragment:
 40 # gettext -s "I like Bash"
 41 # will be correctly extracted, but . . .
 42 # xgettext -s "I like Bash"
 43 # . . . fails!
 44 # 'xgettext' will extract "-s" because
 45 #+ the command only extracts the
 46 #+ very first argument after the 'gettext' word.
 47
 48
 49 # Escape characters:
 50 #
 51 # To localize a sentence like
 52 # echo -e "Hello\tworld!"

 53 #+ you must use
 54 # echo -e "`gettext \"Hello\\tworld\"`"
 55 # The "double escape character" before the `t' is needed because
 56 #+ 'gettext' will search for a string like: 'Hello\tworld'
 57 # This is because gettext will read one literal `\')
 58 #+ and will output a string like "Bonjour\tmonde",
 59 #+ so the 'echo' command will display the message correctly.
 60 #
 61 # You may not use
 62 # echo "`gettext -e \"Hello\tworld\"`"
 63 #+ due to the xgettext bug explained above.
 64
 65
 66
 67 # Let's localize the following shell fragment:
 68 # echo "-h display help and exit"
 69 #
 70 # First, one could do this:
 71 # echo "`gettext \"-h display help and exit\"`"
 72 # This way 'xgettext' will work ok,
 73 #+ but the 'gettext' program will read "-h" as an option!
 74 #
 75 # One solution could be
 76 # echo "`gettext -- \"-h display help and exit\"`"
 77 # This way 'gettext' will work,
 78 #+ but 'xgettext' will extract "--", as referred to above.
 79 #
 80 # The workaround you may use to get this string localized is
 81 # echo -e "`gettext \"\\0-h display help and exit\"`"
 82 # We have added a \0 (NULL) at the beginning of the sentence.
 83 # This way 'gettext' works correctly, as does 'xgettext.'
 84 # Moreover, the NULL character won't change the behavior
 85 #+ of the 'echo' command.
 86 # --

bash$ bash -D localized.sh
"Can't cd to %s."

 "Enter the value: "

This lists all the localized text. (The -D option lists double-quoted strings prefixed by a $, without executing
the script.)

bash$ bash --dump-po-strings localized.sh
#: a:6

 msgid "Can't cd to %s."
 msgstr ""
 #: a:7
 msgid "Enter the value: "
 msgstr ""

The --dump-po-strings option to Bash resembles the -D option, but uses gettext "po" format.
Bruno Haible points out:

Starting with gettext-0.12.2, xgettext -o - localized.sh is recommended instead of bash
--dump-po-strings localized.sh, because xgettext . . .

1. understands the gettext and eval_gettext commands (whereas bash --dump-po-strings understands only
its deprecated $"..." syntax)

2. can extract comments placed by the programmer, intended to be read by the translator.

This shell code is then not specific to Bash any more; it works the same way with Bash 1.x and other
/bin/sh implementations.

Now, build a language.po file for each language that the script will be translated into, specifying the
msgstr. Alfredo Pironti gives the following example:

fr.po:

 1 #: a:6
 2 msgid "Can't cd to $var."
 3 msgstr "Impossible de se positionner dans le repertoire $var."
 4 #: a:7
 5 msgid "Enter the value: "
 6 msgstr "Entrez la valeur : "
 7
 8 # The string are dumped with the variable names, not with the %s syntax,
 9 #+ similar to C programs.
 10 #+ This is a very cool feature if the programmer uses
 11 #+ variable names that make sense!

Then, run msgfmt.

msgfmt -o localized.sh.mo fr.po

Place the resulting localized.sh.mo file in the /usr/local/share/locale/fr/LC_MESSAGES
directory, and at the beginning of the script, insert the lines:

 1 TEXTDOMAINDIR=/usr/local/share/locale
 2 TEXTDOMAIN=localized.sh

If a user on a French system runs the script, she will get French messages.

With older versions of Bash or other shells, localization requires gettext, using the -s option. In this
case, the script becomes:

 1 #!/bin/bash
 2 # localized.sh
 3
 4 E_CDERROR=65
 5
 6 error() {
 7 local format=$1
 8 shift
 9 printf "$(gettext -s "$format")" "$@" >&2
 10 exit $E_CDERROR
 11 }
 12 cd $var || error "Can't cd to %s." "$var"
 13 read -p "$(gettext -s "Enter the value: ")" var
 14 # ...

The TEXTDOMAIN and TEXTDOMAINDIR variables need to be set and exported to the environment. This
should be done within the script itself.

This appendix written by Stéphane Chazelas, with modifications suggested by Alfredo Pironti, and by Bruno
Haible, maintainer of GNU gettext.

Prev Home Next
An Introduction to Programmable
Completion

History Commands

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Next

Appendix L. History Commands
The Bash shell provides command-line tools for editing and manipulating a user's command history. This is
primarily a convenience, a means of saving keystrokes.

Bash history commands:

history1.
fc2.

bash$ history
 1 mount /mnt/cdrom

 2 cd /mnt/cdrom
 3 ls
 ...

Internal variables associated with Bash history commands:

$HISTCMD1.
$HISTCONTROL2.
$HISTIGNORE3.
$HISTFILE4.
$HISTFILESIZE5.
$HISTSIZE6.
$HISTTIMEFORMAT (Bash, ver. 3.0 or later)7.
!!8.
!$9.
!#10.
!N11.
!-N12.
!STRING13.
!?STRING?14.
^STRING^string^15.

Unfortunately, the Bash history tools find no use in scripting.

 1 #!/bin/bash
 2 # history.sh
 3 # A (vain) attempt to use the 'history' command in a script.
 4
 5 history # No output.
 6
 7 var=$(history); echo "$var" # $var is empty.
 8
 9 # History commands are, by default, disabled within a script.
 10 # However, as dhw points out,
 11 #+ set -o history
 12 #+ enables the history mechanism.
 13
 14 set -o history
 15 var=$(history); echo "$var" # 1 var=$(history)

bash$./history.sh
(no output)

The Advancing in the Bash Shell site gives a good introduction to the use of history commands in Bash.

http://samrowe.com/wordpress/advancing-in-the-bash-shell/

Prev Home Next
Localization Sample .bashrc and

.bash_profile Files
Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting

Prev Next

Appendix M. Sample .bashrc and
.bash_profile Files
The ~/.bashrc file determines the behavior of interactive shells. A good look at this file can lead to a
better understanding of Bash.

Emmanuel Rouat contributed the following very elaborate .bashrc file, written for a Linux system. He
welcomes reader feedback on it.

Study the file carefully, and feel free to reuse code snippets and functions from it in your own .bashrc file
or even in your scripts.

Example M-1. Sample .bashrc file

 1 # === #
 2 #
 3 # PERSONAL $HOME/.bashrc FILE for bash-3.0 (or later)
 4 # By Emmanuel Rouat [no-email]
 5 #
 6 # Last modified: Tue Nov 20 22:04:47 CET 2012
 7
 8 # This file is normally read by interactive shells only.
 9 #+ Here is the place to define your aliases, functions and
 10 #+ other interactive features like your prompt.
 11 #
 12 # The majority of the code here assumes you are on a GNU
 13 #+ system (most likely a Linux box) and is often based on code
 14 #+ found on Usenet or Internet.
 15 #
 16 # See for instance:
 17 # http://tldp.org/LDP/abs/html/index.html
 18 # http://www.caliban.org/bash
 19 # http://www.shelldorado.com/scripts/categories.html
 20 # http://www.dotfiles.org
 21 #
 22 # The choice of colors was done for a shell with a dark background
 23 #+ (white on black), and this is usually also suited for pure text-mode
 24 #+ consoles (no X server available). If you use a white background,
 25 #+ you'll have to do some other choices for readability.
 26 #
 27 # This bashrc file is a bit overcrowded.
 28 # Remember, it is just just an example.
 29 # Tailor it to your needs.
 30 #
 31 # === #
 32
 33 # --> Comments added by HOWTO author.
 34
 35 # If not running interactively, don't do anything
 36 [-z "$PS1"] && return
 37
 38
 39 #---
 40 # Source global definitions (if any)
 41 #---
 42
 43
 44 if [-f /etc/bashrc]; then
 45 . /etc/bashrc # --> Read /etc/bashrc, if present.
 46 fi

mailto:emmanuel.rouat@wanadoo.fr

 47
 48
 49 #--
 50 # Automatic setting of $DISPLAY (if not set already).
 51 # This works for me - your mileage may vary. . . .
 52 # The problem is that different types of terminals give
 53 #+ different answers to 'who am i' (rxvt in particular can be
 54 #+ troublesome) - however this code seems to work in a majority
 55 #+ of cases.
 56 #--
 57
 58 function get_xserver ()
 59 {
 60 case $TERM in
 61 xterm)
 62 XSERVER=$(who am i | awk '{print $NF}' | tr -d ')''(')
 63 # Ane-Pieter Wieringa suggests the following alternative:
 64 # I_AM=$(who am i)
 65 # SERVER=${I_AM#*(}
 66 # SERVER=${SERVER%*)}
 67 XSERVER=${XSERVER%%:*}
 68 ;;
 69 aterm | rxvt)
 70 # Find some code that works here. ...
 71 ;;
 72 esac
 73 }
 74
 75 if [-z ${DISPLAY:=""}]; then
 76 get_xserver
 77 if [[-z ${XSERVER} || ${XSERVER} == $(hostname) ||
 78 ${XSERVER} == "unix"]]; then
 79 DISPLAY=":0.0" # Display on local host.
 80 else
 81 DISPLAY=${XSERVER}:0.0 # Display on remote host.
 82 fi
 83 fi
 84
 85 export DISPLAY
 86
 87 #---
 88 # Some settings
 89 #---
 90
 91 #set -o nounset # These two options are useful for debugging.
 92 #set -o xtrace
 93 alias debug="set -o nounset; set -o xtrace"
 94
 95 ulimit -S -c 0 # Don't want coredumps.
 96 set -o notify
 97 set -o noclobber
 98 set -o ignoreeof
 99
 100
 101 # Enable options:
 102 shopt -s cdspell
 103 shopt -s cdable_vars
 104 shopt -s checkhash
 105 shopt -s checkwinsize
 106 shopt -s sourcepath
 107 shopt -s no_empty_cmd_completion
 108 shopt -s cmdhist
 109 shopt -s histappend histreedit histverify
 110 shopt -s extglob # Necessary for programmable completion.
 111
 112 # Disable options:

 113 shopt -u mailwarn
 114 unset MAILCHECK # Don't want my shell to warn me of incoming mail.
 115
 116
 117 #---
 118 # Greeting, motd etc. ...
 119 #---
 120
 121 # Color definitions (taken from Color Bash Prompt HowTo).
 122 # Some colors might look different of some terminals.
 123 # For example, I see 'Bold Red' as 'orange' on my screen,
 124 # hence the 'Green' 'BRed' 'Red' sequence I often use in my prompt.
 125
 126
 127 # Normal Colors
 128 Black='\e[0;30m' # Black
 129 Red='\e[0;31m' # Red
 130 Green='\e[0;32m' # Green
 131 Yellow='\e[0;33m' # Yellow
 132 Blue='\e[0;34m' # Blue
 133 Purple='\e[0;35m' # Purple
 134 Cyan='\e[0;36m' # Cyan
 135 White='\e[0;37m' # White
 136
 137 # Bold
 138 BBlack='\e[1;30m' # Black
 139 BRed='\e[1;31m' # Red
 140 BGreen='\e[1;32m' # Green
 141 BYellow='\e[1;33m' # Yellow
 142 BBlue='\e[1;34m' # Blue
 143 BPurple='\e[1;35m' # Purple
 144 BCyan='\e[1;36m' # Cyan
 145 BWhite='\e[1;37m' # White
 146
 147 # Background
 148 On_Black='\e[40m' # Black
 149 On_Red='\e[41m' # Red
 150 On_Green='\e[42m' # Green
 151 On_Yellow='\e[43m' # Yellow
 152 On_Blue='\e[44m' # Blue
 153 On_Purple='\e[45m' # Purple
 154 On_Cyan='\e[46m' # Cyan
 155 On_White='\e[47m' # White
 156
 157 NC="\e[m" # Color Reset
 158
 159
 160 ALERT=${BWhite}${On_Red} # Bold White on red background
 161
 162
 163
 164 echo -e "${BCyan}This is BASH ${BRed}${BASH_VERSION%.*}${BCyan}\
 165 - DISPLAY on ${BRed}$DISPLAY${NC}\n"
 166 date
 167 if [-x /usr/games/fortune]; then
 168 /usr/games/fortune -s # Makes our day a bit more fun.... :-)
 169 fi
 170
 171 function _exit() # Function to run upon exit of shell.
 172 {
 173 echo -e "${BRed}Hasta la vista, baby${NC}"
 174 }
 175 trap _exit EXIT
 176
 177 #---
 178 # Shell Prompt - for many examples, see:

 179 # http://www.debian-administration.org/articles/205
 180 # http://www.askapache.com/linux/bash-power-prompt.html
 181 # http://tldp.org/HOWTO/Bash-Prompt-HOWTO
 182 # https://github.com/nojhan/liquidprompt
 183 #---
 184 # Current Format: [TIME USER@HOST PWD] >
 185 # TIME:
 186 # Green == machine load is low
 187 # Orange == machine load is medium
 188 # Red == machine load is high
 189 # ALERT == machine load is very high
 190 # USER:
 191 # Cyan == normal user
 192 # Orange == SU to user
 193 # Red == root
 194 # HOST:
 195 # Cyan == local session
 196 # Green == secured remote connection (via ssh)
 197 # Red == unsecured remote connection
 198 # PWD:
 199 # Green == more than 10% free disk space
 200 # Orange == less than 10% free disk space
 201 # ALERT == less than 5% free disk space
 202 # Red == current user does not have write privileges
 203 # Cyan == current filesystem is size zero (like /proc)
 204 # >:
 205 # White == no background or suspended jobs in this shell
 206 # Cyan == at least one background job in this shell
 207 # Orange == at least one suspended job in this shell
 208 #
 209 # Command is added to the history file each time you hit enter,
 210 # so it's available to all shells (using 'history -a').
 211
 212
 213 # Test connection type:
 214 if [-n "${SSH_CONNECTION}"]; then
 215 CNX=${Green} # Connected on remote machine, via ssh (good).
 216 elif [["${DISPLAY%%:0*}" != ""]]; then
 217 CNX=${ALERT} # Connected on remote machine, not via ssh (bad).
 218 else
 219 CNX=${BCyan} # Connected on local machine.
 220 fi
 221
 222 # Test user type:
 223 if [[${USER} == "root"]]; then
 224 SU=${Red} # User is root.
 225 elif [[${USER} != $(logname)]]; then
 226 SU=${BRed} # User is not login user.
 227 else
 228 SU=${BCyan} # User is normal (well ... most of us are).
 229 fi
 230
 231
 232
 233 NCPU=$(grep -c 'processor' /proc/cpuinfo) # Number of CPUs
 234 SLOAD=$((100*${NCPU})) # Small load
 235 MLOAD=$((200*${NCPU})) # Medium load
 236 XLOAD=$((400*${NCPU})) # Xlarge load
 237
 238 # Returns system load as percentage, i.e., '40' rather than '0.40)'.
 239 function load()
 240 {
 241 local SYSLOAD=$(cut -d " " -f1 /proc/loadavg | tr -d '.')
 242 # System load of the current host.
 243 echo $((10#$SYSLOAD)) # Convert to decimal.
 244 }

 245
 246 # Returns a color indicating system load.
 247 function load_color()
 248 {
 249 local SYSLOAD=$(load)
 250 if [${SYSLOAD} -gt ${XLOAD}]; then
 251 echo -en ${ALERT}
 252 elif [${SYSLOAD} -gt ${MLOAD}]; then
 253 echo -en ${Red}
 254 elif [${SYSLOAD} -gt ${SLOAD}]; then
 255 echo -en ${BRed}
 256 else
 257 echo -en ${Green}
 258 fi
 259 }
 260
 261 # Returns a color according to free disk space in $PWD.
 262 function disk_color()
 263 {
 264 if [! -w "${PWD}"] ; then
 265 echo -en ${Red}
 266 # No 'write' privilege in the current directory.
 267 elif [-s "${PWD}"] ; then
 268 local used=$(command df -P "$PWD" |
 269 awk 'END {print $5} {sub(/%/,"")}')
 270 if [${used} -gt 95]; then
 271 echo -en ${ALERT} # Disk almost full (>95%).
 272 elif [${used} -gt 90]; then
 273 echo -en ${BRed} # Free disk space almost gone.
 274 else
 275 echo -en ${Green} # Free disk space is ok.
 276 fi
 277 else
 278 echo -en ${Cyan}
 279 # Current directory is size '0' (like /proc, /sys etc).
 280 fi
 281 }
 282
 283 # Returns a color according to running/suspended jobs.
 284 function job_color()
 285 {
 286 if [$(jobs -s | wc -l) -gt "0"]; then
 287 echo -en ${BRed}
 288 elif [$(jobs -r | wc -l) -gt "0"] ; then
 289 echo -en ${BCyan}
 290 fi
 291 }
 292
 293 # Adds some text in the terminal frame (if applicable).
 294
 295
 296 # Now we construct the prompt.
 297 PROMPT_COMMAND="history -a"
 298 case ${TERM} in
 299 *term | rxvt | linux)
 300 PS1="\[\$(load_color)\][\A\[${NC}\] "
 301 # Time of day (with load info):
 302 PS1="\[\$(load_color)\][\A\[${NC}\] "
 303 # User@Host (with connection type info):
 304 PS1=${PS1}"\[${SU}\]\u\[${NC}\]@\[${CNX}\]\h\[${NC}\] "
 305 # PWD (with 'disk space' info):
 306 PS1=${PS1}"\[\$(disk_color)\]\W]\[${NC}\] "
 307 # Prompt (with 'job' info):
 308 PS1=${PS1}"\[\$(job_color)\]>\[${NC}\] "
 309 # Set title of current xterm:
 310 PS1=${PS1}"\[\e]0;[\u@\h] \w\a\]"

 311 ;;
 312 *)
 313 PS1="(\A \u@\h \W) > " # --> PS1="(\A \u@\h \w) > "
 314 # --> Shows full pathname of current dir.
 315 ;;
 316 esac
 317
 318
 319
 320 export TIMEFORMAT=$'\nreal %3R\tuser %3U\tsys %3S\tpcpu %P\n'
 321 export HISTIGNORE="&:bg:fg:ll:h"
 322 export HISTTIMEFORMAT="$(echo -e ${BCyan})[%d/%m %H:%M:%S]$(echo -e ${NC}) "
 323 export HISTCONTROL=ignoredups
 324 export HOSTFILE=$HOME/.hosts # Put a list of remote hosts in ~/.hosts
 325
 326
 327 #==
 328 #
 329 # ALIASES AND FUNCTIONS
 330 #
 331 # Arguably, some functions defined here are quite big.
 332 # If you want to make this file smaller, these functions can
 333 #+ be converted into scripts and removed from here.
 334 #
 335 #==
 336
 337 #-------------------
 338 # Personnal Aliases
 339 #-------------------
 340
 341 alias rm='rm -i'
 342 alias cp='cp -i'
 343 alias mv='mv -i'
 344 # -> Prevents accidentally clobbering files.
 345 alias mkdir='mkdir -p'
 346
 347 alias h='history'
 348 alias j='jobs -l'
 349 alias which='type -a'
 350 alias ..='cd ..'
 351
 352 # Pretty-print of some PATH variables:
 353 alias path='echo -e ${PATH//:/\\n}'
 354 alias libpath='echo -e ${LD_LIBRARY_PATH//:/\\n}'
 355
 356
 357 alias du='du -kh' # Makes a more readable output.
 358 alias df='df -kTh'
 359
 360 #---
 361 # The 'ls' family (this assumes you use a recent GNU ls).
 362 #---
 363 # Add colors for filetype and human-readable sizes by default on 'ls':
 364 alias ls='ls -h --color'
 365 alias lx='ls -lXB' # Sort by extension.
 366 alias lk='ls -lSr' # Sort by size, biggest last.
 367 alias lt='ls -ltr' # Sort by date, most recent last.
 368 alias lc='ls -ltcr' # Sort by/show change time,most recent last.
 369 alias lu='ls -ltur' # Sort by/show access time,most recent last.
 370
 371 # The ubiquitous 'll': directories first, with alphanumeric sorting:
 372 alias ll="ls -lv --group-directories-first"
 373 alias lm='ll |more' # Pipe through 'more'
 374 alias lr='ll -R' # Recursive ls.
 375 alias la='ll -A' # Show hidden files.
 376 alias tree='tree -Csuh' # Nice alternative to 'recursive ls' ...

 377
 378
 379 #---
 380 # Tailoring 'less'
 381 #---
 382
 383 alias more='less'
 384 export PAGER=less
 385 export LESSCHARSET='latin1'
 386 export LESSOPEN='|/usr/bin/lesspipe.sh %s 2>&-'
 387 # Use this if lesspipe.sh exists.
 388 export LESS='-i -N -w -z-4 -g -e -M -X -F -R -P%t?f%f \
 389 :stdin .?pb%pb\%:?lbLine %lb:?bbByte %bb:-...'
 390
 391 # LESS man page colors (makes Man pages more readable).
 392 export LESS_TERMCAP_mb=$'\E[01;31m'
 393 export LESS_TERMCAP_md=$'\E[01;31m'
 394 export LESS_TERMCAP_me=$'\E[0m'
 395 export LESS_TERMCAP_se=$'\E[0m'
 396 export LESS_TERMCAP_so=$'\E[01;44;33m'
 397 export LESS_TERMCAP_ue=$'\E[0m'
 398 export LESS_TERMCAP_us=$'\E[01;32m'
 399
 400
 401 #---
 402 # Spelling typos - highly personnal and keyboard-dependent :-)
 403 #---
 404
 405 alias xs='cd'
 406 alias vf='cd'
 407 alias moer='more'
 408 alias moew='more'
 409 alias kk='ll'
 410
 411
 412 #---
 413 # A few fun ones
 414 #---
 415
 416 # Adds some text in the terminal frame (if applicable).
 417
 418 function xtitle()
 419 {
 420 case "$TERM" in
 421 *term* | rxvt)
 422 echo -en "\e]0;$*\a" ;;
 423 *) ;;
 424 esac
 425 }
 426
 427
 428 # Aliases that use xtitle
 429 alias top='xtitle Processes on $HOST && top'
 430 alias make='xtitle Making $(basename $PWD) ; make'
 431
 432 # .. and functions
 433 function man()
 434 {
 435 for i ; do
 436 xtitle The $(basename $1|tr -d .[:digit:]) manual
 437 command man -a "$i"
 438 done
 439 }
 440
 441
 442 #---

 443 # Make the following commands run in background automatically:
 444 #---
 445
 446 function te() # wrapper around xemacs/gnuserv
 447 {
 448 if ["$(gnuclient -batch -eval t 2>&-)" == "t"]; then
 449 gnuclient -q "$@";
 450 else
 451 (xemacs "$@" &);
 452 fi
 453 }
 454
 455 function soffice() { command soffice "$@" & }
 456 function firefox() { command firefox "$@" & }
 457 function xpdf() { command xpdf "$@" & }
 458
 459
 460 #---
 461 # File & strings related functions:
 462 #---
 463
 464
 465 # Find a file with a pattern in name:
 466 function ff() { find . -type f -iname '*'"$*"'*' -ls ; }
 467
 468 # Find a file with pattern $1 in name and Execute $2 on it:
 469 function fe() { find . -type f -iname '*'"${1:-}"'*' \
 470 -exec ${2:-file} {} \; ; }
 471
 472 # Find a pattern in a set of files and highlight them:
 473 #+ (needs a recent version of egrep).
 474 function fstr()
 475 {
 476 OPTIND=1
 477 local mycase=""
 478 local usage="fstr: find string in files.
 479 Usage: fstr [-i] \"pattern\" [\"filename pattern\"] "
 480 while getopts :it opt
 481 do
 482 case "$opt" in
 483 i) mycase="-i " ;;
 484 *) echo "$usage"; return ;;
 485 esac
 486 done
 487 shift $(($OPTIND - 1))
 488 if ["$#" -lt 1]; then
 489 echo "$usage"
 490 return;
 491 fi
 492 find . -type f -name "${2:-*}" -print0 | \
 493 xargs -0 egrep --color=always -sn ${case} "$1" 2>&- | more
 494
 495 }
 496
 497
 498 function swap()
 499 { # Swap 2 filenames around, if they exist (from Uzi's bashrc).
 500 local TMPFILE=tmp.$$
 501
 502 [$# -ne 2] && echo "swap: 2 arguments needed" && return 1
 503 [! -e $1] && echo "swap: $1 does not exist" && return 1
 504 [! -e $2] && echo "swap: $2 does not exist" && return 1
 505
 506 mv "$1" $TMPFILE
 507 mv "$2" "$1"
 508 mv $TMPFILE "$2"

 509 }
 510
 511 function extract() # Handy Extract Program
 512 {
 513 if [-f $1] ; then
 514 case $1 in
 515 *.tar.bz2) tar xvjf $1 ;;
 516 *.tar.gz) tar xvzf $1 ;;
 517 *.bz2) bunzip2 $1 ;;
 518 *.rar) unrar x $1 ;;
 519 *.gz) gunzip $1 ;;
 520 *.tar) tar xvf $1 ;;
 521 *.tbz2) tar xvjf $1 ;;
 522 *.tgz) tar xvzf $1 ;;
 523 *.zip) unzip $1 ;;
 524 *.Z) uncompress $1 ;;
 525 *.7z) 7z x $1 ;;
 526 *) echo "'$1' cannot be extracted via >extract<" ;;
 527 esac
 528 else
 529 echo "'$1' is not a valid file!"
 530 fi
 531 }
 532
 533
 534 # Creates an archive (*.tar.gz) from given directory.
 535 function maketar() { tar cvzf "${1%%/}.tar.gz" "${1%%/}/"; }
 536
 537 # Create a ZIP archive of a file or folder.
 538 function makezip() { zip -r "${1%%/}.zip" "$1" ; }
 539
 540 # Make your directories and files access rights sane.
 541 function sanitize() { chmod -R u=rwX,g=rX,o= "$@" ;}
 542
 543 #---
 544 # Process/system related functions:
 545 #---
 546
 547
 548 function my_ps() { ps $@ -u $USER -o pid,%cpu,%mem,bsdtime,command ; }
 549 function pp() { my_ps f | awk '!/awk/ && $0~var' var=${1:-".*"} ; }
 550
 551
 552 function killps() # kill by process name
 553 {
 554 local pid pname sig="-TERM" # default signal
 555 if ["$#" -lt 1] || ["$#" -gt 2]; then
 556 echo "Usage: killps [-SIGNAL] pattern"
 557 return;
 558 fi
 559 if [$# = 2]; then sig=$1 ; fi
 560 for pid in $(my_ps| awk '!/awk/ && $0~pat { print $1 }' pat=${!#})
 561 do
 562 pname=$(my_ps | awk '$1~var { print $5 }' var=$pid)
 563 if ask "Kill process $pid <$pname> with signal $sig?"
 564 then kill $sig $pid
 565 fi
 566 done
 567 }
 568
 569 function mydf() # Pretty-print of 'df' output.
 570 { # Inspired by 'dfc' utility.
 571 for fs ; do
 572
 573 if [! -d $fs]
 574 then

 575 echo -e $fs" :No such file or directory" ; continue
 576 fi
 577
 578 local info=($(command df -P $fs | awk 'END{ print $2,$3,$5 }'))
 579 local free=($(command df -Pkh $fs | awk 'END{ print $4 }'))
 580 local nbstars=$((20 * ${info[1]} / ${info[0]}))
 581 local out="["
 582 for ((j=0;j<20;j++)); do
 583 if [${j} -lt ${nbstars}]; then
 584 out=$out"*"
 585 else
 586 out=$out"-"
 587 fi
 588 done
 589 out=${info[2]}" "$out"] ("$free" free on "$fs")"
 590 echo -e $out
 591 done
 592 }
 593
 594
 595 function my_ip() # Get IP adress on ethernet.
 596 {
 597 MY_IP=$(/sbin/ifconfig eth0 | awk '/inet/ { print $2 } ' |
 598 sed -e s/addr://)
 599 echo ${MY_IP:-"Not connected"}
 600 }
 601
 602 function ii() # Get current host related info.
 603 {
 604 echo -e "\nYou are logged on ${BRed}$HOST"
 605 echo -e "\n${BRed}Additionnal information:$NC " ; uname -a
 606 echo -e "\n${BRed}Users logged on:$NC " ; w -hs |
 607 cut -d " " -f1 | sort | uniq
 608 echo -e "\n${BRed}Current date :$NC " ; date
 609 echo -e "\n${BRed}Machine stats :$NC " ; uptime
 610 echo -e "\n${BRed}Memory stats :$NC " ; free
 611 echo -e "\n${BRed}Diskspace :$NC " ; mydf / $HOME
 612 echo -e "\n${BRed}Local IP Address :$NC" ; my_ip
 613 echo -e "\n${BRed}Open connections :$NC "; netstat -pan --inet;
 614 echo
 615 }
 616
 617 #---
 618 # Misc utilities:
 619 #---
 620
 621 function repeat() # Repeat n times command.
 622 {
 623 local i max
 624 max=$1; shift;
 625 for ((i=1; i <= max ; i++)); do # --> C-like syntax
 626 eval "$@";
 627 done
 628 }
 629
 630
 631 function ask() # See 'killps' for example of use.
 632 {
 633 echo -n "$@" '[y/n] ' ; read ans
 634 case "$ans" in
 635 y*|Y*) return 0 ;;
 636 *) return 1 ;;
 637 esac
 638 }
 639
 640 function corename() # Get name of app that created a corefile.

 641 {
 642 for file ; do
 643 echo -n $file : ; gdb --core=$file --batch | head -1
 644 done
 645 }
 646
 647
 648
 649 #===
 650 #
 651 # PROGRAMMABLE COMPLETION SECTION
 652 # Most are taken from the bash 2.05 documentation and from Ian McDonald's
 653 # 'Bash completion' package (http://www.caliban.org/bash/#completion)
 654 # You will in fact need bash more recent then 3.0 for some features.
 655 #
 656 # Note that most linux distributions now provide many completions
 657 # 'out of the box' - however, you might need to make your own one day,
 658 # so I kept those here as examples.
 659 #===
 660
 661 if ["${BASH_VERSION%.*}" \< "3.0"]; then
 662 echo "You will need to upgrade to version 3.0 for full \
 663 programmable completion features"
 664 return
 665 fi
 666
 667 shopt -s extglob # Necessary.
 668
 669 complete -A hostname rsh rcp telnet rlogin ftp ping disk
 670 complete -A export printenv
 671 complete -A variable export local readonly unset
 672 complete -A enabled builtin
 673 complete -A alias alias unalias
 674 complete -A function function
 675 complete -A user su mail finger
 676
 677 complete -A helptopic help # Currently same as builtins.
 678 complete -A shopt shopt
 679 complete -A stopped -P '%' bg
 680 complete -A job -P '%' fg jobs disown
 681
 682 complete -A directory mkdir rmdir
 683 complete -A directory -o default cd
 684
 685 # Compression
 686 complete -f -o default -X '*.+(zip|ZIP)' zip
 687 complete -f -o default -X '!*.+(zip|ZIP)' unzip
 688 complete -f -o default -X '*.+(z|Z)' compress
 689 complete -f -o default -X '!*.+(z|Z)' uncompress
 690 complete -f -o default -X '*.+(gz|GZ)' gzip
 691 complete -f -o default -X '!*.+(gz|GZ)' gunzip
 692 complete -f -o default -X '*.+(bz2|BZ2)' bzip2
 693 complete -f -o default -X '!*.+(bz2|BZ2)' bunzip2
 694 complete -f -o default -X '!*.+(zip|ZIP|z|Z|gz|GZ|bz2|BZ2)' extract
 695
 696
 697 # Documents - Postscript,pdf,dvi.....
 698 complete -f -o default -X '!*.+(ps|PS)' gs ghostview ps2pdf ps2ascii
 699 complete -f -o default -X \
 700 '!*.+(dvi|DVI)' dvips dvipdf xdvi dviselect dvitype
 701 complete -f -o default -X '!*.+(pdf|PDF)' acroread pdf2ps
 702 complete -f -o default -X '!*.@(@(?(e)ps|?(E)PS|pdf|PDF)?\
 703 (.gz|.GZ|.bz2|.BZ2|.Z))' gv ggv
 704 complete -f -o default -X '!*.texi*' makeinfo texi2dvi texi2html texi2pdf
 705 complete -f -o default -X '!*.tex' tex latex slitex
 706 complete -f -o default -X '!*.lyx' lyx

 707 complete -f -o default -X '!*.+(htm*|HTM*)' lynx html2ps
 708 complete -f -o default -X \
 709 '!*.+(doc|DOC|xls|XLS|ppt|PPT|sx?|SX?|csv|CSV|od?|OD?|ott|OTT)' soffice
 710
 711 # Multimedia
 712 complete -f -o default -X \
 713 '!*.+(gif|GIF|jp*g|JP*G|bmp|BMP|xpm|XPM|png|PNG)' xv gimp ee gqview
 714 complete -f -o default -X '!*.+(mp3|MP3)' mpg123 mpg321
 715 complete -f -o default -X '!*.+(ogg|OGG)' ogg123
 716 complete -f -o default -X \
 717 '!*.@(mp[23]|MP[23]|ogg|OGG|wav|WAV|pls|\
 718 m3u|xm|mod|s[3t]m|it|mtm|ult|flac)' xmms
 719 complete -f -o default -X '!*.@(mp?(e)g|MP?(E)G|wma|avi|AVI|\
 720 asf|vob|VOB|bin|dat|vcd|ps|pes|fli|viv|rm|ram|yuv|mov|MOV|qt|\
 721 QT|wmv|mp3|MP3|ogg|OGG|ogm|OGM|mp4|MP4|wav|WAV|asx|ASX)' xine
 722
 723
 724
 725 complete -f -o default -X '!*.pl' perl perl5
 726
 727
 728 # This is a 'universal' completion function - it works when commands have
 729 #+ a so-called 'long options' mode , ie: 'ls --all' instead of 'ls -a'
 730 # Needs the '-o' option of grep
 731 #+ (try the commented-out version if not available).
 732
 733 # First, remove '=' from completion word separators
 734 #+ (this will allow completions like 'ls --color=auto' to work correctly).
 735
 736 COMP_WORDBREAKS=${COMP_WORDBREAKS/=/}
 737
 738
 739 _get_longopts()
 740 {
 741 #$1 --help | sed -e '/--/!d' -e 's/.*--\([^[:space:].,]*\).*/--\1/'| \
 742 #grep ^"$2" |sort -u ;
 743 $1 --help | grep -o -e "--[^[:space:].,]*" | grep -e "$2" |sort -u
 744 }
 745
 746 _longopts()
 747 {
 748 local cur
 749 cur=${COMP_WORDS[COMP_CWORD]}
 750
 751 case "${cur:-*}" in
 752 -*) ;;
 753 *) return ;;
 754 esac
 755
 756 case "$1" in
 757 \~*) eval cmd="$1" ;;
 758 *) cmd="$1" ;;
 759 esac
 760 COMPREPLY=($(_get_longopts ${1} ${cur}))
 761 }
 762 complete -o default -F _longopts configure bash
 763 complete -o default -F _longopts wget id info a2ps ls recode
 764
 765 _tar()
 766 {
 767 local cur ext regex tar untar
 768
 769 COMPREPLY=()
 770 cur=${COMP_WORDS[COMP_CWORD]}
 771
 772 # If we want an option, return the possible long options.

 773 case "$cur" in
 774 -*) COMPREPLY=($(_get_longopts $1 $cur)); return 0;;
 775 esac
 776
 777 if [$COMP_CWORD -eq 1]; then
 778 COMPREPLY=($(compgen -W 'c t x u r d A' -- $cur))
 779 return 0
 780 fi
 781
 782 case "${COMP_WORDS[1]}" in
 783 ?(-)c*f)
 784 COMPREPLY=($(compgen -f $cur))
 785 return 0
 786 ;;
 787 +([^Izjy])f)
 788 ext='tar'
 789 regex=$ext
 790 ;;
 791 *z*f)
 792 ext='tar.gz'
 793 regex='t\(ar\.\)\(gz\|Z\)'
 794 ;;
 795 *[Ijy]*f)
 796 ext='t?(ar.)bz?(2)'
 797 regex='t\(ar\.\)bz2\?'
 798 ;;
 799 *)
 800 COMPREPLY=($(compgen -f $cur))
 801 return 0
 802 ;;
 803
 804 esac
 805
 806 if [["$COMP_LINE" == tar*.$ext' '*]]; then
 807 # Complete on files in tar file.
 808 #
 809 # Get name of tar file from command line.
 810 tar=$(echo "$COMP_LINE" | \
 811 sed -e 's|^.* \([^]*'$regex'\) .*$|\1|')
 812 # Devise how to untar and list it.
 813 untar=t${COMP_WORDS[1]//[^Izjyf]/}
 814
 815 COMPREPLY=($(compgen -W "$(echo $(tar $untar $tar \
 816 2>/dev/null))" -- "$cur"))
 817 return 0
 818
 819 else
 820 # File completion on relevant files.
 821 COMPREPLY=($(compgen -G $cur*.$ext))
 822
 823 fi
 824
 825 return 0
 826
 827 }
 828
 829 complete -F _tar -o default tar
 830
 831 _make()
 832 {
 833 local mdef makef makef_dir="." makef_inc gcmd cur prev i;
 834 COMPREPLY=();
 835 cur=${COMP_WORDS[COMP_CWORD]};
 836 prev=${COMP_WORDS[COMP_CWORD-1]};
 837 case "$prev" in
 838 -*f)

 839 COMPREPLY=($(compgen -f $cur));
 840 return 0
 841 ;;
 842 esac;
 843 case "$cur" in
 844 -*)
 845 COMPREPLY=($(_get_longopts $1 $cur));
 846 return 0
 847 ;;
 848 esac;
 849
 850 # ... make reads
 851 # GNUmakefile,
 852 # then makefile
 853 # then Makefile ...
 854 if [-f ${makef_dir}/GNUmakefile]; then
 855 makef=${makef_dir}/GNUmakefile
 856 elif [-f ${makef_dir}/makefile]; then
 857 makef=${makef_dir}/makefile
 858 elif [-f ${makef_dir}/Makefile]; then
 859 makef=${makef_dir}/Makefile
 860 else
 861 makef=${makef_dir}/*.mk # Local convention.
 862 fi
 863
 864
 865 # Before we scan for targets, see if a Makefile name was
 866 #+ specified with -f.
 867 for ((i=0; i < ${#COMP_WORDS[@]}; i++)); do
 868 if [[${COMP_WORDS[i]} == -f]]; then
 869 # eval for tilde expansion
 870 eval makef=${COMP_WORDS[i+1]}
 871 break
 872 fi
 873 done
 874 [! -f $makef] && return 0
 875
 876 # Deal with included Makefiles.
 877 makef_inc=$(grep -E '^-?include' $makef |
 878 sed -e "s,^.* ,"$makef_dir"/,")
 879 for file in $makef_inc; do
 880 [-f $file] && makef="$makef $file"
 881 done
 882
 883
 884 # If we have a partial word to complete, restrict completions
 885 #+ to matches of that word.
 886 if [-n "$cur"]; then gcmd='grep "^$cur"' ; else gcmd=cat ; fi
 887
 888 COMPREPLY=($(awk -F':' '/^[a-zA-Z0-9][^$#\/\t=]*:([^=]|$)/ \
 889 {split($1,A,/ /);for(i in A)print A[i]}' \
 890 $makef 2>/dev/null | eval $gcmd))
 891
 892 }
 893
 894 complete -F _make -X '+($*|*.[cho])' make gmake pmake
 895
 896
 897
 898
 899 _killall()
 900 {
 901 local cur prev
 902 COMPREPLY=()
 903 cur=${COMP_WORDS[COMP_CWORD]}
 904

 905 # Get a list of processes
 906 #+ (the first sed evaluation
 907 #+ takes care of swapped out processes, the second
 908 #+ takes care of getting the basename of the process).
 909 COMPREPLY=($(ps -u $USER -o comm | \
 910 sed -e '1,1d' -e 's#[]\[]##g' -e 's#^.*/##'| \
 911 awk '{if ($0 ~ /^'$cur'/) print $0}'))
 912
 913 return 0
 914 }
 915
 916 complete -F _killall killall killps
 917
 918
 919
 920 # Local Variables:
 921 # mode:shell-script
 922 # sh-shell:bash
 923 # End:

And, here is a snippet from Andrzej Szelachowski's instructive .bash_profile file.

Example M-2. .bash_profile file

 1 # From Andrzej Szelachowski's ~/.bash_profile:
 2
 3
 4 # Note that a variable may require special treatment
 5 #+ if it will be exported.
 6
 7 DARKGRAY='\e[1;30m'
 8 LIGHTRED='\e[1;31m'
 9 GREEN='\e[32m'
 10 YELLOW='\e[1;33m'
 11 LIGHTBLUE='\e[1;34m'
 12 NC='\e[m'
 13
 14 PCT="\`if [[\$EUID -eq 0]]; then T='$LIGHTRED' ; else T='$LIGHTBLUE'; fi;
 15 echo \$T \`"
 16
 17 # For "literal" command substitution to be assigned to a variable,
 18 #+ use escapes and double quotes:
 19 #+ PCT="\` ... \`" . . .
 20 # Otherwise, the value of PCT variable is assigned only once,
 21 #+ when the variable is exported/read from .bash_profile,
 22 #+ and it will not change afterwards even if the user ID changes.
 23
 24
 25 PS1="\n$GREEN[\w] \n$DARKGRAY($PCT\t$DARKGRAY)-($PCT\u$DARKGRAY)-($PCT\!
 26 $DARKGRAY)$YELLOW-> $NC"
 27
 28 # Escape a variables whose value changes:
 29 # if [[\$EUID -eq 0]],
 30 # Otherwise the value of the EUID variable will be assigned only once,
 31 #+ as above.
 32
 33 # When a variable is assigned, it should be called escaped:
 34 #+ echo \$T,
 35 # Otherwise the value of the T variable is taken from the moment the PCT
 36 #+ variable is exported/read from .bash_profile.
 37 # So, in this example it would be null.
 38
 39 # When a variable's value contains a semicolon it should be strong quoted:

 40 # T='$LIGHTRED',
 41 # Otherwise, the semicolon will be interpreted as a command separator.
 42
 43
 44 # Variables PCT and PS1 can be merged into a new PS1 variable:
 45
 46 PS1="\`if [[\$EUID -eq 0]]; then PCT='$LIGHTRED';
 47 else PCT='$LIGHTBLUE'; fi;
 48 echo '\n$GREEN[\w] \n$DARKGRAY('\$PCT'\t$DARKGRAY)-\
 49 ('\$PCT'\u$DARKGRAY)-('\$PCT'\!$DARKGRAY)$YELLOW-> $NC'\`"
 50
 51 # The trick is to use strong quoting for parts of old PS1 variable.

Prev Home Next
History Commands Converting DOS Batch Files to

Shell Scripts
Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting

Prev Next

Appendix N. Converting DOS Batch Files to Shell
Scripts

Quite a number of programmers learned scripting on a PC running DOS. Even the crippled DOS batch file
language allowed writing some fairly powerful scripts and applications, though they often required extensive
kludges and workarounds. Occasionally, the need still arises to convert an old DOS batch file to a UNIX shell
script. This is generally not difficult, as DOS batch file operators are only a limited subset of the equivalent
shell scripting ones.

Table N-1. Batch file keywords / variables / operators, and their shell equivalents

Batch File Operator Shell Script Equivalent Meaning
% $ command-line parameter prefix
/ - command option flag
\ / directory path separator
== = (equal-to) string comparison test
!==! != (not equal-to) string comparison test
| | pipe
@ set +v do not echo current command
* * filename "wild card"
> > file redirection (overwrite)
>> >> file redirection (append)
< < redirect stdin
%VAR% $VAR environmental variable
REM # comment
NOT ! negate following test
NUL /dev/null "black hole" for burying command output
ECHO echo echo (many more option in Bash)
ECHO. echo echo blank line
ECHO OFF set +v do not echo command(s) following
FOR %%VAR IN (LIST) DO for var in [list]; do "for" loop
:LABEL none (unnecessary) label
GOTO none (use a function) jump to another location in the script
PAUSE sleep pause or wait an interval
CHOICE case or select menu choice
IF if if-test
IF EXIST FILENAME if [-e filename] test if file exists
IF !%N==! if [-z "$N"] if replaceable parameter "N" not present
CALL source or . (dot operator) "include" another script
COMMAND /C source or . (dot operator) "include" another script (same as CALL)
SET export set an environmental variable
SHIFT shift left shift command-line argument list
SGN -lt or -gt sign (of integer)

ERRORLEVEL $? exit status
CON stdin "console" (stdin)
PRN /dev/lp0 (generic) printer device
LPT1 /dev/lp0 first printer device
COM1 /dev/ttyS0 first serial port

Batch files usually contain DOS commands. These must be translated into their UNIX equivalents in order to
convert a batch file into a shell script.

Table N-2. DOS commands and their UNIX equivalents

DOS Command UNIX Equivalent Effect
ASSIGN ln link file or directory
ATTRIB chmod change file permissions
CD cd change directory
CHDIR cd change directory
CLS clear clear screen
COMP diff, comm, cmp file compare
COPY cp file copy
Ctl-C Ctl-C break (signal)
Ctl-Z Ctl-D EOF (end-of-file)
DEL rm delete file(s)
DELTREE rm -rf delete directory recursively
DIR ls -l directory listing
ERASE rm delete file(s)
EXIT exit exit current process
FC comm, cmp file compare
FIND grep find strings in files
MD mkdir make directory
MKDIR mkdir make directory
MORE more text file paging filter
MOVE mv move
PATH $PATH path to executables
REN mv rename (move)
RENAME mv rename (move)
RD rmdir remove directory
RMDIR rmdir remove directory
SORT sort sort file
TIME date display system time
TYPE cat output file to stdout
XCOPY cp (extended) file copy

Virtually all UNIX and shell operators and commands have many more options and enhancements than
their DOS and batch file counterparts. Many DOS batch files rely on auxiliary utilities, such as ask.com,

a crippled counterpart to read.

DOS supports only a very limited and incompatible subset of filename wild-card expansion, recognizing
just the * and ? characters.

Converting a DOS batch file into a shell script is generally straightforward, and the result ofttimes reads better
than the original.

Example N-1. VIEWDATA.BAT: DOS Batch File

 1 REM VIEWDATA
 2
 3 REM INSPIRED BY AN EXAMPLE IN "DOS POWERTOOLS"
 4 REM BY PAUL SOMERSON
 5
 6
 7 @ECHO OFF
 8
 9 IF !%1==! GOTO VIEWDATA
 10 REM IF NO COMMAND-LINE ARG...
 11 FIND "%1" C:\BOZO\BOOKLIST.TXT
 12 GOTO EXIT0
 13 REM PRINT LINE WITH STRING MATCH, THEN EXIT.
 14
 15 :VIEWDATA
 16 TYPE C:\BOZO\BOOKLIST.TXT | MORE
 17 REM SHOW ENTIRE FILE, 1 PAGE AT A TIME.
 18
 19 :EXIT0

The script conversion is somewhat of an improvement. [1]

Example N-2. viewdata.sh: Shell Script Conversion of VIEWDATA.BAT

 1 #!/bin/bash
 2 # viewdata.sh
 3 # Conversion of VIEWDATA.BAT to shell script.
 4
 5 DATAFILE=/home/bozo/datafiles/book-collection.data
 6 ARGNO=1
 7
 8 # @ECHO OFF Command unnecessary here.
 9
 10 if [$# -lt "$ARGNO"] # IF !%1==! GOTO VIEWDATA
 11 then
 12 less $DATAFILE # TYPE C:\MYDIR\BOOKLIST.TXT | MORE
 13 else
 14 grep "$1" $DATAFILE # FIND "%1" C:\MYDIR\BOOKLIST.TXT
 15 fi
 16
 17 exit 0 # :EXIT0
 18
 19 # GOTOs, labels, smoke-and-mirrors, and flimflam unnecessary.
 20 # The converted script is short, sweet, and clean,
 21 #+ which is more than can be said for the original.

Ted Davis' Shell Scripts on the PC site had a set of comprehensive tutorials on the old-fashioned art of batch
file programming. Unfortunately the page has vanished without a trace.

http://www.maem.umr.edu/batch/

Notes

[1] Various readers have suggested modifications of the above batch file to prettify it and make it more
compact and efficient. In the opinion of the ABS Guide author, this is wasted effort. A Bash script can
access a DOS filesystem, or even an NTFS partition (with the help of ntfs-3g) to do batch or scripted
operations.

Prev Home Next
Sample .bashrc and
.bash_profile Files

Exercises

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Next

http://www.ntfs-3g.org

Appendix O. Exercises
The exercises that follow test and extend your knowledge of scripting. Think of them as a challenge, as an
entertaining way to take you further along the stony path toward UNIX wizardry.

 On a dingy side street in a run-down section of Hoboken, New Jersey,
 there sits a nondescript squat two-story brick building with an inscription
 incised on a marble plate in its wall:

Bash Scripting Hall of Fame.

 Inside, among various dusty uninteresting exhibits is a corroding,
 cobweb-festooned brass plaque inscribed with a short, very short
 list of those few persons who have successfully mastered the material
 in the Advanced Bash Scripting Guide, as evidenced by their performance
 on the following Exercise sections.

 (Alas, the author of the ABS Guide is not represented among the exhibits.
 This is possibly due to malicious rumors about lack of credentials and

deficient scripting skills.)

O.1. Analyzing Scripts
Examine the following script. Run it, then explain what it does. Annotate the script and rewrite it in a more
compact and elegant manner.

 1 #!/bin/bash
 2
 3 MAX=10000
 4
 5
 6 for((nr=1; nr<$MAX; nr++))
 7 do
 8
 9 let "t1 = nr % 5"
 10 if ["$t1" -ne 3]
 11 then
 12 continue
 13 fi
 14
 15 let "t2 = nr % 7"
 16 if ["$t2" -ne 4]
 17 then
 18 continue
 19 fi
 20
 21 let "t3 = nr % 9"
 22 if ["$t3" -ne 5]
 23 then
 24 continue
 25 fi
 26
 27 break # What happens when you comment out this line? Why?
 28
 29 done
 30
 31 echo "Number = $nr"
 32
 33
 34 exit 0

Explain what the following script does. It is really just a parameterized command-line pipe.

 1 #!/bin/bash
 2
 3 DIRNAME=/usr/bin
 4 FILETYPE="shell script"
 5 LOGFILE=logfile
 6
 7 file "$DIRNAME"/* | fgrep "$FILETYPE" | tee $LOGFILE | wc -l
 8
 9 exit 0

Examine and explain the following script. For hints, you might refer to the listings for find and stat.

 1 #!/bin/bash
 2
 3 # Author: Nathan Coulter
 4 # This code is released to the public domain.
 5 # The author gave permission to use this code snippet in the ABS Guide.
 6

 7 find -maxdepth 1 -type f -printf '%f\000' | {
 8 while read -d $'\000'; do
 9 mv "$REPLY" "$(date -d "$(stat -c '%y' "$REPLY") " '+%Y%m%d%H%M%S'
 10)-$REPLY"
 11 done
 12 }
 13
 14 # Warning: Test-drive this script in a "scratch" directory.
 15 # It will somehow affect all the files there.

A reader sent in the following code snippet.

 1 while read LINE
 2 do
 3 echo $LINE
 4 done < `tail -f /var/log/messages`

He wished to write a script tracking changes to the system log file, /var/log/messages. Unfortunately,
the above code block hangs and does nothing useful. Why? Fix this so it does work. (Hint: rather than
redirecting the stdin of the loop, try a pipe.)

Analyze the following "one-liner" (here split into two lines for clarity) contributed by Rory Winston:

 1 export SUM=0; for f in $(find src -name "*.java");
 2 do export SUM=$(($SUM + $(wc -l $f | awk '{ print $1 }'))); done; echo $SUM

Hint: First, break the script up into bite-sized sections. Then, carefully examine its use of double-parentheses
arithmetic, the export command, the find command, the wc command, and awk.

Analyze Example A-10, and reorganize it in a simplified and more logical style. See how many of the
variables can be eliminated, and try to optimize the script to speed up its execution time.

Alter the script so that it accepts any ordinary ASCII text file as input for its initial "generation". The script
will read the first $ROW*$COL characters, and set the occurrences of vowels as "living" cells. Hint: be sure to
translate the spaces in the input file to underscore characters.

Prev Home Next
Converting DOS Batch Files to
Shell Scripts

Writing Scripts

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Appendix O. Exercises Next

O.2. Writing Scripts

Write a script to carry out each of the following tasks.

EASY

Self-reproducing Script
Write a script that backs itself up, that is, copies itself to a file named backup.sh.

Hint: Use the cat command and the appropriate positional parameter.
Home Directory Listing

Perform a recursive directory listing on the user's home directory and save the information to a file.
Compress the file, have the script prompt the user to insert a USB flash drive, then press ENTER.
Finally, save the file to the flash drive after making certain the flash drive has properly mounted by
parsing the output of df. Note that the flash drive must be unmounted before it is removed.

Converting for loops to while and until loops
Convert the for loops in Example 11-1 to while loops. Hint: store the data in an array and step through
the array elements.

Having already done the "heavy lifting," now convert the loops in the example to until loops.
Changing the line spacing of a text file

Write a script that reads each line of a target file, then writes the line back to stdout, but with an
extra blank line following. This has the effect of double-spacing the file.

Include all necessary code to check whether the script gets the necessary command-line argument (a
filename), and whether the specified file exists.

When the script runs correctly, modify it to triple-space the target file.

Finally, write a script to remove all blank lines from the target file, single-spacing it.
Backwards Listing

Write a script that echoes itself to stdout, but backwards.
Automatically Decompressing Files

Given a list of filenames as input, this script queries each target file (parsing the output of the file
command) for the type of compression used on it. Then the script automatically invokes the
appropriate decompression command (gunzip, bunzip2, unzip, uncompress, or whatever). If a target
file is not compressed, the script emits a warning message, but takes no other action on that particular
file.

Unique System ID
Generate a "unique" 6-digit hexadecimal identifier for your computer. Do not use the flawed hostid
command. Hint: md5sum /etc/passwd, then select the first 6 digits of output.

Backup
Archive as a "tarball" (*.tar.gz file) all the files in your home directory tree
(/home/your-name) that have been modified in the last 24 hours. Hint: use find.

Optional: you may use this as the basis of a backup script.
Checking whether a process is still running

Given a process ID (PID) as an argument, this script will check, at user-specified intervals, whether
the given process is still running. You may use the ps and sleep commands.

Primes
Print (to stdout) all prime numbers between 60000 and 63000. The output should be nicely
formatted in columns (hint: use printf).

Lottery Numbers
One type of lottery involves picking five different numbers, in the range of 1 - 50. Write a script that
generates five pseudorandom numbers in this range, with no duplicates. The script will give the
option of echoing the numbers to stdout or saving them to a file, along with the date and time the
particular number set was generated. (If your script consistently generates winning lottery numbers,
then you can retire on the proceeds and leave shell scripting to those of us who have to work for a
living.)

INTERMEDIATE

Integer or String
Write a script function that determines if an argument passed to it is an integer or a string. The
function will return TRUE (0) if passed an integer, and FALSE (1) if passed a string.

Hint: What does the following expression return when $1 is not an integer?

expr $1 + 0
ASCII to Integer

The atoi function in C converts a string character to an integer. Write a shell script function that
performs the same operation. Likewise, write a shell script function that does the inverse, mirroring
the C itoa function which converts an integer into an ASCII character.

Managing Disk Space
List, one at a time, all files larger than 100K in the /home/username directory tree. Give the user
the option to delete or compress the file, then proceed to show the next one. Write to a logfile the
names of all deleted files and the deletion times.

Banner
Simulate the functionality of the deprecated banner command in a script.

Removing Inactive Accounts
Inactive accounts on a network server waste disk space and may become a security risk. Write an
administrative script (to be invoked by root or the cron daemon) that checks for and deletes user
accounts that have not been accessed within the last 90 days.

Enforcing Disk Quotas
Write a script for a multi-user system that checks users' disk usage. If a user surpasses a preset limit
(500 MB, for example) in her /home/username directory, then the script automatically sends her a
"pigout" warning e-mail.

The script will use the du and mail commands. As an option, it will allow setting and enforcing quotas
using the quota and setquota commands.

Logged in User Information
For all logged in users, show their real names and the time and date of their last login.

Hint: use who, lastlog, and parse /etc/passwd.
Safe Delete

Implement, as a script, a "safe" delete command, sdel.sh. Filenames passed as command-line
arguments to this script are not deleted, but instead gzipped if not already compressed (use file to
check), then moved to a ~/TRASH directory. Upon invocation, the script checks the ~/TRASH
directory for files older than 48 hours and permanently deletes them. (An better alternative might be
to have a second script handle this, periodically invoked by the cron daemon.)

Extra credit: Write the script so it can handle files and directories recursively. This would give it the
capability of "safely deleting" entire directory structures.

Making Change
What is the most efficient way to make change for $1.68, using only coins in common circulations
(up to 25c)? It's 6 quarters, 1 dime, a nickel, and three cents.

Given any arbitrary command-line input in dollars and cents ($*.??), calculate the change, using the
minimum number of coins. If your home country is not the United States, you may use your local
currency units instead. The script will need to parse the command-line input, then change it to
multiples of the smallest monetary unit (cents or whatever). Hint: look at Example 24-8.

Quadratic Equations
Solve a quadratic equation of the form Ax^2 + Bx + C = 0. Have a script take as arguments the
coefficients, A, B, and C, and return the solutions to five decimal places.

Hint: pipe the coefficients to bc, using the well-known formula, x = (-B +/- sqrt(B^2 -
4AC)) / 2A.

Table of Logarithms
Using the bc and printf commands, print out a nicely-formatted table of eight-place natural logarithms
in the interval between 0.00 and 100.00, in steps of .01.

Hint: bc requires the -l option to load the math library.
Unicode Table

Using Example T-1 as a template, write a script that prints to a file a complete Unicode table.

Hint: Use the -e option to echo: echo -e '\uXXXX', where XXXX is the Unicode numerical character
designation. This requires version 4.2 or later of Bash.

Sum of Matching Numbers
Find the sum of all five-digit numbers (in the range 10000 - 99999) containing exactly two out of the
following set of digits: { 4, 5, 6 }. These may repeat within the same number, and if so, they count
once for each occurrence.

Some examples of matching numbers are 42057, 74638, and 89515.
Lucky Numbers

A lucky number is one whose individual digits add up to 7, in successive additions. For example,
62431 is a lucky number (6 + 2 + 4 + 3 + 1 = 16, 1 + 6 = 7). Find all the lucky numbers between 1000
and 10000.

Craps
Borrowing the ASCII graphics from Example A-40, write a script that plays the well-known gambling
game of craps. The script will accept bets from one or more players, roll the dice, and keep track of
wins and losses, as well as of each player's bankroll.

Tic-tac-toe
Write a script that plays the child's game of tic-tac-toe against a human player. The script will let the
human choose whether to take the first move. The script will follow an optimal strategy, and therefore
never lose. To simplify matters, you may use ASCII graphics:

 1 o | x |
 2 ----------
 3 | x |
 4 ----------
 5 | o |
 6
 7 Your move, human (row, column)?

Alphabetizing a String
Alphabetize (in ASCII order) an arbitrary string read from the command-line.

Parsing
Parse /etc/passwd, and output its contents in nice, easy-to-read tabular form.

Logging Logins
Parse /var/log/messages to produce a nicely formatted file of user logins and login times. The
script may need to run as root. (Hint: Search for the string "LOGIN.")

Pretty-Printing a Data File

Certain database and spreadsheet packages use save-files with the fields separated by commas,
commonly referred to as comma-separated values or CSVs. Other applications often need to parse
these files.

Given a data file with comma-separated fields, of the form:

 1 Jones,Bill,235 S. Williams St.,Denver,CO,80221,(303) 244-7989
 2 Smith,Tom,404 Polk Ave.,Los Angeles,CA,90003,(213) 879-5612
 3 ...

Reformat the data and print it out to stdout in labeled, evenly-spaced columns.
Justification

Given ASCII text input either from stdin or a file, adjust the word spacing to right-justify each line
to a user-specified line-width, then send the output to stdout.

Mailing List
Using the mail command, write a script that manages a simple mailing list. The script automatically
e-mails the monthly company newsletter, read from a specified text file, and sends it to all the
addresses on the mailing list, which the script reads from another specified file.

Generating Passwords
Generate pseudorandom 8-character passwords, using characters in the ranges [0-9], [A-Z], [a-z].
Each password must contain at least two digits.

Monitoring a User
You suspect that one particular user on the network has been abusing her privileges and possibly
attempting to hack the system. Write a script to automatically monitor and log her activities when
she's signed on. The log file will save entries for the previous week, and delete those entries more
than seven days old.

You may use last, lastlog, and lastcomm to aid your surveillance of the suspected fiend.
Checking for Broken Links

Using lynx with the -traversal option, write a script that checks a Web site for broken links.

DIFFICULT

Testing Passwords
Write a script to check and validate passwords. The object is to flag "weak" or easily guessed
password candidates.

A trial password will be input to the script as a command-line parameter. To be considered
acceptable, a password must meet the following minimum qualifications:

Minimum length of 8 characters◊
Must contain at least one numeric character◊
Must contain at least one of the following non-alphabetic characters: @, #, $, %, &, *, +, -, =◊

Optional:

Do a dictionary check on every sequence of at least four consecutive alphabetic characters in
the password under test. This will eliminate passwords containing embedded "words" found
in a standard dictionary.

◊

Enable the script to check all the passwords on your system. These do not reside in
/etc/passwd.

◊

This exercise tests mastery of Regular Expressions.
Cross Reference

Write a script that generates a cross-reference (concordance) on a target file. The output will be a
listing of all word occurrences in the target file, along with the line numbers in which each word
occurs. Traditionally, linked list constructs would be used in such applications. Therefore, you should

investigate arrays in the course of this exercise. Example 16-12 is probably not a good place to start.
Square Root

Write a script to calculate square roots of numbers using Newton's Method.

The algorithm for this, expressed as a snippet of Bash pseudo-code is:

 1 # (Isaac) Newton's Method for speedy extraction
 2 #+ of square roots.
 3
 4 guess = $argument
 5 # $argument is the number to find the square root of.
 6 # $guess is each successive calculated "guess" -- or trial solution --
 7 #+ of the square root.
 8 # Our first "guess" at a square root is the argument itself.
 9
 10 oldguess = 0
 11 # $oldguess is the previous $guess.
 12
 13 tolerance = .000001
 14 # To how close a tolerance we wish to calculate.
 15
 16 loopcnt = 0
 17 # Let's keep track of how many times through the loop.
 18 # Some arguments will require more loop iterations than others.
 19
 20
 21 while [ABS($guess $oldguess) -gt $tolerance]
 22 # ^^^^^^^^^^^^^^^^^^^^^^^ Fix up syntax, of course.
 23
 24 # "ABS" is a (floating point) function to find the absolute value
 25 #+ of the difference between the two terms.
 26 # So, as long as difference between current and previous
 27 #+ trial solution (guess) exceeds the tolerance, keep looping.
 28
 29 do
 30 oldguess = $guess # Update $oldguess to previous $guess.
 31
 32 # ===
 33 guess = ($oldguess + ($argument / $oldguess)) / 2.0
 34 # = 1/2 (($oldguess **2 + $argument) / $oldguess)
 35 # equivalent to:
 36 # = 1/2 ($oldguess + $argument / $oldguess)
 37 # that is, "averaging out" the trial solution and
 38 #+ the proportion of argument deviation
 39 #+ (in effect, splitting the error in half).
 40 # This converges on an accurate solution
 41 #+ with surprisingly few loop iterations . . .
 42 #+ for arguments > $tolerance, of course.
 43 # ===
 44
 45 ((loopcnt++)) # Update loop counter.
 46 done

It's a simple enough recipe, and seems at first glance easy enough to convert into a working Bash
script. The problem, though, is that Bash has no native support for floating point numbers. So, the
script writer needs to use bc or possibly awk to convert the numbers and do the calculations. It could
get rather messy . . .

Logging File Accesses
Log all accesses to the files in /etc during the course of a single day. This information should
include the filename, user name, and access time. If any alterations to the files take place, that will be
flagged. Write this data as tabular (tab-separated) formatted records in a logfile.

Monitoring Processes

Write a script to continually monitor all running processes and to keep track of how many child
processes each parent spawns. If a process spawns more than five children, then the script sends an
e-mail to the system administrator (or root) with all relevant information, including the time, PID of
the parent, PIDs of the children, etc. The script appends a report to a log file every ten minutes.

Strip Comments
Strip all comments from a shell script whose name is specified on the command-line. Note that the
initial #! line must not be stripped out.

Strip HTML Tags
Strip all the HTML tags from a specified HTML file, then reformat it into lines between 60 and 75
characters in length. Reset paragraph and block spacing, as appropriate, and convert HTML tables to
their approximate text equivalent.

XML Conversion
Convert an XML file to both HTML and text format.

Optional: A script that converts Docbook/SGML to XML.
Chasing Spammers

Write a script that analyzes a spam e-mail by doing DNS lookups on the IP addresses in the headers to
identify the relay hosts as well as the originating ISP. The script will forward the unaltered spam
message to the responsible ISPs. Of course, it will be necessary to filter out your own ISP's IP
address, so you don't end up complaining about yourself.

As necessary, use the appropriate network analysis commands.

For some ideas, see Example 16-41 and Example A-28.

Optional: Write a script that searches through a list of e-mail messages and deletes the spam
according to specified filters.

Creating man pages
Write a script that automates the process of creating man pages.

Given a text file which contains information to be formatted into a man page, the script will read the
file, then invoke the appropriate groff commands to output the corresponding man page to stdout.
The text file contains blocks of information under the standard man page headings, i.e., NAME,
SYNOPSIS, DESCRIPTION, etc.

Example A-39 is an instructive first step.
Hex Dump

Do a hex(adecimal) dump on a binary file specified as an argument to the script. The output should be
in neat tabular fields, with the first field showing the address, each of the next 8 fields a 4-byte hex
number, and the final field the ASCII equivalent of the previous 8 fields.

The obvious followup to this is to extend the hex dump script into a disassembler. Using a lookup
table, or some other clever gimmick, convert the hex values into 80x86 op codes.

Emulating a Shift Register
Using Example 27-15 as an inspiration, write a script that emulates a 64-bit shift register as an array.
Implement functions to load the register, shift left, shift right, and rotate it. Finally, write a function
that interprets the register contents as eight 8-bit ASCII characters.

Calculating Determinants
Write a script that calculates determinants [1] by recursively expanding the minors. Use a 4 x 4
determinant as a test case.

Hidden Words
Write a "word-find" puzzle generator, a script that hides 10 input words in a 10 x 10 array of random
letters. The words may be hidden across, down, or diagonally.

Optional: Write a script that solves word-find puzzles. To keep this from becoming too difficult, the
solution script will find only horizontal and vertical words. (Hint: Treat each row and column as a
string, and search for substrings.)

Anagramming
Anagram 4-letter input. For example, the anagrams of word are: do or rod row word. You may use
/usr/share/dict/linux.words as the reference list.

Word Ladders
A "word ladder" is a sequence of words, with each successive word in the sequence differing from the
previous one by a single letter.

For example, to "ladder" from mark to vase:

 1 mark --> park --> part --> past --> vast --> vase
 2 ^ ^ ^ ^ ^

Write a script that solves word ladder puzzles. Given a starting and an ending word, the script will list
all intermediate steps in the "ladder." Note that all words in the sequence must be legitimate
dictionary words.

Fog Index
The "fog index" of a passage of text estimates its reading difficulty, as a number corresponding
roughly to a school grade level. For example, a passage with a fog index of 12 should be
comprehensible to anyone with 12 years of schooling.

The Gunning version of the fog index uses the following algorithm.

Choose a section of the text at least 100 words in length.1.
Count the number of sentences (a portion of a sentence truncated by the boundary of the text
section counts as one).

2.

Find the average number of words per sentence.

AVE_WDS_SEN = TOTAL_WORDS / SENTENCES

3.

Count the number of "difficult" words in the segment -- those containing at least 3 syllables.
Divide this quantity by total words to get the proportion of difficult words.

PRO_DIFF_WORDS = LONG_WORDS / TOTAL_WORDS

4.

The Gunning fog index is the sum of the above two quantities, multiplied by 0.4, then
rounded to the nearest integer.

G_FOG_INDEX = int (0.4 * (AVE_WDS_SEN + PRO_DIFF_WORDS))

5.

Step 4 is by far the most difficult portion of the exercise. There exist various algorithms for estimating
the syllable count of a word. A rule-of-thumb formula might consider the number of letters in a word
and the vowel-consonant mix.

A strict interpretation of the Gunning fog index does not count compound words and proper nouns as
"difficult" words, but this would enormously complicate the script.

Calculating PI using Buffon's Needle
The Eighteenth Century French mathematician de Buffon came up with a novel experiment.
Repeatedly drop a needle of length n onto a wooden floor composed of long and narrow parallel
boards. The cracks separating the equal-width floorboards are a fixed distance d apart. Keep track of
the total drops and the number of times the needle intersects a crack on the floor. The ratio of these
two quantities turns out to be a fractional multiple of PI.

In the spirit of Example 16-50, write a script that runs a Monte Carlo simulation of Buffon's Needle.
To simplify matters, set the needle length equal to the distance between the cracks, n = d.

Hint: there are actually two critical variables: the distance from the center of the needle to the nearest
crack, and the inclination angle of the needle to that crack. You may use bc to handle the calculations.

Playfair Cipher
Implement the Playfair (Wheatstone) Cipher in a script.

The Playfair Cipher encrypts text by substitution of digrams (2-letter groupings). It is traditional to
use a 5 x 5 letter scrambled-alphabet key square for the encryption and decryption.

 1 C O D E S
 2 A B F G H
 3 I K L M N
 4 P Q R T U
 5 V W X Y Z
 6
 7 Each letter of the alphabet appears once, except "I" also represents
 8 "J". The arbitrarily chosen key word, "CODES" comes first, then all
 9 the rest of the alphabet, in order from left to right, skipping letters
 10 already used.
 11
 12 To encrypt, separate the plaintext message into digrams (2-letter
 13 groups). If a group has two identical letters, delete the second, and
 14 form a new group. If there is a single letter left over at the end,
 15 insert a "null" character, typically an "X."
 16
 17 THIS IS A TOP SECRET MESSAGE
 18
 19 TH IS IS AT OP SE CR ET ME SA GE
 20
 21
 22
 23 For each digram, there are three possibilities.
 24 ---
 25
 26 1) Both letters will be on the same row of the key square:
 27 For each letter, substitute the one immediately to the right, in that
 28 row. If necessary, wrap around left to the beginning of the row.
 29
 30 or
 31
 32 2) Both letters will be in the same column of the key square:
 33 For each letter, substitute the one immediately below it, in that
 34 row. If necessary, wrap around to the top of the column.
 35
 36 or
 37
 38 3) Both letters will form the corners of a rectangle within the key square:
 39 For each letter, substitute the one on the other corner the rectangle
 40 which lies on the same row.
 41
 42
 43 The "TH" digram falls under case #3.
 44 G H
 45 M N
 46 T U (Rectangle with "T" and "H" at corners)
 47
 48 T --> U
 49 H --> G
 50
 51
 52 The "SE" digram falls under case #1.
 53 C O D E S (Row containing "S" and "E")
 54
 55 S --> C (wraps around left to beginning of row)
 56 E --> S

 57
 58 ===
 59
 60 To decrypt encrypted text, reverse the above procedure under cases #1
 61 and #2 (move in opposite direction for substitution). Under case #3,
 62 just take the remaining two corners of the rectangle.
 63
 64
 65 Helen Fouche Gaines' classic work, ELEMENTARY CRYPTANALYSIS (1939), gives a
 66 fairly detailed description of the Playfair Cipher and its solution methods.

This script will have three main sections

Generating the key square, based on a user-input keyword.I.
Encrypting a plaintext message.II.
Decrypting encrypted text.III.

The script will make extensive use of arrays and functions. You may use Example A-56 as an
inspiration.

--

Please do not send the author your solutions to these exercises. There are more appropriate ways to impress
him with your cleverness, such as submitting bugfixes and suggestions for improving the book.

Notes

[1] For all you clever types who failed intermediate algebra, a determinant is a numerical value associated
with a multidimensional matrix (array of numbers).

 1 For the simple case of a 2 x 2 determinant:
 2
 3 |a b|
 4 |b a|
 5
 6 The solution is a*a - b*b, where "a" and "b" represent numbers.

Prev Home Next
Exercises Up Revision History

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Next

Appendix P. Revision History
 This document first appeared as a 60-page HOWTO in the late spring
 of 2000. Since then, it has gone through quite a number of updates
 and revisions. This book could not have been written without the
 assistance of the Linux community, and especially of the volunteers
 of the Linux Documentation Project.

Here is the e-mail to the LDP requesting permission to submit version 0.1.

 1 From thegrendel@theriver.com Sat Jun 10 09:05:33 2000 -0700
 2 Date: Sat, 10 Jun 2000 09:05:28 -0700 (MST)
 3 From: "M. Leo Cooper" <thegrendel@theriver.com>
 4 X-Sender: thegrendel@localhost
 5 To: ldp-discuss@lists.linuxdoc.org
 6 Subject: Permission to submit HOWTO
 7
 8 Dear HOWTO Coordinator,
 9
 10 I am working on and would like to submit to the LDP a HOWTO on the subject
 11 of "Bash Scripting" (shell scripting, using 'bash'). As it happens,
 12 I have been writing this document, off and on, for about the last eight
 13 months or so, and I could produce a first draft in ASCII text format in
 14 a matter of just a few more days.
 15
 16 I began writing this out of frustration at being unable to find a
 17 decent book on shell scripting. I managed to locate some pretty good
 18 articles on various aspects of scripting, but nothing like a complete,
 19 beginning-to-end tutorial. Well, in keeping with my philosophy, if all
 20 else fails, do it yourself.
 21
 22 As it stands, this proposed "Bash-Scripting HOWTO" would serve as a
 23 combination tutorial and reference, with the heavier emphasis on the
 24 tutorial. It assumes Linux experience, but only a very basic level
 25 of programming skills. Interspersed with the text are 79 illustrative
 26 example scripts of varying complexity, all liberally commented. There
 27 are even exercises for the reader.
 28
 29 At this stage, I'm up to 18,000+ words (124k), and that's over 50 pages of
 30 text (whew!).
 31
 32
 33 I haven't mentioned that I've previously authored an LDP HOWTO, the
 34 "Software-Building HOWTO", which I wrote in Linuxdoc/SGML. I don't know
 35 if I could handle Docbook/SGML, and I'm glad you have volunteers to do
 36 the conversion. You people seem to have gotten on a more organized basis
 37 these last few months. Working with Greg Hankins and Tim Bynum was nice,
 38 but a professional team is even nicer.
 39
 40 Anyhow, please advise.
 41
 42
 43 Mendel Cooper
 44 thegrendel@theriver.com

Table P-1. Revision History

Release Date Comments
0.1 14 Jun 2000 Initial release.
0.2 30 Oct 2000 Bugs fixed, plus much additional material and more example scripts.

http://www.tldp.org

0.3 12 Feb 2001 Major update.
0.4 08 Jul 2001 Complete revision and expansion of the book.
0.5 03 Sep 2001 Major update: Bugfixes, material added, sections reorganized.
1.0 14 Oct 2001 Stable release: Bugfixes, reorganization, material added.
1.1 06 Jan 2002 Bugfixes, material and scripts added.
1.2 31 Mar 2002 Bugfixes, material and scripts added.
1.3 02 Jun 2002 TANGERINE release: A few bugfixes, much more material and scripts added.
1.4 16 Jun 2002 MANGO release: A number of typos fixed, more material and scripts.
1.5 13 Jul 2002 PAPAYA release: A few bugfixes, much more material and scripts added.
1.6 29 Sep 2002 POMEGRANATE release: Bugfixes, more material, one more script.
1.7 05 Jan 2003 COCONUT release: A couple of bugfixes, more material, one more script.
1.8 10 May 2003 BREADFRUIT release: A number of bugfixes, more scripts and material.
1.9 21 Jun 2003 PERSIMMON release: Bugfixes, and more material.
2.0 24 Aug 2003 GOOSEBERRY release: Major update.
2.1 14 Sep 2003 HUCKLEBERRY release: Bugfixes, and more material.
2.2 31 Oct 2003 CRANBERRY release: Major update.
2.3 03 Jan 2004 STRAWBERRY release: Bugfixes and more material.
2.4 25 Jan 2004 MUSKMELON release: Bugfixes.
2.5 15 Feb 2004 STARFRUIT release: Bugfixes and more material.
2.6 15 Mar 2004 SALAL release: Minor update.
2.7 18 Apr 2004 MULBERRY release: Minor update.
2.8 11 Jul 2004 ELDERBERRY release: Minor update.
3.0 03 Oct 2004 LOGANBERRY release: Major update.
3.1 14 Nov 2004 BAYBERRY release: Bugfix update.
3.2 06 Feb 2005 BLUEBERRY release: Minor update.
3.3 20 Mar 2005 RASPBERRY release: Bugfixes, much material added.
3.4 08 May 2005 TEABERRY release: Bugfixes, stylistic revisions.
3.5 05 Jun 2005 BOXBERRY release: Bugfixes, some material added.
3.6 28 Aug 2005 POKEBERRY release: Bugfixes, some material added.
3.7 23 Oct 2005 WHORTLEBERRY release: Bugfixes, some material added.
3.8 26 Feb 2006 BLAEBERRY release: Bugfixes, some material added.
3.9 15 May 2006 SPICEBERRY release: Bugfixes, some material added.
4.0 18 Jun 2006 WINTERBERRY release: Major reorganization.
4.1 08 Oct 2006 WAXBERRY release: Minor update.
4.2 10 Dec 2006 SPARKLEBERRY release: Important update.
4.3 29 Apr 2007 INKBERRY release: Bugfixes, material added.
5.0 24 Jun 2007 SERVICEBERRY release: Major update.
5.1 10 Nov 2007 LINGONBERRY release: Minor update.
5.2 16 Mar 2008 SILVERBERRY release: Important update.
5.3 11 May 2008 GOLDENBERRY release: Minor update.
5.4 21 Jul 2008 ANGLEBERRY release: Major update.
5.5 23 Nov 2008 FARKLEBERRY release: Minor update.
5.6 26 Jan 2009 WORCESTERBERRY release: Minor update.
6.0 23 Mar 2009 THIMBLEBERRY release: Major update.

6.1 30 Sep 2009 BUFFALOBERRY release: Minor update.
6.2 17 Mar 2010 ROWANBERRY release: Minor update.
6.3 30 Apr 2011 SWOZZLEBERRY release: Major update.
6.4 30 Aug 2011 VORTEXBERRY release: Minor update.
6.5 05 Apr 2012 TUNGSTENBERRY release: Minor update.
6.6 27 Nov 2012 YTTERBIUMBERRY release: Minor update.
10 10 Mar 2014 YTTERBIUMBERRY release: License change.

Prev Home Next
Writing Scripts Download and Mirror Sites

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Next

Appendix Q. Download and Mirror Sites

The latest update of this document, as an archived, bzip2-ed "tarball" including both the SGML source and
rendered HTML, may be downloaded from the author's home site). A pdf version is also available (mirror
site). There is likewise an epub version, courtesy of Craig Barnes and Michael Satke. The change log gives a
detailed revision history. The ABS Guide even has its own freshmeat.net/freecode page to keep
track of major updates, user comments, and popularity ratings for the project.

The legacy hosting site for this document is the Linux Documentation Project, which maintains many other
Guides and HOWTOs as well.

Many thanks to Ronny Bangsund for donating server space to host this project.

Prev Home Next
Revision History To Do List

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Next

http://bash.deta.in/abs-guide-latest.tar.bz2
http://bash.deta.in/abs-guide.pdf
http://www.mediafire.com/file/xi34ape1bifcnlb/abs-guide.pdf
http://www.mediafire.com/file/xi34ape1bifcnlb/abs-guide.pdf
http://bash.deta.in/abs-guide.epub
http://bash.deta.in/Change.log
http://freecode.com/projects/advancedbashscriptingguide/
http://freecode.com/projects/advancedbashscriptingguide/
http://www.tldp.org/LDP/abs/
http://bash.deta.in/

Appendix R. To Do List
A comprehensive survey of incompatibilities between Bash and the classic Bourne shell.•
Same as above, but for the Korn shell (ksh).•

Prev Home Next
Download and Mirror Sites Copyright

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Next

Appendix S. Copyright
The Advanced Bash Scripting Guide is herewith granted to the PUBLIC DOMAIN. This has the following
implications and consequences.

 1 A. All previous releases of the Advanced Bash Scripting Guide
 2 are as well granted to the Public Domain.
 3
 4 A1. All printed editions, whether authorized by the author or not,
 5 are as well granted to the Public Domain. This legally overrides
 6 any stated intention or wishes of the publishers. Any statement
 7 of copyright is void and invalid.
 8 THERE ARE NO EXCEPTIONS TO THIS.
 9
 10 A2. Any release of the Advanced Bash Scripting Guide, whether in
 11 electronic or print form is granted to the Public Domain by the
 12 express directive of the author and previous copyright holder, Mendel
 13 Cooper. No other person(s) or entities have ever held a valid copyright.
 14
 15 B. As a Public Domain document, unlimited copying and distribution rights
 16 are granted. There can be NO restrictions. If anyone has published or will
 17 in the future publish an original or modified version of this document,
 18 then only additional original material may be copyrighted. The core
 19 work will remain in the Public Domain.

By law, distributors and publishers (including on-line publishers) are prohibited from imposing any
conditions, strictures, or provisions on this document, any previous versions, or any derivative versions. The
author asserts that he has not entered into any contractual obligations that would alter the foregoing
declarations.

Essentially, you may freely distribute this book or any derivative thereof in electronic or printed form. If you
have previously purchased or are in possession of a printed copy of a current or previous edition, you have the
LEGAL RIGHT to copy and/or redistribute it, regardless of any copyright notice. Any copyright notice is
void.

Additionally, the author wishes to state his intention that:

 1 If you copy or distribute this book, kindly DO NOT
 2 use the materials within, or any portion thereof, in a patent or copyright
 3 lawsuit against the Open Source community, its developers, its
 4 distributors, or against any of its associated software or documentation
 5 including, but not limited to, the Linux kernel, Open Office, Samba,
 6 and Wine. Kindly DO NOT use any of the materials within
 7 this book in testimony or depositions as a plaintiff's "expert witness" in
 8 any lawsuit against the Open Source community, any of its developers, its
 9 distributors, or any of its associated software or documentation.

A Public Domain license essentially does not restrict ANY legitimate distribution or use of this book. The
author especially encourages its (royalty-free!) use for classroom and instructional purposes.

To date, limited print rights (Lulu edition) have been granted to one individual and to no one else. Neither that
individual nor Lulu holds or ever has held a valid copyright.

It has come to the attention of the author that unauthorized electronic and print editions of this book are
being sold commercially on itunes®, amazon.com and elsewhere. These are illegal and pirated editions
produced without the author's permission, and readers of this book are strongly urged not to purchase
them. In fact, these pirated editions are now legal, but necessarily fall into the Public Domain, and any
copyright notices contained within them are invalid and void.

The author produced this book in a manner consistent with the spirit of the LDP Manifesto.

http://www.tldp.org/manifesto.html

Linux is a trademark registered to Linus Torvalds.

Fedora is a trademark registered to Red Hat.

Unix and UNIX are trademarks registered to the Open Group.

MS Windows is a trademark registered to the Microsoft Corp.

Solaris is a trademark registered to Oracle, Inc.

OSX is a trademark registered to Apple, Inc.

Yahoo is a trademark registered to Yahoo, Inc.

Pentium is a trademark registered to Intel, Inc.

Thinkpad is a trademark registered to Lenovo, Inc.

Scrabble is a trademark registered to Hasbro, Inc.

Librie, PRS-500, and PRS-505 are trademarks registered to Sony, Inc.

All other commercial trademarks mentioned in the body of this work are registered to their respective
owners.

Hyun Jin Cha has done a Korean translation of version 1.0.11 of this book. Spanish, Portuguese, French,
German, Italian, Russian, Czech, Chinese, Indonesian, Dutch, Romanian, Bulgarian, and Turkish translations
are also available or in progress. If you wish to translate this document into another language, please feel free
to do so, subject to the terms stated above. The author wishes to be notified of such efforts.

Those generous readers desiring to make a donation to the author may contribute a small amount via Paypal
to my e-mail address, <thegrendel.abs@gmail.com>. (An Honor Roll of Supporters is
given at the beginning of the Change Log.) This is not a requirement. The ABS Guide is a free and freely
distributed document for the use and enjoyment of the Linux community. However, in these difficult times,
showing support for voluntary projects and especially to authors of limited means is more critically
important than ever.

Prev Home Next
To Do List ASCII Table

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev Next

http://kldp.org/HOWTO/html/Adv-Bash-Scr-HOWTO/index.html
http://abs.traduc.org/
http://it.tldp.org/guide/abs/index.html
http://gazette.linux.ru.net/rus/articles/index-abs-guide.html
http://premekvihan.net/bash
http://www.linuxsir.org/bbs/showthread.php?t=256887
mailto:thegrendel.abs@gmail.com
http://bash.deta.in/Change.log

Appendix T. ASCII Table
Traditionally, a book of this sort has an ASCII Table appendix. This book does not. Instead, here are several
short scripts, each of which generates a complete ASCII table.

Example T-1. A script that generates an ASCII table

 1 #!/bin/bash
 2 # ascii.sh
 3 # ver. 0.2, reldate 26 Aug 2008
 4 # Patched by ABS Guide author.
 5
 6 # Original script by Sebastian Arming.
 7 # Used with permission (thanks!).
 8
 9 exec >ASCII.txt # Save stdout to file,
 10 #+ as in the example scripts
 11 #+ reassign-stdout.sh and upperconv.sh.
 12
 13 MAXNUM=256
 14 COLUMNS=5
 15 OCT=8
 16 OCTSQU=64
 17 LITTLESPACE=-3
 18 BIGSPACE=-5
 19
 20 i=1 # Decimal counter
 21 o=1 # Octal counter
 22
 23 while ["$i" -lt "$MAXNUM"]; do # We don't have to count past 400 octal.
 24 paddi=" $i"
 25 echo -n "${paddi: $BIGSPACE} " # Column spacing.
 26 paddo="00$o"
 27 # echo -ne "\\${paddo: $LITTLESPACE}" # Original.
 28 echo -ne "\\0${paddo: $LITTLESPACE}" # Fixup.
 29 # ^
 30 echo -n " "
 31 if ((i % $COLUMNS == 0)); then # New line.
 32 echo
 33 fi
 34 ((i++, o++))
 35 # The octal notation for 8 is 10, and 64 decimal is 100 octal.
 36 ((i % $OCT == 0)) && ((o+=2))
 37 ((i % $OCTSQU == 0)) && ((o+=20))
 38 done
 39
 40 exit $?
 41
 42 # Compare this script with the "pr-asc.sh" example.
 43 # This one handles "unprintable" characters.
 44
 45 # Exercise:
 46 # Rewrite this script to use decimal numbers, rather than octal.

Example T-2. Another ASCII table script

 1 #!/bin/bash
 2 # Script author: Joseph Steinhauser

 3 # Lightly edited by ABS Guide author, but not commented.
 4 # Used in ABS Guide with permission.
 5
 6 #---
 7 #-- File: ascii.sh Print ASCII chart, base 10/8/16 (JETS-2012)
 8 #---
 9 #-- Usage: ascii [oct|dec|hex|help|8|10|16]
 10 #--
 11 #-- This script prints out a summary of ASCII char codes from Zero to 127.
 12 #-- Numeric values may be printed in Base10, Octal, or Hex.
 13 #--
 14 #-- Format Based on: /usr/share/lib/pub/ascii with base-10 as default.
 15 #-- For more detail, man ascii . . .
 16 #---
 17
 18 [-n "$BASH_VERSION"] && shopt -s extglob
 19
 20 case "$1" in
 21 oct|[Oo]?([Cc][Tt])|8) Obase=Octal; Numy=3o;;
 22 hex|[Hh]?([Ee][Xx])|16|[Xx]) Obase=Hex; Numy=2X;;
 23 help|?(-)[h?]) sed -n '2,/^[]*$/p' $0;exit;;
 24 code|[Cc][Oo][Dd][Ee])sed -n '/case/,$p' $0;exit;;
 25 *) Obase=Decimal
 26 esac # CODE is actually shorter than the chart!
 27
 28 printf "\t\t## $Obase ASCII Chart ##\n\n"; FM1="|%0${Numy:-3d}"; LD=-1
 29
 30 AB="nul soh stx etx eot enq ack bel bs tab nl vt np cr so si dle"
 31 AD="dc1 dc2 dc3 dc4 nak syn etb can em sub esc fs gs rs us sp"
 32
 33 for TOK in $AB $AD; do ABR[$((LD+=1))]=$TOK; done;
 34 ABR[127]=del
 35
 36 IDX=0
 37 while [$IDX -le 127] && CHR="${ABR[$IDX]}"
 38 do ((${#CHR}))&& FM2='%-3s'|| FM2=`printf '\\\\%o ' $IDX`
 39 printf "$FM1 $FM2" "$IDX" $CHR; (((IDX+=1)%8))||echo '|'
 40 done
 41
 42 exit $?

Example T-3. A third ASCII table script, using awk

 1 #!/bin/bash
 2 # ASCII table script, using awk.
 3 # Author: Joseph Steinhauser
 4 # Used in ABS Guide with permission.
 5
 6
 7 #---
 8 #-- File: ascii Print ASCII chart, base 10/8/16 (JETS-2010)
 9 #---
 10 #-- Usage: ascii [oct|dec|hex|help|8|10|16]
 11 #--
 12 #-- This script prints a summary of ASCII char codes from Zero to 127.
 13 #-- Numeric values may be printed in Base10, Octal, or Hex (Base16).
 14 #--
 15 #-- Format Based on: /usr/share/lib/pub/ascii with base-10 as default.
 16 #-- For more detail, man ascii
 17 #---
 18
 19 [-n "$BASH_VERSION"] && shopt -s extglob

 20
 21 case "$1" in
 22 oct|[Oo]?([Cc][Tt])|8) Obase=Octal; Numy=3o;;
 23 hex|[Hh]?([Ee][Xx])|16|[Xx]) Obase=Hex; Numy=2X;;
 24 help|?(-)[h?]) sed -n '2,/^[]*$/p' $0;exit;;
 25 code|[Cc][Oo][Dd][Ee])sed -n '/case/,$p' $0;exit;;
 26 *) Obase=Decimal
 27 esac
 28 export Obase # CODE is actually shorter than the chart!
 29
 30 awk 'BEGIN{print "\n\t\t## "ENVIRON["Obase"]" ASCII Chart ##\n"
 31 ab="soh,stx,etx,eot,enq,ack,bel,bs,tab,nl,vt,np,cr,so,si,dle,"
 32 ad="dc1,dc2,dc3,dc4,nak,syn,etb,can,em,sub,esc,fs,gs,rs,us,sp"
 33 split(ab ad,abr,",");abr[0]="nul";abr[127]="del";
 34 fm1="|%0'"${Numy:- 4d}"' %-3s"
 35 for(idx=0;idx<128;idx++){fmt=fm1 (++colz%8?"":"|\n")
 36 printf(fmt,idx,(idx in abr)?abr[idx]:sprintf("%c",idx))} }'
 37
 38 exit $?

Prev Home Next
Copyright Index

Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting
Prev

Index
This index / glossary / quick-reference lists many of the important topics covered in the text. Terms are
arranged in approximate ASCII sorting order, modified as necessary for enhanced clarity.

Note that commands are indexed in Part 4.

* * *

^ (caret)

Beginning-of-line, in a Regular Expression•
^

^^

Uppercase conversion in parameter substitution

•

~ Tilde

~ home directory, corresponds to $HOME•
~/ Current user's home directory•
~+ Current working directory•
~- Previous working directory•

= Equals sign

= Variable assignment operator•
= String comparison operator

== String comparison operator

•

=~ Regular Expression match operator

Example script

•

< Left angle bracket

Is-less-than

String comparison

Integer comparison within double parentheses

•

Redirection

< stdin

<< Here document

<<< Here string

<> Opening a file for both reading and writing

•

> Right angle bracket

Is-greater-than

String comparison

Integer comparison, within double parentheses

•

Redirection

> Redirect stdout to a file

>> Redirect stdout to a file, but append

i>&j Redirect file descriptor i to file descriptor j

>&j Redirect stdout to file descriptor j

>&2 Redirect stdout of a command to stderr

2>&1 Redirect stderr to stdout

&> Redirect both stdout and stderr of a command to a file

:> file Truncate file to zero length

•

| Pipe, a device for passing the output of a command to another command or to the shell

|| Logical OR test operator

- (dash)

Prefix to default parameter, in parameter substitution•
Prefix to option flag•
Indicating redirection from stdin or stdout•
-- (double-dash)

Prefix to long command options

C-style variable decrement within double parentheses

•

; (semicolon)

As command separator•
\; Escaped semicolon, terminates a find command•
;; Double-semicolon, terminator in a case option

Required when ...

do keyword is on the first line of loop

terminating curly-bracketed code block

•

;;& ;& Terminators in a case option (version 4+ of Bash).•

: Colon

:> filename Truncate file to zero length•

null command, equivalent to the true Bash builtin•
Used in an anonymous here document•
Used in an otherwise empty function•
Used as a function name•

! Negation operator, inverts exit status of a test or command

!= not-equal-to String comparison operator•

? (question mark)

Match zero or one characters, in an Extended Regular Expression•
Single-character wild card, in globbing•
In a C-style Trinary operator•

// Double forward slash, behavior of cd command toward

. (dot / period)

. Load a file (into a script), equivalent to source command•

. Match single character, in a Regular Expression•

. Current working directory

./ Current working directory

•

.. Parent directory•

' ... ' (single quotes) strong quoting

" ... " (double quotes) weak quoting

Double-quoting the backslash (\) character•

,

Comma operator•
,

,,

Lowercase conversion in parameter substitution

•

() Parentheses

(...) Command group; starts a subshell•
(...) Enclose group of Extended Regular Expressions•
>(...)

<(...) Process substitution

•

...) Terminates test-condition in case construct•
((...)) Double parentheses, in arithmetic expansion•

[Left bracket, test construct

[]Brackets

Array element•
Enclose character set to match in a Regular Expression•
Test construct•

[[...]] Double brackets, extended test construct

$ Anchor, in a Regular Expression

$ Prefix to a variable name

$(...) Command substitution, setting a variable with output of a command, using parentheses notation

` ... ` Command substitution, using backquotes notation

$[...] Integer expansion (deprecated)

${ ... } Variable manipulation / evaluation

${var} Value of a variable•
${#var} Length of a variable•
${#@}

${#*} Number of positional parameters

•

${parameter?err_msg} Parameter-unset message•
${parameter-default}

${parameter:-default}

${parameter=default}

${parameter:=default} Set default parameter

•

${parameter+alt_value}

${parameter:+alt_value}

Alternate value of parameter, if set

•

${!var}

Indirect referencing of a variable, new notation

•

${!#}

Final positional parameter. (This is an indirect reference to $#.)

•

${!varprefix*}

${!varprefix@}

Match names of all previously declared variables beginning with varprefix

•

${string:position}

${string:position:length} Substring extraction

•

${var#Pattern}

${var##Pattern} Substring removal

•

${var%Pattern}•

${var%%Pattern} Substring removal
${string/substring/replacement}

${string//substring/replacement}

${string/#substring/replacement}

${string/%substring/replacement} Substring replacement

•

$' ... ' String expansion, using escaped characters.

\ Escape the character following

\< ... \> Angle brackets, escaped, word boundary in a Regular Expression•
\{ N \} "Curly" brackets, escaped, number of character sets to match in an Extended RE•
\; Semicolon, escaped, terminates a find command•
\$$ Indirect reverencing of a variable, old-style notation•
Escaping a newline, to write a multi-line command•

&

&> Redirect both stdout and stderr of a command to a file•
>&j Redirect stdout to file descriptor j

>&2 Redirect stdout of a command to stderr

•

i>&j Redirect file descriptor i to file descriptor j

2>&1 Redirect stderr to stdout

•

Closing file descriptors

n<&- Close input file descriptor n

0<&-, <&- Close stdin

n>&- Close output file descriptor n

1>&-, >&- Close stdout

•

&& Logical AND test operator•
Command & Run job in background•

Hashmark, special symbol beginning a script comment

#! Sha-bang, special string starting a shell script

* Asterisk

Wild card, in globbing•
Any number of characters in a Regular Expression•
** Exponentiation, arithmetic operator•
** Extended globbing file-match operator•

% Percent sign

Modulo, division-remainder arithmetic operation•

Substring removal (pattern matching) operator•

+ Plus sign

Character match, in an extended Regular Expression•
Prefix to alternate parameter, in parameter substitution•
++ C-style variable increment, within double parentheses•

* * *

Shell Variables

$_ Last argument to previous command

$- Flags passed to script, using set

$! Process ID of last background job

$? Exit status of a command

$@ All the positional parameters, as separate words

$* All the positional parameters, as a single word

$$ Process ID of the script

$# Number of arguments passed to a function, or to the script itself

$0 Filename of the script

$1 First argument passed to script

$9 Ninth argument passed to script

Table of shell variables

* * * * * *

-a Logical AND compound comparison test

Address database, script example

Advanced Bash Scripting Guide, where to download

Alias

Removing an alias, using unalias•

Anagramming

And list

To supply default command-line argument•

And logical operator &&

Angle brackets, escaped, \< . . . \> word boundary in a Regular Expression

Anonymous here document, using :

Archiving

rpm•
tar•

Arithmetic expansion

exit status of•
variations of•

Arithmetic operators

combination operators, C-style

+= -= *= /= %=

In certain contexts, += can also function as a string concatenation operator.

•

Arrays

Associative arrays

more efficient than conventional arrays

•

Bracket notation•
Concatenating, example script•
Copying•
Declaring

declare -a array_name

•

Embedded arrays•
Empty arrays, empty elements, example script•
Indirect references•
Initialization

array=(element1 element2 ... elementN)

Example script

Using command substitution

•

Loading a file into an array•
Multidimensional, simulating•
Nesting and embedding•
Notation and usage•
Number of elements in

${#array_name[@]}

${#array_name[*]}

•

Operations•
Passing an array to a function•
As return value from a function•
Special properties, example script•
String operations, example script•
unset deletes array elements•

Arrow keys, detecting

ASCII

Definition•
Scripts for generating ASCII table•

awk field-oriented text processing language

rand(), random function•
String manipulation•
Using export to pass a variable to an embedded awk script•

* * *

Backlight, setting the brightness

Backquotes, used in command substitution

Base conversion, example script

Bash

Bad scripting practices•
Basics reviewed, script example•
Command-line options

Table

•

Features that classic Bourne shell lacks•
Internal variables•
Version 2•
Version 3•
Version 4

Version 4.1

Version 4.2

•

.bashrc

$BASH_SUBSHELL

Basic commands, external

Batch files, DOS

Batch processing

bc, calculator utility

In a here document•
Template for calculating a script variable•

Bibliography

Bison utility

Bitwise operators

Example script•

Block devices

testing for•

Blocks of code

Iterating / looping•
Redirection

Script example: Redirecting output of a a code block

•

Bootable flash drives, creating

Brace expansion

Extended, {a..z}•
Parameterizing•
With increment and zero-padding (new feature in Bash, version 4)•

Brackets, []

Array element•
Enclose character set to match in a Regular Expression•
Test construct•

Brackets, curly, {}, used in

Code block•
find•
Extended Regular Expressions•
Positional parameters•
xargs•

break loop control command

Parameter (optional)•

Builtins in Bash

Do not fork a subprocess•

* * *

case construct

Command-line parameters, handling•
Globbing, filtering strings with•

cat, concatentate file(s)

Abuse of•
cat scripts•
Less efficient than redirecting stdin•
Piping the output of, to a read•
Uses of•

Character devices

testing for•

Checksum

Child processes

Colon, : , equivalent to the true Bash builtin

Colorizing scripts

Cycling through the background colors, example script•
Table of color escape sequences•
Template, colored text on colored background•

Comma operator, linking commands or operations

Command-line options

command_not_found_handle () builtin error-handling function (version 4+ of Bash)

Command substitution

$(...), preferred notation•
Backquotes•
Extending the Bash toolset•
Invokes a subshell•
Nesting•
Removes trailing newlines•
Setting variable from loop output•
Word splitting•

Comment headers, special purpose

Commenting out blocks of code

Using an anonymous here document•
Using an if-then construct•

Communications and hosts

Compound comparison operators

Compression utilities

bzip2•
compress•
gzip•
zip•

continue loop control command

Control characters

Control-C, break•
Control-D, terminate / log out / erase•
Control-G, BEL (beep)•
Control-H, rubout•
Control-J, newline•
Control-M, carriage return•

Coprocesses

cron, scheduling daemon

C-style syntax , for handling variables

Crossword puzzle solver

Cryptography

Curly brackets {}

in find command•
in an Extended Regular Expression•
in xargs•

* * *

Daemons, in UNIX-type OS

date

dc, calculator utility

dd, data duplicator command

Conversions•
Copying raw data to/from devices•
File deletion, secure•
Keystrokes, capturing•
Options•
Random access on a data stream•

Raspberry Pi, script for preparing a bootable SD card•
Swapfiles, initializing•
Thread on www.linuxquestions.org•

Debugging scripts

Tools•
Trapping at exit•
Trapping signals•

Decimal number, Bash interprets numbers as

declare builtin

options

case-modification options (version 4+ of Bash)

•

Default parameters

/dev directory

/dev/null pseudo-device file•
/dev/urandom pseudo-device file, generating pseudorandom numbers with•
/dev/zero, pseudo-device file•

Device file

dialog, utility for generating dialog boxes in a script

$DIRSTACK directory stack

Disabled commands, in restricted shells

do keyword, begins execution of commands within a loop

done keyword, terminates a loop

DOS batch files, converting to shell scripts

DOS commands, UNIX equivalents of (table)

dot files, "hidden" setup and configuration files

Double brackets [[...]] test construct

and evaluation of octal/hex constants•

Double parentheses ((...)) arithmetic expansion/evaluation construct

Double quotes " ... " weak quoting

Double-quoting the backslash (\) character•

Double-spacing a text file, using sed

* * *

-e File exists test

echo

Feeding commands down a pipe•
Setting a variable using command substitution•
/bin/echo, external echo command•

elif, Contraction of else and if

else

Encrypting files, using openssl

esac, keyword terminating case construct

Environmental variables

-eq , is-equal-to integer comparison test

Eratosthenes, Sieve of, algorithm for generating prime numbers

Escaped characters, special meanings of

Within $' ... ' string expansion•
Used with Unicode characters•

/etc/fstab (filesystem mount) file

/etc/passwd (user account) file

$EUID, Effective user ID

eval, Combine and evaluate expression(s), with variable expansion

Effects of, Example script•
Forces reevaluation of arguments•
And indirect references•
Risk of using•
Using eval to convert array elements into a command list•
Using eval to select among variables•

Evaluation of octal/hex constants within [[...]]

exec command, using in redirection

Exercises

Exit and Exit status

exit command•
Exit status (exit code, return status of a command)

Table, Exit codes with special meanings

Anomalous

Out of range

Pipe exit status

Specified by a function return

Successful, 0

/usr/include/sysexits.h, system file listing C/C++ standard exit codes

•

Export, to make available variables to child processes

Passing a variable to an embedded awk script•

expr, Expression evaluator

Substring extraction•
Substring index (numerical position in string)•
Substring matching•

Extended Regular Expressions

? (question mark) Match zero / one characters•
(...) Group of expressions•
\{ N \} "Curly" brackets, escaped, number of character sets to match•
+ Character match•

* * *

factor, decomposes an integer into its prime factors

Application: Generating prime numbers•

false, returns unsuccessful (1) exit status

Field, a group of characters that comprises an item of data

Files / Archiving

File descriptors

Closing

n<&- Close input file descriptor n

0<&-, <&- Close stdin

•

n>&- Close output file descriptor n

1>&-, >&- Close stdout
File handles in C, similarity to•

File encryption

find

{} Curly brackets•
\; Escaped semicolon•

Filter

Using - with file-processing utility as a filter•
Feeding output of a filter back to same filter•

Floating point numbers, Bash does not recognize

fold, a filter to wrap lines of text

Forking a child process

for loops

Functions

Arguments passed referred to by position•
Capturing the return value of a function using echo•
Colon as function name•
Definition must precede first call to function•
Exit status•
Local variables

and recursion

•

Passing an array to a function•
Passing pointers to a function•
Positional parameters•
Recursion•
Redirecting stdin of a function•
return

Multiple return values from a function, example script

Returning an array from a function

Return range limits, workarounds

•

Shift arguments passed to a function•
Unusual function names•

* * *

Games and amusements

Anagrams•
Anagrams, again•
Bingo Number Generator•
Crossword puzzle solver•
Crypto-Quotes•
Dealing a deck of cards•
Fifteen Puzzle•
Horse race•
Knight's Tour•
"Life" game•
Magic Squares•
Music-playing script•
Nim•
Pachinko•
Perquackey•
Petals Around the Rose•
Podcasting•
Poem•
Speech generation•
Towers of Hanoi

Graphic version

Alternate graphic version

•

getopt, external command for parsing script command-line arguments

Emulated in a script•

getopts, Bash builtin for parsing script command-line arguments

$OPTIND / $OPTARG•

Global variable

Globbing, filename expansion

Handling filenames correctly•
Wild cards•
Will not match dot files•

Golden Ratio (Phi)

-ge , greater-than or equal integer comparison test

-gt , greater-than integer comparison test

groff, text markup and formatting language

Gronsfeld cipher

$GROUPS, Groups user belongs to

gzip, compression utility

* * *

Hashing, creating lookup keys in a table

Example script•

head, echo to stdout lines at the beginning of a text file

help, gives usage summary of a Bash builtin

Here documents

Anonymous here documents, using :

Commenting out blocks of code

Self-documenting scripts

•

bc in a here document•
cat scripts•
Command substitution•
ex scripts•
Function, supplying input to•
Here strings

Calculating the Golden Ratio

Prepending text

As the stdin of a loop

Using read

•

Limit string

! as a limit string

Closing limit string may not be indented

Dash option to limit string, <<-LimitString

•

Literal text output, for generating program code•
Parameter substitution

Disabling parameter substitution

•

Passing parameters•
Temporary files•
Using vi non-interactively•

History commands

$HOME, user's home directory

Homework assignment solver

$HOSTNAME, system host name

* * *

$Id parameter, in rcs (Revision Control System)

if [condition]; then ... test construct

if-grep, if and grep in combination

Fixup for if-grep test

•

$IFS, Internal field separator variable

Defaults to whitespace•

Integer comparison operators

in, keyword preceding [list] in a for loop

Initialization table, /etc/inittab

Inline group, i.e., code block

Interactive script, test for

I/O redirection

Indirect referencing of variables

New notation, introduced in version 2 of Bash (example script)•

iptables, packet filtering and firewall utility

Usage example•
Example script•

Iteration

* * *

Job IDs, table

jot, Emit a sequence of integers. Equivalent to seq.

Random sequence generation•

Just another Bash hacker!

* * *

Keywords

error, if missing•

kill, terminate a process by process ID

Options (-l, -9)•

killall, terminate a process by name

killall script in /etc/rc.d/init.d

* * *

lastpipe shell option

-le , less-than or equal integer comparison test

let, setting and carrying out arithmetic operations on variables

C-style increment and decrement operators•

Limit string, in a here document

$LINENO, variable indicating the line number where it appears in a script

Link, file (using ln command)

Invoking script with multiple names, using ln•
symbolic links, ln -s•

List constructs

And list•
Or list•

Local variables

and recursion•

Localization

Logical operators (&&, ||, etc.)

Logout file, the ~/.bash_logout file

Loopback device, mounting a file on a block device

Loops

break loop control command•
continue loop control command•
C-style loop within double parentheses

for loop

while loop

•

do (keyword), begins execution of commands within a loop•
done (keyword), terminates a loop•
for loops•

for arg in [list]; do

Command substitution to generate [list]

Filename expansion in [list]

Multiple parameters in each [list] element

Omitting [list], defaults to positional parameters

Parameterizing [list]

Redirection
in, (keyword) preceding [list] in a for loop•
Nested loops•
Running a loop in the background, script example•
Semicolon required, when do is on first line of loop

for loop

while loop

•

until loop

until [condition-is-true]; do

•

while loop

while [condition]; do

Function call inside test brackets

Multiple conditions

Omitting test brackets

Redirection

while read construct

•

Which type of loop to use•

Loopback devices

In /dev directory•
Mounting an ISO image•

-lt , less-than integer comparison test

* * *

m4, macro processing language

$MACHTYPE, Machine type

Magic number, marker at the head of a file indicating the file type

Makefile, file containing the list of dependencies used by make command

man, manual page (lookup)

Man page editor (script)•

mapfile builtin, loads an array with a text file

Math commands

Meta-meaning

Morse code training script

Modulo, arithmetic remainder operator

Application: Generating prime numbers•

Mortgage calculations, example script

* * *

-n String not null test

Named pipe, a temporary FIFO buffer

Example script•

nc, netcat, a network toolkit for TCP and UDP ports

-ne, not-equal-to integer comparison test

Negation operator, !, reverses the sense of a test

netstat, Network statistics

Network programming

nl, a filter to number lines of text

Noclobber, -C option to Bash to prevent overwriting of files

NOT logical operator, !

null variable assignment, avoiding

* * *

-o Logical OR compound comparison test

Obfuscation

Colon as function name•
Homework assignment•

Just another Bash hacker!•

octal, base-8 numbers

od, octal dump

$OLDPWD Previous working directory

openssl encryption utility

Operator

Definition of•
Precedence•

Options, passed to shell or script on command line or by set command

Or list

Or logical operator, ||

* * *

Parameter substitution

${parameter+alt_value}

${parameter:+alt_value}

Alternate value of parameter, if set

•

${parameter-default}

${parameter:-default}

${parameter=default}

${parameter:=default}

Default parameters

•

${!varprefix*}

${!varprefix@}

Parameter name match

•

${parameter?err_msg}

Parameter-unset message

•

${parameter}

Value of parameter

•

Case modification (version 4+ of Bash).•
Script example•
Table of parameter substitution•

Parent / child process problem, a child process cannot export variables to a parent process

Parentheses

Command group•
Enclose group of Extended Regular Expressions•
Double parentheses, in arithmetic expansion•

$PATH, the path (location of system binaries)

Appending directories to $PATH using the += operator.•

Pathname, a filename that incorporates the complete path of a given file.

Parsing pathnames•

Perl, programming language

Combined in the same file with a Bash script•
Embedded in a Bash script•

Perquackey-type anagramming game (Quackey script)

Petals Around the Rose

PID, Process ID, an identification number assigned to a running process.

Pipe, | , a device for passing the output of a command to another command or to the shell

Avoiding unnecessary commands in a pipe•
Comments embedded within•
Exit status of a pipe•
Pipefail, set -o pipefail option to indicate exit status within a pipe•
$PIPESTATUS, exit status of last executed pipe•
Piping output of a command to a script•
Redirecting stdin, rather than using cat in a pipe•

Pitfalls

- (dash) is not redirection operator•
// (double forward slash), behavior of cd command toward•
#!/bin/sh script header disables extended Bash features•
Abuse of cat•
CGI programming, using scripts for•
Closing limit string in a here document, indenting•
DOS-type newlines (\r\n) crash a script•
Double-quoting the backslash (\) character•
eval, risk of using•
Execute permission lacking for commands within a script•
Exit status, anomalous•
Exit status of arithmetic expression not equivalent to an error code•
Export problem, child process to parent process•
Extended Bash features not available•
Failing to quote variables within test brackets•

GNU command set, in cross-platform scripts•
let misuse: attempting to set string variables•
Multiple echo statements in a function whose output is captured•
null variable assignment•
Numerical and string comparison operators not equivalent

= and -eq not interchangeable

•

Omitting terminal semicolon, in a curly-bracketed code block•
Piping

echo to a loop

echo to read (however, this problem can be circumvented)

tail -f to grep

•

Preserving whitespace within a variable, unintended consequences•
suid commands inside a script•
Undocumented Bash features, danger of•
Updates to Bash breaking older scripts•
Uninitialized variables•
Variable names, inappropriate•
Variables in a subshell, scope limited•
Subshell in while-read loop•
Whitespace, misuse of•

Pointers

and file descriptors•
and functions•
and indirect references•
and variables•

Portability issues in shell scripting

Setting path and umask•
A test suite script (Bash versus classic Bourne shell)•
Using whatis•

Positional parameters

$@, as separate words•
$*, as a single word•
in functions•

POSIX, Portable Operating System Interface / UNIX

--posix option•
1003.2 standard•
Character classes•

$PPID, process ID of parent process

Precedence, operator

Prepending lines at head of a file, script example

Prime numbers

Generating primes using the factor command•
Generating primes using the modulo operator•
Sieve of Eratosthenes, example script•

printf, formatted print command

/proc directory

Running processes, files describing•
Writing to files in /proc, warning•

Process

Child process•
Parent process•
Process ID (PID)•

Process substitution

To compare contents of directories•
To supply stdin of a command•
Template•
while-read loop without a subshell•

Programmable completion (tab expansion)

Prompt

$PS1, Main prompt, seen at command line•
$PS2, Secondary prompt•

Pseudo-code, as problem-solving method

$PWD, Current working directory

* * *

Quackey, a Perquackey-type anagramming game (script)

Question mark, ?

Character match in an Extended Regular Expression•
Single-character wild card, in globbing•
In a C-style Trinary (ternary) operator•

Quoting

Character string•
Variables•

within test brackets
Whitespace, using quoting to preserve•

* * *

Random numbers

/dev/urandom•
rand(), random function in awk•
$RANDOM, Bash function that returns a pseudorandom integer•
Random sequence generation, using date command•
Random sequence generation, using jot•
Random string, generating•

Raspberry Pi (single-board computer)

Script for preparing a bootable SD card•

rcs

read, set value of a variable from stdin

Detecting arrow keys•
Options•
Piping output of cat to read•
"Prepending" text•
Problems piping echo to read•
Redirection from a file to read•
$REPLY, default read variable•
Timed input•
while read construct•

readline library

Recursion

Demonstration of•
Factorial•
Fibonacci sequence•
Local variables•
Script calling itself recursively•
Towers of Hanoi•

Redirection

Code blocks•
exec <filename,

to reassign file descriptors

•

Introductory-level explanation of I/O redirection•
Open a file for both reading and writing

<>filename

•

read input redirected from a file•

stderr to stdout

2>&1

•

stdin / stdout, using -•
stdinof a function•
stdout to a file

> ... >>

•

stdout to file descriptor j

>&j

•

file descriptori to file descriptor j

i>&j

•

stdout of a command to stderr

>&2

•

stdout and stderr of a command to a file

&>

•

tee, redirect to a file output of command(s) partway through a pipe•

Reference Cards

Miscellaneous constructs•
Parameter substitution/expansion•
Special shell variables•
String operations•
Test operators

Binary comparison

Files

•

Regular Expressions

^ (caret) Beginning-of-line•
$ (dollar sign) Anchor•
. (dot) Match single character•
* (asterisk) Any number of characters•
[] (brackets) Enclose character set to match•
\ (backslash) Escape, interpret following character literally•
\< ... \> (angle brackets, escaped) Word boundary•
Extended REs

+ Character match

\{ \} Escaped "curly" brackets

[: :] POSIX character classes

•

$REPLY, Default value associated with read command

Restricted shell, shell (or script) with certain commands disabled

return, command that terminates a function

run-parts

Running scripts in sequence, without user intervention•

* * *

Scope of a variable, definition

Script options, set at command line

Scripting routines, library of useful definitions and functions

Secondary prompt, $PS2

Security issues

nmap, network mapper / port scanner•
sudo•
suid commands inside a script•
Viruses, trojans, and worms in scripts•
Writing secure scripts•

sed, pattern-based programming language

Table, basic operators•
Table, examples of operators•

select, construct for menu building

in list omitted•

Semaphore

Semicolon required, when do keyword is on first line of loop

When terminating curly-bracketed code block•

seq, Emit a sequence of integers. Equivalent to jot.

set, Change value of internal script variables

set -u, Abort script with error message if attempting to use an undeclared variable.•

Shell script, definition of

Shell wrapper, script embedding a command or utility

shift, reassigning positional parameters

$SHLVL, shell level, depth to which the shell (or script) is nested

shopt, change shell options

Signal, a message sent to a process

Simulations

Brownian motion•
Galton board•
Horserace•
Life, game of•
PI, approximating by firing cannonballs•
Pushdown stack•

Single quotes (' ... ') strong quoting

Socket, a communication node associated with an I/O port

Sorting

Bubble sort•
Insertion sort•

source, execute a script or, within a script, import a file

Passing positional parameters•

Spam, dealing with

Example script•
Example script•
Example script•
Example script•

Special characters

Stack

Definition•
Emulating a push-down stack, example script•

Standard Deviation, example script

Startup files, Bash

stdin and stdout

Stopwatch, example script

Strings

=~ String match operator•
Comparison•
Length

${#string}

•

Manipulation•

Manipulation, using awk•
Null string, testing for•
Protecting strings from expansion and/or reinterpretation, script example

Unprotecting strings, script example

•

strchr(), equivalent of•
strlen(), equivalent of•
strings command, find printable strings in a binary or data file•
Substring extraction

${string:position}

${string:position:length}

Using expr

•

Substring index (numerical position in string)•
Substring matching, using expr•
Substring removal

${var#Pattern}

${var##Pattern}

${var%Pattern}

${var%%Pattern}

•

Substring replacement

${string/substring/replacement}

${string//substring/replacement}

${string/#substring/replacement}

${string/%substring/replacement}

Script example

•

Table of string/substring manipulation and extraction operators•

Strong quoting ' ... '

Stylesheet for writing scripts

Subshell

Command list within parentheses•
Variables, $BASH_SUBSHELL and $SHLVL•
Variables in a subshell

scope limited, but ...

... can be accessed outside the subshell?

•

su Substitute user, log on as a different user or as root

suid (set user id) file flag

suid commands inside a script, not advisable•

Symbolic links

Swapfiles

* * *

Tab completion

Table lookup, script example

tail, echo to stdout lines at the (tail) end of a text file

tar, archiving utility

tee, redirect to a file output of command(s) partway through a pipe

Terminals

setserial•
setterm•
stty•
tput•
wall•

test command

Bash builtin•
external command, /usr/bin/test (equivalent to /usr/bin/[)•

Test constructs

Test operators

-a Logical AND compound comparison•
-e File exists•
-eq is-equal-to (integer comparison)•
-f File is a regular file•
-ge greater-than or equal (integer comparison)•
-gt greater-than (integer comparison)•
-le less-than or equal (integer comparison)•
-lt less-than (integer comparison)•
-n not-zero-length (string comparison)•
-ne not-equal-to (integer comparison)•
-o Logical OR compound comparison•
-u suid flag set, file test•
-z is-zero-length (string comparison)•
= is-equal-to (string comparison)

== is-equal-to (string comparison)

•

< less-than (string comparison)•

< less-than, (integer comparison, within double parentheses)•
<= less-than-or-equal, (integer comparison, within double parentheses)•
> greater-than (string comparison)•
> greater-than, (integer comparison, within double parentheses)•
>= greater-than-or-equal, (integer comparison, within double parentheses)•
|| Logical OR•
&& Logical AND•
! Negation operator, inverts exit status of a test

!= not-equal-to (string comparison)

•

Tables of test operators

Binary comparison

File

•

Text and text file processing

Time / Date

Timed input

Using read -t•
Using stty•
Using timing loop•
Using $TMOUT•

Tips and hints for Bash scripts

Array, as return value from a function

Associative array more efficient than a numerically-indexed array

•

Capturing the return value of a function, using echo•
CGI programming, using scripts for•
Comment blocks

Using anonymous here documents

Using if-then constructs

•

Comment headers, special purpose•
C-style syntax , for manipulating variables•
Double-spacing a text file•
Filenames prefixed with a dash, removing•
Filter, feeding output back to same filter•
Function return value workarounds•
if-grep test fixup•
Library of useful definitions and functions•
null variable assignment, avoiding•
Passing an array to a function•
$PATH, appending to, using the += operator.•
Prepending lines at head of a file•
Progress bar template•
Pseudo-code•
rcs•

Redirecting a test to /dev/null to suppress output•
Running scripts in sequence without user intervention, using run-parts•
Script as embedded command•
Script portability

Setting path and umask

Using whatis

•

Setting script variable to a block of embedded sed or awk code•
Speeding up script execution by disabling unicode•
Subshell variable, accessing outside the subshell•
Testing a variable to see if it contains only digits•
Testing whether a command exists, using type•
Tracking script usage•
while-read loop without a subshell•
Widgets, invoking from a script•

$TMOUT, Timeout interval

Token, a symbol that may expand to a keyword or command

tput, terminal-control command

tr, character translation filter

DOS to Unix text file conversion•
Options•
Soundex, example script•
Variants•

Trap, specifying an action upon receipt of a signal

Trinary (ternary) operator, C-style, var>10?88:99

in double-parentheses construct•
in let construct•

true, returns successful (0) exit status

typeset builtin

options•

* * *

$UID, User ID number

unalias, to remove an alias

uname, output system information

Unicode, encoding standard for representing letters and symbols

Disabling unicode to optimize script•

Uninitialized variables

uniq, filter to remove duplicate lines from a sorted file

unset, delete a shell variable

until loop

until [condition-is-true]; do

* * *

Variables

Array operations on•
Assignment

Script example

Script example

Script example

•

Bash internal variables•
Block of sed or awk code, setting a variable to•
C-style increment/decrement/trinary operations•
Change value of internal script variables using set•
declare, to modify the properties of variables•
Deleting a shell variable using unset•
Environmental•
Expansion / Substring replacement operators•
Indirect referencing

eval variable1=\$$variable2

Newer notation

${!variable}

•

Integer•
Integer / string (variables are untyped)•
Length

${#var}

•

Lvalue•
Manipulating and expanding•
Name and value of a variable, distinguishing between•
Null string, testing for•
Null variable assignment, avoiding•
Quoting

within test brackets

to preserve whitespace

•

rvalue•
Setting to null value•

In subshell not visible to parent shell•
Testing a variable if it contains only digits•
Typing, restricting the properties of a variable•
Undeclared, error message•
Uninitialized•
Unquoted variable, splitting•
Unsetting•
Untyped•

* * *

wait, suspend script execution

To remedy script hang•

Weak quoting " ... "

while loop

while [condition]; do

C-style syntax•
Calling a function within test brackets•
Multiple conditions•
Omitting test brackets•
while read construct

Avoiding a subshell

•

Whitespace, spaces, tabs, and newline characters

$IFS defaults to•
Inappropriate use of•
Preceding closing limit string in a here document, error•
Preceding script comments•
Quoting, to preserve whitespace within strings or variables•
[:space:], POSIX character class•

who, information about logged on users

w•
whoami•
logname•

Widgets

Wild card characters

Asterisk *•
In [list] constructs•
Question mark ?•
Will not match dot files•

Word splitting

Definition•
Resulting from command substitution•

Wrapper, shell

* * *

xargs, Filter for grouping arguments

Curly brackets•
Limiting arguments passed•
Options•
Processes arguments one at a time•
Whitespace, handling•

* * *

yes

Emulation•

* * *

-z String is null

Zombie, a process that has terminated, but not yet been killed by its parent

Prev Home
ASCII Table

	Table of Contents
	Advanced Bash-Scripting Guide
	An in-depth exploration of the art of shell scripting
	Mendel Cooper

	Dedication
	Part 1. Introduction
	Chapter 1. Shell Programming!
	Notes

	Chapter 2. Starting Off With a Sha-Bang
	2.1. Invoking the script
	Notes

	2.2. Preliminary Exercises
	Part 2. Basics
	Chapter 3. Special Characters
	Notes

	Chapter 4. Introduction to Variables and Parameters
	4.1. Variable Substitution
	Notes

	4.2. Variable Assignment
	4.3. Bash Variables Are Untyped
	4.4. Special Variable Types
	Notes

	Chapter 5. Quoting
	5.1. Quoting Variables
	Notes

	5.2. Escaping
	Chapter 6. Exit and Exit Status
	Notes

	Chapter 7. Tests
	7.1. Test Constructs
	Notes

	7.2. File test operators
	Notes

	7.3. Other Comparison Operators
	Notes

	7.4. Nested if/then Condition Tests
	7.5. Testing Your Knowledge of Tests
	Chapter 8. Operations and Related Topics
	8.1. Operators
	Notes

	8.2. Numerical Constants
	8.3. The Double-Parentheses Construct
	8.4. Operator Precedence
	Notes

	Part 3. Beyond the Basics
	Chapter 9. Another Look at Variables
	9.1. Internal Variables
	Notes

	9.2. Typing variables: declare or typeset
	9.2.1. Another use for declare
	Notes

	9.3. $RANDOM: generate random integer
	Notes

	Chapter 10. Manipulating Variables
	10.1. Manipulating Strings
	10.1.1. Manipulating strings using awk
	10.1.2. Further Reference
	Notes

	10.2. Parameter Substitution
	Notes

	Chapter 11. Loops and Branches
	11.1. Loops
	Notes

	11.2. Nested Loops
	11.3. Loop Control
	Notes

	11.4. Testing and Branching
	Notes

	Chapter 12. Command Substitution
	Notes

	Chapter 13. Arithmetic Expansion
	Chapter 14. Recess Time
	Part 4. Commands
	Chapter 15. Internal Commands and Builtins
	15.1. Job Control Commands
	Notes

	Chapter 16. External Filters, Programs and Commands
	16.1. Basic Commands
	Notes

	16.2. Complex Commands
	Notes

	16.3. Time / Date Commands
	16.4. Text Processing Commands
	Notes

	16.5. File and Archiving Commands
	Notes

	16.6. Communications Commands
	Notes

	16.7. Terminal Control Commands
	16.8. Math Commands
	16.9. Miscellaneous Commands
	Notes

	Chapter 17. System and Administrative Commands
	17.1. Analyzing a System Script
	Notes

	Part 5. Advanced Topics
	Chapter 18. Regular Expressions
	18.1. A Brief Introduction to Regular Expressions
	Notes

	18.2. Globbing
	Notes

	Chapter 19. Here Documents
	19.1. Here Strings
	Notes

	Chapter 20. I/O Redirection
	20.1. Using exec
	Notes

	20.2. Redirecting Code Blocks
	20.3. Applications
	Chapter 21. Subshells
	Notes

	Chapter 22. Restricted Shells
	Chapter 23. Process Substitution
	Notes

	Chapter 24. Functions
	24.1. Complex Functions and Function Complexities
	Notes

	24.2. Local Variables
	24.2.1. Local variables and recursion.
	Notes

	24.3. Recursion Without Local Variables
	Chapter 25. Aliases
	Notes

	Chapter 26. List Constructs
	Chapter 27. Arrays
	Chapter 28. Indirect References
	Chapter 29. /dev and /proc
	29.1. /dev
	Notes

	29.2. /proc
	Notes

	Chapter 30. Network Programming
	Chapter 31. Of Zeros and Nulls
	Chapter 32. Debugging
	Notes

	Chapter 33. Options
	Chapter 34. Gotchas
	Notes

	Chapter 35. Scripting With Style
	35.1. Unofficial Shell Scripting Stylesheet
	Notes

	Chapter 36. Miscellany
	36.1. Interactive and non-interactive shells and scripts
	36.2. Shell Wrappers
	Notes

	36.3. Tests and Comparisons: Alternatives
	36.4. Recursion: a script calling itself
	36.5. "Colorizing" Scripts
	Notes

	36.6. Optimizations
	Notes

	36.7. Assorted Tips
	36.7.1. Ideas for more powerful scripts
	36.7.2. Widgets

	36.8. Security Issues
	36.8.1. Infected Shell Scripts
	36.8.2. Hiding Shell Script Source
	36.8.3. Writing Secure Shell Scripts
	Notes

	36.9. Portability Issues
	36.9.1. A Test Suite
	Notes

	36.10. Shell Scripting Under Windows
	Chapter 37. Bash, versions 2, 3, and 4
	37.1. Bash, version 2
	37.2. Bash, version 3
	37.2.1. Bash, version 3.1
	37.2.2. Bash, version 3.2

	37.3. Bash, version 4
	37.3.1. Bash, version 4.1
	37.3.2. Bash, version 4.2
	Notes

	Chapter 38. Endnotes
	38.1. Author's Note
	Notes

	38.2. About the Author
	Notes

	38.3. Where to Go For Help
	Notes

	38.4. Tools Used to Produce This Book
	38.4.1. Hardware
	38.4.2. Software and Printware

	38.5. Credits
	38.6. Disclaimer
	Bibliography
	Notes

	Appendix A. Contributed Scripts
	Appendix B. Reference Cards
	Appendix C. A Sed and Awk Micro-Primer
	C.1. Sed
	Notes

	C.2. Awk
	Notes

	Appendix D. Parsing and Managing Pathnames
	Appendix E. Exit Codes With Special Meanings
	Notes

	Appendix F. A Detailed Introduction to I/O and I/O Redirection
	Appendix G. Command-Line Options
	G.1. Standard Command-Line Options
	G.2. Bash Command-Line Options
	Appendix H. Important Files
	Notes

	Appendix I. Important System Directories
	Notes

	Appendix J. An Introduction to Programmable Completion
	Notes

	Appendix K. Localization
	Appendix L. History Commands
	Appendix M. Sample .bashrc and .bash_profile Files
	Appendix N. Converting DOS Batch Files to Shell Scripts
	Notes

	Appendix O. Exercises
	O.1. Analyzing Scripts
	O.2. Writing Scripts
	Notes

	Appendix P. Revision History
	Appendix Q. Download and Mirror Sites
	Appendix R. To Do List
	Appendix S. Copyright
	Appendix T. ASCII Table
	Index

