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Abstract

This document describes some internals of the libScotch library.
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1 Introduction

This document is a starting point for the persons interested in using Scotch as

a testbed for their new partitioning methods, and/or willing to contribute to it by

making these methods available to the rest of the scientific community.

Much information is missing. If you need specific information, please send an

e-mail, so that relevant additional information can be added to this document.

2 Naming conventions

All of the files of the Scotch project have been written using strict coding conven-

tions, to ease maintenance and further extension by external contributors. There-

fore, contributors must follow these coding conventions so as to ease the work of

their followers.

2.1 Variables

Variables of the sequential Scotch software are commonly built from a radical

and a suffix. When contextualization is required, e.g., the same kind of variable

appear in two different objects, a prefix is added. In PT-Scotch, a second radical

is commonly used.

Common radicals are:

• vert: vertex.

• velo: vertex load.
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• vnum: vertex number, used as an index to access another vertex structure.

This radical typically relates to an array that contains the vertex indices, in

some original graph, corresponding to the vertices of a derived graph (e.g., an

induced graph).

• vlbl: user-defined vertex label (at the user API level).

• edge: edge (i.e., arcs, in fact).

• edlo: edge (arc) load.

• graf: graph.

Common suffices are:

• end: vertex end index of an edge (e.g., vertend, wrt. vertnum). The end

suffix is a sub-category of the num suffix.

• nbr: number of instances of objects of a given radical type (e.g., vertnbr,

edgenbr).

• num: number (index) of some instance of an object of a given radical

type. For instance, vertnum is the index of some (graph) vertex, that

can be used to access adjacency (verttab) or vertex load (velotab) ar-

rays. 0 ≤ vertnum < vertnbr if the vertex index is “not based”, and

baseval ≤ vertnum < vertnnd if the index is “based”, that it, counted start-

ing from baseval. For number basing and array indexing, see Section 2.3.

• ptr : pointer to an instance of an item of some radical type (e.g., grafptr).

• sum: sum of several values of the same radical type (e.g., velosum, edlosum).

• tab: reference to the first memory element of an array. Such a reference is

returned by a memory allocation routine (e.g., memAlloc) or allocated from

the stack.

• tax (for “table access”): reference to an array that will be accessed using

“based” indices. See Section 2.3.

• tnd : pointer to the “based” after-end of an array of items of radix type (e.g.

velotnd). Variables of this suffix are mostly used as bounds in loops.

• val: value of an item. For instance, veloval is the load of some vertex, that

may have been read from a file.

Common prefixes are:

• src: source, wrt. active. For instance, a source graph is a plain Graph

structure that contains only graph topology, compared to enriched graph data

structures that are used for specific computations such as bipartitioning.

• act: active, wrt. source. An active graph is a data structure enriched with

information required for specific computations, e.g. a Bgraph, a Kgraph or a

Vgraph compared to a Graph.

• ind: induced, wrt. original.

• src: source, wrt. active or target.
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• org: original, wrt. induced. An original graph is a graph from which a derived

graph will be computed, e.g. an induced subgraph.

• tgt: target.

• coar: coarse, wrt. fine (e.g. coarvertnum, as a variable that holds the number

of a coarse vertex, within some coarsening algorithm).

• fine: fine, wrt. coarse.

• mult: multinode, for coarsening.

2.2 Functions

Like variables, routines of the Scotch software package follow a strict naming

scheme, in an object-oriented fashion. Routines are always prefixed by the name of

the data structure on which they operate, then by the name of the method that is

applied to the said data structure. Some method names are standard for each class.

Standard method names are:

• Alloc: dynamically allocate an object of the given class. Not always available,

as many objects are allocated on the stack as local variables.

• Init: initialization of the object passed as parameter.

• Free: freeing of the external structures of the object, to save space. The

object may still be used, but it is considered as “empty” (e.g., an empty

graph). The object may be re-used after it is initialized again.

• Exit: freeing of the internal structures of the object. The object must not be

passed to other routines after the Exit method has been called.

• Copy: make a fully operational, independent, copy of the object, like a “clone”

function in object-oriented languages.

• Load: load object data from stream.

• Save: save object data to stream.

• View: display internal structures and statistics, for debugging purposes.

• Check: check internal consistency of the object data, for debugging purposes.

A Check method must be created for any new class, and any function that

creates or updates an instance of some class must call the appropriate Check

method, when compiled in debug mode.

2.3 Array index basing

The libScotch library can accept data structures that come both from FORTRAN,

where array indices start at 1, and C, where they start at 0. The start index for

arrays is called the “base value”, commonly stored in a variable (or field) called

baseval.

In order to manage based indices elegantly, most references to arrays are based

as well. The “table access” reference, suffixed as “tax” (see Section 2.1), is defined

as the reference to the beginning of an array in memory, minus the base value

(with respect to pointer arithmetic, that is, in terms of bytes, times the size of the

array cell data type). Consequently, for any array whose beginning is pointed to by

4



xxxxtab, we have xxxxtax = xxxxtab−baseval. Consequently xxxxtax[baseval]

always represents the first cell in the array, whatever the base value is. Of course,

memory allocation and freeing operations must always operate on tab pointers only.

In terms of indices, if the size of the array is xxxxnbr, then xxxxnnd =

xxxxnbr + baseval, so that valid indices xxxxnum always belong to the range

[baseval; vertnnd[. Consequently, loops often take the form:

for (xxxxnum = baseval; xxxxnum < xxxxnnd; xxxxnum ++) {

xxxxtax[xxxxnum] = ...;

}

3 Structure of the libScotch library

As seen in Section 2.2, all of the routines that comprise the libScotch project

are named with a prefix that defines the type of data structure onto which they

apply and a prefix that describes their purpose. This naming scheme allows one to

categorize functions as methods of classes, in an object-oriented manner.

This organization is reflected in the naming and contents of the various source

files.

The main modules of the libScotch library are the following:

• arch: target architectures used by the static mapping methods.

• bgraph: graph edge bipartitioning methods, hence the initial.

• graph: basic (source) graph handling methods.

• hgraph: graph ordering methods. These are based on an extended “halo”

graph structure, thus for the initial.

• hmesh: mesh ordering methods.

• kgraph: k-way graph partitioning methods.

• library: API routines for the libScotch library.

• mapping: definition of the mapping structure.

• mesh: basic mesh handling methods.

• order: definition of the ordering structure.

• parser: strategy parsing routines, based on the Flex and Bison parsers.

• vgraph: graph vertex bipartitioning methods, hence the initial.

• vmesh: mesh node bipartitioning methods.

Every source file name is made of the name of the module to which it belongs,

followed by one or two words, separated by an underscore, that describe the type

of action performed by the routines of the file. For instance, for module bgraph:

• bgraph.h is the header file that defines the Bgraph data structure,

• bgraph bipart fm.[ch] are the files that contain the Fiduccia-Mattheyses-

like graph bipartitioning method,

• bgraph check.c is the file that contains the consistency checking routine

bgraphCheck for Bgraph structures,

and so on. Every source file has a comments header briefly describing the purpose

of the code it contains.
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4 Files and data structures

User-manageable file formats are described in the Scotchuser’s guide. This section

contains information that are relevant only to developers and maintainers.

For the sake of portability, readability, and reduction of storage space, all the

data files shared by the different programs of the Scotch project are coded in plain

ASCII text exclusively. Although one may speak of “lines” when describing file for-

mats, text-formatting characters such as newlines or tabulations are not mandatory,

and are not taken into account when files are read. They are only used to provide

better readability and understanding. Whenever numbers are used to label objects,

and unless explicitely stated, numberings always start from zero, not one.

4.1 Decomposition-defined architecture files

Decomposition-defined architecture files are the way to describe irregular target

architectures that cannot be represented as algorithmically-coded architectures.

Two main file formats coexist : the “deco 0” and “deco 2” formats. “deco”

stands for “decomposition-defined architecture”, followed by the format number.

The “deco 1” format is a compiled form of the “deco 0” format. We will describe

it here.

The “deco 1” file format results from an O(p2) preprocessing of the “deco 0”

target architecture format. While the “deco 0” format contains a distance matrix

between all pairs of terminal domains, which is consequently in in Θ(p2/2), the

“deco 1” format contains the distance matrix between any pair of domains, whether

they are terminal or not. Since there are roughly 2p non-terminal domains in a

target architecture with p terminal domains, because all domains form a binary

tree whose leaves are the terminal domains, the distance matrix of a “deco 1”

format is in Θ(2p2), that is, four times that of the corresponding “deco 0” file.

Also, while the “deco 0” format lists only the characteristics of terminal do-

mains (in terms of weights and labels), the “deco 1” format provides these for all

domains, so as to speed-up the retrieval of the size, weight and label of any domain,

whether it is terminal or not.

The “deco 1” header is followed by two integer numbers, which are the number

of processors and the largest terminal number used in the decomposition, respec-

tively (just as for “deco 0” files). Two arrays follow.

The first array has as many lines as there are domains (and not only terminal

domains as in the case of “deco 0” files). Each of these lines holds three numbers:

the label of the terminal domain that is associated with this domain (which is the

label of the terminal domain of smallest number contained in this domain), the size

of the domain, and the weight of the domain. The first domain in the array is the

initial domain holding all the processors, that is, domain 1. The other domains in

the array are the resulting subdomains, in ascending domain number order, such

that the two subdomains of a given domain of number i are numbered 2i and 2i+1.

The second array is a lower triangular diagonal-less matrix that gives the dis-

tance between all pairs of domains.

For instance, Figure 1 and Figure 2 show the contents of the “deco 0” and

“deco 1” architecture decomposition files for UB(2, 3), the binary de Bruijn graph

of dimension 3, as computed by the amk grf program.
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1 1 1 2
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2 2 2 1 1 1

3 2 3 1 2 2 1

Figure 1: “deco 0” target decomposition file for UB(2, 3). The terminal numbers

associated with every processor define a unique recursive bipartitioning of the target

graph.

5 Adding a method to the libScotch library

The libScotch has been carefully designed so as to allow external contributors to

add their new partitioning or ordering methods, and to use Scotch as a testbed

for them.

5.1 What to add

There are currently six types of methods which can be added:

• k-way graph mapping methods, in module kgraph,

• graph bipartitioning methods by means of edge separators, in module bgraph,

used by the mapping method by dual recursive bipartitioning, implemented

in kgraph map rb.[ch],

• graph ordering methods, in module hgraph,

• graph separation methods by means of vertex separators, in module vgraph,

used by the nested dissection ordering method implemented in hgraph order

nd.[ch],

• mesh ordering methods, in module hmesh,

• mesh separation methods with vertex separators, in module vmesh, used by

the nested dissection ordering method implemented in hmesh order nd.[ch].

Every method of these six types operates on instances of augmented graph structures

that contain, in addition to the graph topology, data related to the current state of

the partition or of the ordering. For instance, all of the graph bipartitioning methods

operate on an instance of a Bgraph, defined in bgraph.h, and which contains fields

such as compload0, the current load sum of the vertices assigned to the first part,

commload, the load sum of the cut edges, etc.

7



deco

1

8 15

0 8 8

3 4 4

0 4 4

5 2 2

3 2 2

2 2 2

0 2 2

6 1 1

5 1 1

7 1 1

3 1 1

4 1 1

2 1 1

1 1 1
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2 2 2 2 1 2 2 1

3 1 2 2 1 2 2 2

3 1 2 2 1 2 1 2

1 1 2 2 3 2 3 1

2 2 3 1 3 2 3 2

1 3 3 1 2 2 1 2

1 1 2 2 1 1 1 2

2 1 2 2 1 1 1 2

2 2 3 3 2 2 3 1

2 2 1 3 2 1 2 2

1 2 2 1 1 2 2 2

1 1 1 3 3 2 3 3

2 1 2 3 3 2 1 2

1

Figure 2: “deco 1” target decomposition file for UB(2, 3), compiled with the acpl

tool from the “deco 0” file displayed in Figure 1.

In order to understand better the meaning of each of the fields used by some aug-

mented graph or mesh structure, contributors can read the code of the consistency

checking routines, located in files ending in check.c , such as bgraph check.c

for a Bgraph structure. These routines are regularly called during the execution of

the debug version of Scotch to ease bug tracking. They are time-consuming but

proved very helpful in the development and testing of new methods.

5.2 Where to add

Let us assume that you want to code a new graph separation routine. Your routine

will operate on a Vgraph structure, and thus will be stored in files called vgraph

separate xy.[ch], where xy is a two-letter reminder of the name of your algo-

rithm. Look into the libScotch source directory for already used codenames, and

pick a free one. In case you have more that one single source file, use extended

names, such as vgraph separate xy subname.[ch] .

In order to ease your coding, copy the files of a simple and already existing

method and use them as a pattern for the interface of your new method. Some

methods have an optional parameter data structure, others do not. Browse through

all existing methods to find the one that looks closest to what you want.

Some methods can be passed parameters at run time from the strategy string

parser. These parameters can be of fixed types only. These types are:

• an integer (int) type,

• an floating-point (double) type,

• an enumerated (char) type : this type is used to make a choice among a list of

single character values, such as “yn”. It is more readable than giving integer

numerical values to method option flags,

• a strategy (Scotch Strat type) : a method can be passed a sub-strategy of a

given type, which can be run on an augmented graph of the proper type. For
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instance, the nested dissection method in hgraph order nd.c uses a graph

separation strategy to compute its vertex separators.

5.3 Declaring the new method to the parser

Once the new method has been coded, its interface must be known to the parser,

so that it can be used in strategy strings. All of this is done in the module strategy

method files, the name of which always end in st.[ch], that is, vgraph separate

st.[ch] for the vgraph module. Both files are to be updated.

In the header file * st.h, a new identifier must be created for the new method in

the StMethodType enumeration type, preferrably placed in alphabetical order.

In file * st.c, there are several places to update. First, in the beginning of

the module file, the header file of the new method, vgraph separate xy.h in this

example, must be added in alphabetical order to the list of included method header

files.

Then, if the new method has parameters, an instance of the method parameter

structure must be created, which will hold the default values for the method. This

is in fact a union structure, of the following form :

static union {

VgraphSeparateXyParam param;

StratNodeMethodData padding;

} vgraphseparatedefaultxy = { { ... } };

where the dots should be replaced by the list of default values of the fields

of the VgraphSeparateXyParam structure. Note that the size of the StratNode

MethodData structure, which is used as a generic padding structure, must always

be greater than or equal to the size of each of the parameter structures. If your new

parameter structure is larger, you will have to update the size of the StratNode

MethodData type in file parser.h . The size of the StratNodeMethodData type

does not depend directly on the size of the parameter structures (as could have

been done by making it an union of all of them) so as to to reduce the dependencies

between the files of the library. In most cases, the default size is sufficient, and

a test is added in the beginning of all method routines to ensure it is the case in

practice.

Finally, the first two method tables must be filled accordingly. In the first one, of

type StratMethodTab, one must add a new line linking the method identifier to the

character code used to name the method in strategy strings (which must be chosen

among all of the yet unused letters), the pointer to the routine, and the pointer

to the above default parameter structure if it exists (else, a NULL pointer must be

given). In the second one, of type StratParamTab, one must add one line per method

parameter, giving the identifier of the method, the type of the parameter, the name

of the parameter in the strategy string, the base address of the default parameter

structure, the actual address of the field in the parameter structure (both fields are

required because the relative offset of the field with respect to the starting address

of the structure cannot be computed at compile-time), and an optional pointer that

references either the strategy table to be used to parse the strategy parameter (for

strategy parameters) or a string holding all of the values of the character flags (for

an enumerated type), this pointer being set to NULL for all of the other parameter

types (integer and floating point).
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5.4 Adding the new method to the makefile

Of course, in order to be compiled, the new method must be added to the makefile

of the libscotch source directory. There are several places to update.

First, you have to create the entry for the new method source files themselves.

The best way to proceed is to search for the one of an already existing method,

such as vgraph separate fm, and copy it to the right neighboring place, preferrably

following the alphabetical order.

Then, you have to add the new header file to the dependency list of the module

strategy method, that is, vgraph separate st for graph separation methods. Here

again, search for the occurences of string vgraph separate fm to see where it is

done.

Finally, add the new object file to the component list of the libscotch library

file.

Once all of this is done, you can recompile Scotch and be able to use your new

method in strategy strings.

6 Code explanations

This section explains some of the most complex algorithms implemented in Scotch

and PT-Scotch.

6.1 dgraphCoarsenBuild()

The dgraphCoarsenBuild() routine creates a coarse distributed graph from a fine

distributed graph, using the result of a distributed matching. The result of the

matching is available on all MPI processes as follows:

• coardat.multlocnbr: the number of local coarse vertices to be created;

coardat.multloctab: the local multinode array. For each local coarse vertex

to be created, it contains two values. The first one is always positive, and

represents the global number of the first local fine vertex to be mated. The

second number can be either positive or negative. If it is positive, it repre-

sents the global number of the second local fine vertex to be mated. If it is

negative, its opposite, minus two, represents the local edge number pointing

to the remote vertex to be mated; coardat.procgsttax: array (restricted to

ghost vertices only) that records on which process is located each ghost fine

vertex.

6.1.1 Creating the fine-to-coarse vertex array

In order to build the coarse graph, one should create the array that provides the

coarse global vertex number for all fine vertex ends (local and ghost). This infor-

mation will be stored in the coardat.coargsttax array.

Hence, a loop on local multinode data fills coardat.coargsttax. The first local

multinode vertex index is always local, by nature of the matching algorithm. If the

second vertex is local too, coardat.coargsttax is filled instantly. Else, a request

for the global coarse vertex number of the remote vertex is forged, in the vsnddattab

array, indexed by the current index coarsndidx extracted from the neighbor process

send index table nsndidxtab. Each request comprises two numbers: the global fine

number of the remote vertex for which the coarse number is seeked, and the global

number of the coarse multinode vertex into which it will be merged.
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Then, an all-to-all-v data exchange by communication takes place, using either

the dgraphCoarsenBuildPtop() or dgraphCoarsenBuildColl() routines. Apart

from the type of communication they implement (either point-to-point or collec-

tive), these routines do the same task: they process the pairs of values sent from

the vsnddattab array. For each pair (the order of processing is irrelevant), the

coargsttax array of the receiving process is filled-in with the global multinode

value of the remotely mated vertex. Hence, at the end of this phase, all processes

have a fully valid local part of the coargsttax array; no value should remain neg-

ative (as set by default). Also, the nrcvidxtab array is filled, for each neighbor

process, of the number of data it has sent. This number is preserved, as it will

serve to determine the number of adjacency data to be sent back to each neighbor

process.

Then, data arrays for sending edge adjacency are filled-in. The ercvdsptab and

ercvcnttab arrays, of size procglbnbr, are computed according to the data stored

in coardat.dcntglbtab, regarding the number of vertex- and edge-related data to

exchange.

By way of a call to dgraphHaloSync(), the ghost data of the coargsttax array

are exchanged.

Then, edgelocnbr, an upper bound on the number of local edges, as well as

ercvdatsiz and esnddatsiz, the edge receive and send array sizes, respectively.

Then, all data arrays for the coarse graph are allocated, plus the main adjacency

send array esnddsptab, its receive counterpart ercvdattab, and the index send

arrays esnddsptab and esndcnttab, among others.

Then, adjacency send arrays are filled-in. This is done by performing a loop on

all processes, within which only neighbor processes are actually considered, while

index data in esnddsptab and esndcnttab is set to 0 for non-neighbor processes.

For each neighbor process, and for each vertex local which was remotely mated by

this neighbor process, the vertex degree is written in the esnddsptab array, plus

optionally its load, plus the edge data for each of its neighbor vertices: the coarse

number of its end, obtained through the coargsttax array, plus optionally the

edge load. At this stage, two edges linking to the same coarse multinode will not be

merged together, because this would have required a hash table on the send side.

The actual merging will be performed once, on the receive side, in the next stage

of the algorithm.
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